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A Bayes testing approach to metagenomic
profiling in bacteria
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∗
, Camilo Valdes, Adrian Dobra,
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Using next generation sequencing (NGS) data, we use a
multinomial with a Dirichlet prior to detect the presence of
bacteria in a metagenomic sample via marginal Bayes test-
ing for each bacterial strain. The NGS reads per strain are
counted fractionally with each read contributing an equal
amount to each strain it might represent. The threshold for
detection is strain-dependent and we apply a correction for
the dependence amongst the (NGS) reads by finding the
knee in a curve representing a tradeoff between detecting
too many strains and not enough strains. As a check, we
evaluate the joint posterior probabilities for the presence of
two strains of bacteria and find relatively little dependence.
We apply our techniques to two data sets and compare our
results with the results found by the Human Microbiome
Project. We conclude with a discussion of the issues sur-
rounding multiple corrections in a Bayes context.

AMS 2000 subject classifications: Primary 62F15,
62P10; secondary 62-07, 62F03.

Keywords and phrases: Metagenomics, Bayes testing,
Bacteria, Dependence.

1. INTRODUCTION

With the growing availability of sequencing technologies
the number of research contexts involving data from an
unknown but possibly complex genomic source is rapidly
growing. Often the source population is a mixture of multi-
ple genomes that may be called a metagenomic population.
The challenge to the statistician is to determine the compo-
sition of this population in terms of its component genomes,
i.e., identify which bacterial strains or species are present
and whether any may pose a risk to human health or the
environment. For instance, in human health, The Human
Microbiome Project (HMP) has discovered associations be-
tween microbial gut composition and obesity [9] while in
agriculture, the CDC estimates that each year roughly 1 in
6 Americans (or 48 million people) gets sick, 128,000 are
hospitalized, and 3,000 die of foodborne diseases [32]. Accu-
rate and cost effective identification of bacteria at the strain

∗Corresponding author.

level is vital for earlier detection, intervention and targeted
treatment.

Detection of bacterial species has improved dramatically
in recent years largely due to the development of next gen-
eration sequencing (NGS) ([26], [27]). NGS allows for de-
tection at the whole genome level, leading to further un-
derstanding of relationships between bacterial strains and
mutations specific to each strain. Recent literature indicates
that whole genome NGS more accurately detects known bac-
terial genomes and more easily differentiates among known
genomes than more traditional and targeted methods [29].
For further details about NGS data and statistical issues see
[1] and [7].

The main contribution of this paper is to provide a statis-
tical approach to the detection of bacterial genomes at the
strain level from NGS metagenomic data. Our technique be-
gins by assuming the population being sequenced is likely to
contain one or more strains of bacteria along with genetic
material from non-bacterial sources (e.g., human, archaea,
virus). From this population a sample is taken and analyzed
by whole genome NGS sequencing. There are many NGS
sequencing platforms; our method assumes relatively short
reads (100 bp) but other platforms can be accommodated
by obvious variants of our technique. The short reads are
aligned to a reference database containing M known bac-
terial strains. Since reads may be non-unique, we permit
fractional assignment as discussed in Sec. 2. The result of
this is that the data we analyze consist of the read counts
for each of the M genomes in the database. Essentially, we
use a Dirichlet prior on the probability of detection of each
of the bacteria in the data base and regard the read counts
for the genomes as multinomial. Since the Dirichlet is conju-
gate for the multinomial, the posterior distribution for the
proportion θi of genome i in the population is easy to find.
So, M marginal Bayes hypothesis tests can be used to de-
cide whether or not each strain is present in the population.
That is, if there are M bacterial genomes in the data base,
M Bayes tests are done, one for each strain. Since the data
are fixed, and hence no longer regarded as stochastic, our fo-
cus is on obtaining a single posterior density that describes
the proportion of each bacterial strain in the population.
This posterior is for a single M + 1 dimensional parameter,
conditioned on a single data set.

Many techniques have been developed to address detec-
tion of bacteria in metagenomic samples. As described in
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[11] these methods fall into three general categories: tax-
onomic mapping, composition, and whole-genome assem-
bly. Probably the most widely used technique for taxo-
nomic mapping is MetaPhlAn [35] which uses a carefully
curated database of clade markers to identify individual
species from a metagenomic sample. Although MetaPhlAn
performs favorably compared to other existing methods such
as PhymmBL [4], it is limited to the species for which un-
equivocal clade markers have been identified (roughly 25%
of known species). However, currently MetaPhlAn is only
used at the species level, not the strain, level. A similar but
more recent method, specI [25], uses phylogenetic marker
genes to identify prokaryotic species and species clusters.
As the authors note, its purpose is to automate phylogenetic
analysis for large-scale applications and bring more objec-
tivity to the field of phylogeny (the same objective as Phy-
loPhlAn [36]). Among the composition methods the most
recent is Pathoscope [11] which can be used for species or
strain identification. Pathoscope works by aligning reads to
genome sequences in a known database. Reads that can-
not be uniquely assigned to a single genome are ‘reassigned’
to the single ‘best’ genomic source using an expectation-
maximization (EM) approach based on a multinomial likeli-
hood. Because Pathoscope uses an EM optimization, when
used on the strain level it will tend to reassign non-unique
reads to only one strain among many similar strains, dis-
counting the possibility that many similar strains may be
present. In this paper we do not discuss whole-genome as-
sembly methods because, although they can be very accu-
rate at strain identification, they require much greater se-
quencing coverage than is common in our applications of
interest.

The method we propose here belongs to the composition
class as we are not using taxonomic information nor are
we attempting whole genome assembly. First, unlike other
composition approaches our method provides a probabilis-
tic assessment of the presence/absence of reference bacte-
rial strains, and assesses the likelihood of the presence of a
genome not in the current reference database. Second, as our
approach does not involve an auxiliary optimization such as
EM, it readily scales to thousands of reference genomes. Our
reference database contains over 5,000 genomic sources while
the samples may include information from tens to hundreds
of strains. Third, our method focuses on strain detection
which amounts to identification for genomes in our refer-
ence database. While methods for detection focus on min-
imizing false positives, our method is more concerned with
minimizing false negatives. That is, we allow our technique
to be adjusted according to the relative costs of false pos-
itives and false negatives (i.e., sensitivity and specificity).
Thus our method is better designed for detection of known
pathogens.

Detecting the presence of one genome may affect the de-
tection of another genome in the sense that, marginally,
the proportion Θi of a bacterial strain i in the population,
will not be independent of Θi′ . That is, some reads may

be shared by two genomes so the presence of one genome
may be positively associated with the presence of the other
genome. Because our method is based on a single joint pos-
terior across genomic sources we can investigate this de-
pendence. We do this for pairs of genomes at the end of
Sec. 2 and find that the dependence is local rather than
global, in the sense that even though most genomes are inde-
pendent there are small groups of related genomes that ap-
pear to be dependent due to sequence similarity. This type
of assessment is not readily provided by non-Bayes meth-
ods.

We demonstrate the behavior of our method on two
metagenomic samples from the HMP Data Analysis and
Coordination Center (DACC). Our method detects bacte-
rial strains that are likely to be present in the two sam-
ples, as determined by their marginal posterior probabil-
ities (>0.95). The HMP characterized these samples us-
ing a different alignment strategy and reference database,
but without a probabilistic assessment of the reliability of
identification. Our conclusions concur broadly with those
found by the HMP [18, 19]. We attribute many of the
differences in detected strains to differences in alignment
methods and reference databases, as well as to the rela-
tive costs we assigned implicitly to sensitivity and speci-
ficity.

In Section 2 we present a Bayes framework for strain de-
tection and assessment of strain dependence. We present
the application of our method to HMP data in Section 3,
and compare our results to those provided by the HMP.
We also present a measure of dependence for each pair of
strains detected. In Section 4 we discuss various aspects of
the overall analysis, including evidence for the presence of
a genomic source not included in the reference database.
Computational details are given in Appendix A.

2. METHOD

We model the sample of N genomic reads (r1, r2, . . . , rN )
as originating from a mixed population of M possible bacte-
rial genomes and an additional genomic ‘source’ not repre-
sented in the reference database (for a total ofM+1 genomic
sources). The reference database is represented as a set of
M genome sequences (g1, g2, . . . , gM ). In most bacterial se-
quence databases, the genome sequence for a bacterial strain
may be represented by a collection of sequences each repre-
senting a part of the genome, i.e., a chromosome, plasmid,
or other DNA scaffold. Our read mappings are performed at
the level of each partial genome sequence, and then the re-
sults are combined to the strain level for probabilistic anal-
yses. (We do not concatenate the sequences to the strain
level prior to analysis because reads mapping across con-
catenation points may not be biologically plausible). If all
the Ki’s are non-negative integers, the probability of ob-
serving Ki = ki reads aligning to reference genome/source
gi for i = 1, . . . ,M + 1 is assumed to follow a multi-
nomial distribution with parameter θ = (θ1, θ2, . . . , θM ),
i.e.,
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w(K1 = k1,K2 = k2, . . . ,KM+1 = kM+1|θ)

=

(
N

k1, k2, · · · , kM+1

)
θk1
1 θk2

2 · · · θkM+1

M+1 .

Of course, not all the Ki’s are non-negative integers and we
correct for this shortly.

The multinomial assumes that the reads are independent
when of course they are not: Observing a read from a given
source will increase the probability of observing other reads
from the same source. Since the exact dependence structure
is unknown and might be essentially unknowable in practice,
we take this dependence into account as a scaling factor γi
on the observed read counts for genomic source i, i.e.,

k∗∗i = γiki

Again, the k∗∗i ’s are not in general non-negative integers so,
as a convenient approximation, we replace them with

k∗i = round(k∗∗i )

where round(x) means we round x to the nearest integer. The
difference in end results from using k∗∗i or k∗i are negligible.

If reads from genomic source i are perfectly dependent,
i.e., if any one of them occurs it is equivalent to all of them
occurring (apart from reads shared with other strains) then
these reads provide information proportional to the length
of the read only, so we have γi = lr/lgi , where lr is the length
of a read and lgi is the length of genome i. Analogously the
case of complete independence corresponds to γi = 1. So, it
is reasonable to choose

γi ∈ [lr/lgi , 1],

for i = 1, . . . ,M . That is, γi is chosen to reflect the depen-
dence structure in the data. (For i = M+1 we set lgM+1

= l̄g
where l̄g is the mean of the lengths of the genomes in the
reference database.) We separately investigate whether the
degree of dependence encapsulated by the γi’s is roughly
consistent with the degree of dependence suggested by a
separate measure of dependence (see (2) below). In our ex-
amples here all reads are of the same length lr ≡ 100 but
the above equations generalize easily to other cases.

In the examples to follow, we examine the relationship
between the choice of γi and the rate of detection, choosing
γi by putting all of them on a common scale and plotting the
number of genomes detected as a function of the common
scale. Since the resulting curve is increasing in the scaling on
the γi’s, we choose the scaling value to be the one that identi-
fies the knee in the curve. The curves we get are smooth and
steeply rising on a small interval of the form [0, ε0) but past
a certain ε0 they rise more slowly and flatten out. Thus, the
knee in the curve (sometimes called the elbow) appears to be
well-defined in practice. That is, using the scaling value, γi
is chosen to balance the costs of over- and under-detection:
We want γi low to protect against over-detection but high

to protect against under-detection. The point at which the
curve appears to change character is a transition point from
being confident there are few false positives and being con-
fident there are few false negatives.

Using the knee in the curve as a technique to identify
an optimal point is a standard technique in some contexts,
e.g., in choosing the number of principal components to use
in a principal component regression analysis (called a scree
plot), the number of clusters to use in a clustering (see [30]),
or choosing a classifier (choose the classifier represented by
the point on the ROC curve closest to (0,1)). However, it is
not common to define the knee formally and its reliability
in the sense of estimating something meaningful is a sort of
‘folk theorem’. Recently, [17] provided a summary of the de-
bate surrounding the use of the knee in the curve admitting
that some regard the knee in the curve as ill-defined or not
meaningful. However, [31] had already proposed formalizing
the concept by using the curvature function of a curve in the
plane and [6] used this definition — equivalent to finding the
point of smallest radius of curvature — to estimate propor-
tions of a mixed sample. More recently, [5] simplified this
definition to a second derivative condition and verified con-
sistency in a micro-array context. Although their proof does
not directly apply to the present NGS setting, it suggests
that the knee in the curve, as used here, is a well defined
and meaningful concept. Moreover, the results from our ex-
amples below are not inexplicably far from related findings.
Hence we suggest that, even in the absence of formality, us-
ing the knee in the curve is a reasonable way to choose γi
and the curves we use suggest that there is some meaning
to the γi’s chosen.

In metagenomic contexts where multiple strains of the
same species may be present, it is common for some reads
to align to more than one genome (nonunique reads) due
to sequence similarity among genomes. This has been han-
dled in different ways across methods, from discarding reads
which map to several genomes to treating the true source as
‘missing’ and using an expectation-minimization (EM) ap-
proach to infer the source genome [11]. A priori we prefer not
to discard nonunique reads as they do provide information,
albeit limited, but using an EM approach will not scale to
thousands of reference genomes, particularly under a non-
conjugate prior. We choose instead to treat nonunique reads
as providing fractional information, i.e., if read rk aligns to
genomic sources gi and gi′ then we allocate the equivalent
of 1/2 of a read to ki and ki′ . More generally, if rk aligns to
I genomic sources (gi1 , . . . , giI ) then rk provides (1/I)th of
a read to each of (ki1 , . . . , kiI ).

A separate issue of the reads, apart from non-uniqueness
or dependence, is the quality of the reads in the sense of
phred scores, see [10]. Roughly, a phred score is an assess-
ment of the reliability of the sequencing on a nucleotide-by-
nucleotide basis. Assuming phred scores are good indicators
of the reliability of the sequencing, it is an open question
whether or not to include all reads. One might argue that
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low quality reads should be filtered out and only high quality
reads used so as to be sure that one will not be misled by low
quality data. On the other hand, one might argue that in-
cluding the low phred score reads will improve the inference
analogous to the way a collection of weak learners may com-
bine to provide good inference in boosting or other model
averaging techniques. For the two data sets we analyze in
this paper, we present some results using all the reads but
focus attention on results based on the high quality reads
(phred score ≥ 19). An alternative we have not implemented
is to weight the fractional reads by their phred scores; we
expect this would make little difference given that by filter-
ing out at phred score 19 we are already eliminating well
over 50% of the reads.

To complete the specification of how the posterior can
be found, we choose the prior distribution for Θ =
(Θ1, . . . ,ΘM+1) to be a conjugate Dirichlet distribution
with hyperparameter α = (α1, α2, . . . , αM+1), i.e.,

p(θ | α) ∝ θα1−1
1 θα2−1

2 · · · θαM+1−1
M+1

and yielding a posterior distribution W (θ | k∗, α∗), where
k∗ = (k∗1 , k

∗
2 , . . . , k

∗
M+1), which is also Dirichlet with param-

eters α∗ = (α∗
1, . . . , α

∗
M+1) = (α1 + k∗1 , α2 + k∗2 , . . . , αM+1 +

k∗M+1). In this formulation the posterior marginal distribu-
tion for each Θi is Beta(αi + k∗i ,

∑
j �=i(αj + k∗j )). The hy-

perparameters (α1, . . . , αM+1) can be seen as representing
‘pseudo counts’, or the number of reads we expect to come
from each genomic source a priori. Indeed, the parameters
in the Beta distribution indicate that αi must be on the
same scale as k∗i . Two natural choices for the hyperparam-
eters are the following. First, one might set all αi to be the
same constant by invoking the Principle of Insufficient Rea-
son and then choose that constant to be one on the grounds
that the smaller the αi the more influence the data will
have. Second, one might choose the αi’s to be a fraction of
the size of the gi’s: Bigger gi’s should get higher αi’s on
the grounds that given uniform sampling there is a higher
chance of reads from larger versus smaller genomes. It turns
out that the second method is hard to formulate without
making assumptions about either the expected sequencing
coverage (or expected genomes present). In most applica-
tions this information is not available, so we resort to the
first (simpler) method as a reasonable default.

Given the posterior we can do the hypothesis testing. The
Bayes test for

H0,i : gi is not in the mixed population

vs. H1,i : gi is in the mixed population,(1)

is based on

W (θi > t | k∗, α∗) > 1− τ

where t and τ are specified thresholds. One natural choice
for t is 1/(M +1) because it represents the assumption that

a priori each genomic source is equally likely. That is, if all
genomic sources are equally likely to be present and reads
are generated at random, then the proportion of reads from
each genomic source should be 1/(M + 1). Of course this
threshold does not take into account the varying lengths of
the reference genomes, i.e., k reads from a small genome is
more evidence of presence than the same number of reads
from a large genome. We can adjust for this by using

ti = lgi/

M+1∑
j=1

lgj

as the threshold for genomic source i; each threshold is
weighted by the length of the associated genomic source.
Moreoever, τ may be found by back solving from the re-
quirement that the Bayes Factor in favor of H1,i be greater
than, say, 3.2 [20]. Thus given the specification of the prior
and likelihood, one can form the posterior easily, and per-
form the M Bayes tests in (1).

Aside from being fairly straightforward to explain and
compute, the Bayes framework can also be used to assess
the dependence between genomic sources, i.e., the degree
to which the appearance of the presence of one genome in-
fluences the appearance of the presence of another genome.
This can be done for any genome pair by comparing the
joint posterior marginal W (θi, θj | k∗, α∗) for (θi, θj) with
the product of the univariate posterior marginal distribu-
tions W (θi | k∗, α∗) and W (θj | k∗, α∗) for θi and θj . In
other words,

f(ti, tj | k∗, α∗) = W (Θi > ti,Θj > tj | k∗, α∗)

−W (Θi > ti | k∗, α∗)W (Θj > tj | k∗, α∗)(2)

can provide an assessment of dependence. Effectively,
f(ti, tj | k∗, α∗) measures how much the knowledge about
the presence of one genome affects the uncertainty about
the presence of the other. Because α and k∗ are on the same
scale, and all of the θi’s are on the same scale, f(ti, tj |
k∗, α∗) remains a meaningful assessment of dependence even
when generalized to three or more genomes.

3. APPLICATION TO HMP DATA

The Human Microbiome Project (HMP) is an NIH-
funded research initiative aimed at characterizing the mi-
crobial communities found at various sites of the normal
human body. The first phase of the HMP (2007–2012) fo-
cused on the characterization and composition of the mi-
crobial communities which inhabit major mucosal surfaces
of the healthy human body. The Project conducted whole
metagenome DNA sequencing on biological samples from
hundreds of individuals using Illumina technology, and per-
formed metagenomic analyses on these samples, with a series
of associated publications in 2012. The metagenomic analy-
ses involved data pre-processing, read assembly and read
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mapping, and metabolic and functional profiling of sam-
ples. The second phase of the HMP (2013–2015) is focused
on characterizing the biological properties of the micro-
biome and host in several disease contexts. The HMP pro-
vides metagenomic data and tools for the research commu-
nity, including NGS sequencing data and analysis pipelines.
The HMP resources are available at http://hmpdacc.org
and described in associated publications [18, 19]. A com-
plete overview of the HMP data analysis process is at
http://www.hmpdacc.org/START/.

We selected two samples from the HMP website for analy-
sis, sample SRS105072 (mid-vaginal) and sample SRS014468
(saliva), which represent relatively low and high diversity
bacterial communities, respectively. General descriptions of
the collection and processing of the samples to generate the
data are described at the HMP data portal noted above.
Reads aligning to the human genome have been previously
removed by the HMP, and the remaining reads are believed
to be largely bacterial or viral in origin. Both samples consist
of paired-end 100 base pair reads; sample SRS015072 con-
sists of 495,256 reads while sample SRS014468 consists of
1,159,503 reads. We consider both unfiltered data and data
once the reads have been filtered for quality (phred ≥ 19);
the filtered data consists of 322,541 and 202,487 paired-end
reads, respectively.

Next we must select, obtain, and preprocess a reference
database of bacterial genomes. Our reference set consists
of all the bacterial genomes from the Integrated Microbial
Genomes (IMG, version 4.0) database [24]. We prepare all
of the genomic files for alignment by indexing the files using
the indexing software (bowtie2-build) of the Bowtie2 [21]
aligner. Further details about the aligner and indexing are
provided in Appendix A.

Given the sample reads and the reference database we
align the reads to the reference database and adjust the
number of reads aligning to each genome for non-unique
reads (fractional read counts). This involves counting, for
each read, the number of genomic files to which the read
aligns, and adjusting the read counts for each genomic file
accordingly (i.e., if a read aligns to n genomic files, the read
contributes 1/n reads to the total read count of each genome
file). In this way we generate ki for each gi in the reference
database.

3.1 Choice of dependence factor γ

As described in Section 2 we used read counts k∗i , the
read counts ki adjusted for the dependence among reads
from the same genomic source and rounded to the nearest
integer. As the nature of the dependence is unknown, we rep-
resented this dependence by a factor γi which was specific to
each genome and could be estimated from the data. We ex-
amine the graph of the number of genomic sources detected
in the data as a function of the scaling of the γi’s, where
each unscaled γi ∈ [lr/lgi , 1]. Such graphs are qualitatively
similar to the graphs shown in Figure 1 for the unfiltered

Figure 1. Number of genomic files detected as a function of
γ; unfiltered (top) and filtered (bottom) data.

and filtered data. In these graphs, for a given x-axis value
h, we plot the number of genomic files detected when the
hth largest threshold for each file is used, i.e., we use γih
for each genome i where the thresholds (γi1, . . . , γi1000) for
genome i form a uniform partition of [lr/lgi , 1] of size 1,000.
Note that the range for γi (and therefore the spacing of the
thresholds) depends on i, i.e., the grid is not uniform across
i, even though the number of thresholds is constant over i.

An example may clarify this. Consider three strains g1,
g2 and g3 and suppose γ1 ∈ [100/1000, 1], γ2 ∈ [100/106, 1],
γ3 ∈ [100/500,000, 1] where the read length lr = 100 in
all three cases and the genome lengths are 1,000, 106, and
500k, respectively. Each of the three intervals is partitioned
into 1,000 subintervals with endpoints, say g1,1, . . . , g1,1000,
g2,1, . . . , g2,1000, and g3,1, . . . , g3,1000. These do not coincide
from genome to genome, but their labels, i.e., the indices of
their order, do. That is, we can associate, say, the v-th inter-
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vals for each genome, i.e., form 1,000 triples (g1,v, g2,v, g3,v),
so that even though the subintervals are different from
genome to genome it is only the ordering that matters.
In this example, there are 1,000 triples and each triple
corresponds to the possible value of a vector of the form
(γ1, γ2, γ3). It is vectors like these that are used in Fig. 1,
except the length is 5,168 or the number of reference strains.

In the graphs of Fig. 1, we can see a common pattern:
Rapid increase followed by a leveling out. This reflects an
initial rapid increase in the number of genomes detected,
followed by the more gradual inclusion of further genomes
as γ increases. In order to balance false-positive and false-
negative findings, it seems reasonable to select γ to repre-
sent the point of this qualitative change, i.e., the change
from rapid inclusion to slow inclusion. Often this is called
finding the knee in the curve; it is a standard procedure in
principal components analysis and receiver operating char-
acteristic curves in classification, among other settings. For
the samples here this leads us to dependence factors of γi45
(the 45th largest of 1,000 factors for each i) for the mid-
vaginal sample and γi35 (the 35th largest of 1,000 factors for
each i) for the saliva sample. These values are the same for
the filtered and unflitered data.

3.2 Results of bacterial strain detection

Given a fixed scale value for each sample we can do the
Bayes testing as presented in (1). That is, we infer that
genomic source i is present if

W (Θi > lgi/
M+1∑
j=1

lgj | k∗, α∗) > 1− τ.

Note that these same posterior probabilities were used to
generate the graphs in Figure 1 and select the γi’s. That is,
we are using the data twice — first to estimate the nuisance
parameter γ and then to find the actual posterior. This dou-
ble usage of the data is necessary because within the Bayes
paradigm one cannot evaluate bias. Using the data twice is
one way to compensate when the estimate of the nuisance
parameter can be regarded as helping to ensure the model
is fit to the data well. In our examples here, the sample size
per parameter is large enough that this is unlikely to be a
problem: For the mid-vaginal sample there were 405k reads,
corrected to .45 × 405k = 182k independent reads for about
5k parameters giving about 182k/5k, or 36 data points per
parameter. Overall, this reinforces our interpretation of the
scaling as representing a trade-off between false positives
and false negatives.

In a further pragmatic correction, we did not test any
bacterial strain with less than five reads aligning. This is a
simple way to ensure that the results would not be prior-
driven. Since the αi’s were all one and represented ‘virtual
reads’ using a cutoff of five reads seemed reasonable. (Using
a cutoff of 10 reads meant that we lost some strains that were
closely related to other strains detected and this seemed
counter-productive.)

For the mid-vaginal sample (unfiltered) we detect 85 bac-
terial strains representing 47 bacterial species. The mean
(median) read count per strain was 4,554 (735) reads. This
reflects a highly skewed distribution with a fairly wide
range; this is partly explained by the scaling of the thresh-
olds ti for the size of the genomes. The HMP reported
29 strains as present, representing 15 bacterial species. Of
these, we detected 27/29 strains and 13/15 species. The two
species/strains that we fail to detect, Sphingopyxis alasken-
sis RB2256 and Stenotrophomonas maltophilia K279a, are
reported by HMP to have relatively low sequence coverage
(depth/breadth of 0.020/1.99 and 0.010/1.21, respectively).
For the filtered case we detect 63 bacterial strains represent-
ing 40 bacterial species. The mean (median) read count per
strain was 5,730 (633) reads. Comparing with the HMP find-
ings we detected 24/29 strains and 13/15 species, so slightly
lower overlap relative to the unfiltered data. Many of the
strains we detected that were not reported by the HMP be-
long to species detected by the HMP and the consensus is
even stronger at the genus level; this may partly reflect dif-
ferences in the alignment method and reference databases.
The overlap between the lists of detected strains/species
based on the unfiltered and filtered data consists of 61
strains and 38 species; see Figure 2. The discrepancy be-
tween the results based on the unfiltered and filtered data
is not surprising if we consider that filtering removed 59.1%
of the reads from the mid-vaginal sample.

For the saliva sample (unfiltered) we detect 139 bacterial
strains representing 94 bacterial species. The mean (median)
read count per strain was 348 (21) reads; this is much lower
than for the mid-vaginal sample due to the increased com-
plexity of the population. The HMP reported 140 strains
as present, representing 105 bacterial species. Of these, we
detected 50/140 strains and 46/105 species. For the filtered
case we detect 91 bacterial strains representing 75 bacte-
rial species. The mean (median) read count per strain was
383 (26) reads. Comparing with the HMP findings we de-
tected 41/140 strains and 41/105 species. As for the mid-
vaginal sample, many of the strains we detected that were
not reported by the HMP belong to species detected by the
HMP, and the consensus is even stronger at the genus level.
However, our results and the findings of the HMP are more
disparate due to the increased complexity of the popula-
tion from which the sample was taken. The overlap between
the lists of detected strains/species based on unfiltered and
filtered (ignoring the overlap with HMP) data consists of
47 strains and 36 species, if the HMP strains/species are
included this increases to 83 strains and 69 species; see Fig-
ure 2. As noted above, the discrepancy between the results
based on the unfiltered and filtered data is expected as fil-
tering removed 72.2% of the reads.

To provide an alternative perspective on our findings we
plotted the strains detected in the filtered data as a function
of genome size and sequencing depth; see Figure 3. The over-
whelming majority of strains have small genomes and low se-
quencing depth, which contributes to the overall uncertainty
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Figure 2. Summary of the overlap among the filtered,
unfiltered, and HMP results. Top: mid-vaginal. Bottom:
saliva. The numbers without parentheses are the number

strains detected when a minimum of 5 reads is required; the
smaller numbers without parentheses are the number species

detected again when a minimum of 5 reads is required.

in population composition. Note the difference in scales for
sequencing depth; because fewer strains are present in the
mid-vaginal sample is it possible to achieve higher sequenc-
ing depth. This also reflects how, after filtering, the saliva
sample consisted of fewer reads than the mid-vaginal sam-
ple. The insets of the two graphs highlight the phylogenetic
diversity of the saliva sample (many genera represented) rel-
ative to the phylogenetic depth of the mid-vaginal sample
(many strains of specific genera represented).

Figure 3. Strains detected in filtered data. Top: mid-vaginal
at γi45. Bottom: saliva at γi35. The x-axis is the genome
length in base pairs and the y-axis is the sequencing depth.

The dot size is proportional to the posterior marginal
detection probability and the dot color represents bacterial

genus. The inset highlights the lower left corner of the graph.

We comment that in our analysis of the whole
metagenome DNA sequencing data from HMP we have as-
sumed a priori that each genome in a biological sample has
the same probability of being sequenced, and more abundant
genomes have a higher probability of being sequenced than
less abundant genomes. This is a standard assumption even
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though it is at best only approximately true. Under it, more
abundant genomes will generate relatively more sequencing
reads, which our method will map to the relevant reference
genomes. Thus we expect that, given two genomes of similar
sizes, our method will assign higher posterior probabilities
of presence to the genome with higher abundance. This is
not to say that abundance and posterior probability are di-
rectly correlated, as genome size and depth of sequencing
also play a role in determining the probabilities of detection
(see Figure 3). However, we do expect those bacteria with
larger genomes and higher abundance in any given sample
to yield higher posterior probabilities of presence. Other-
wise put, there is a threshold of abundance and sequencing
coverage that must be satisfied in order for our method to
detect any specific genome. This is a property of detection
methods in general.

Note that there is a tradeoff between coverage and abun-
dance in terms of detection. If a genome with low abundance
has high enough coverage or a genome has mow coverage
but high enough abundance, it will be detected. The opti-
mal case for detection is high abundance and high coverage.
It is only when both abundance and coverage are too low
that a genome that is present will fail to be detected.

Our model allows for the detection of a genomic source
not represented in the reference database. This source is
represented by our M + 1st genomic category. In both the
mid-vaginal and the saliva datasets this category was de-
tected with posterior probability > 0.99. Since human reads
were pre-screened from both datasets we conclude that a
genomic source not in the reference database, of non-human
origin, is present in both datasets. In order to identify this
source we could align the reads associated with this cate-
gory to other genomic databases, such as those for viruses
and other eukaryotes, and use the method presented here
to determine presence/absence of specific sources. An alter-
native with the unfiltered data is that the reads detected
to be in category M + 1 may merely be such low quality
reads that they do not match to anything in our database.
In many cases it is not a priori clear which case — low qual-
ity reads or missing reference genomes — are represented by
category M + 1.

3.3 Pairwise dependence between strains

It was argued in Sec. 2 that using an appropriate scal-
ing factor γ could be used to correct for any dependence
in reads, hence making it reasonable to use a multinomial
likelihood. To verify that this is the case, we generated his-
tograms of the joint probability of detection minus the prod-
uct of probabilities of detection for all the genomes detected.
That is, we plotted the values

W (Θi > ti,Θj > tj | k∗, α∗)

−W (Θi > ti | k∗, α∗)W (Θj > tj | k∗, α∗)(3)

where i, j ranged from 1 to the number of genomes detected
in each case (filtered, unfiltered; cutoff of five reads min-

imum and W (Θi > ti | k∗, α∗) > 1 − τ ; and mid-vaginal,
saliva). Expression (3) is a measure of dependence because it
is zero when the i-th and j-th genomes are independent and
as it increases in absolute value it indicates higher depen-
dence; expression (3) is essentially the strong mixing condi-
tion (sometimes called α-mixing).

As a representative example, Fig. 4 shows the histograms
from calculating (3) for the filtered data. The upper panel
shows the results for the mid-vaginal data and the lower
panel shows the results for the saliva data. It is seen that
for the mid-vaginal data there is a large spike at zero. In-
deed, a large majority of the differences in (3) are smaller
than 0.1 in absolute value; the tail on the right merely
indicates the association is generally positive. This means
that the joint probability is higher than the product of
the marginal probabilities so that detecting one genome
makes detecting some other genomes more likely. For the
saliva data, it is seen that the concentration around zero
is slightly stronger than for the mid-vaginal data, and the
tail is again to the right, suggesting a positive association
between genomes. Note that the direction of dependence is
the same for both cases, intuitively reasonable since detect-
ing one genome increases the probability of detecting similar
genomes. An interesting difference is due to the complexity
of the data set. Between the mid-vaginal and saliva data
sets the vertical scales differ by a factor of ten, because the
saliva data set is so much more diverse, i.e., the number
of pairs of strains increases with more strains present. In
addition the saliva data set contains stronger pairwise de-
pendencies, as seen by the range of the x-axes for the two
plots.

A separate question from how much association seems
to be present is to ask what form it takes: Which genomes
seem to be dependent on which other genomes? We address
this question by using network dependence plots [37]; see
Fig. 5 for the same cases as in Fig. 4, i.e., filtered data.
We used a cutoff of 0.03 for the mid-vaginal data set and
0.06 for the saliva data set so as to make the size of the
network dependence graphs roughly equal. (However, the
number of pairs with strictly positive dependencies in the
saliva data set is 12,816, much larger than 1,364 for the
mid-vaginal data set; see the y-axis scales on the respective
histograms in Fig. 4.) Now, the numbers of links in the two
networks are not too different — 74 for mid-vaginal and 62
for saliva. Relative to the network for the mid-vaginal sam-
ple, which shows 58 individual strains and 19 genera, the
saliva sample shows fewer individual strains (11) and fewer
genera (15). This makes it appear that the mid-vaginal data
set is more phylogenetically diverse than the saliva data
set, however, this is an artifact of the cutoffs: If the cut-
off .06 were used for the mid-vaginal data set, its network
would have no links. Note also that the unspecified M + 1
category appears in the mid-vaginal dependence network
(aqua colored). Overall, this shows that there are depen-
dencies, however slight, whose structure may be of inter-
est.
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Figure 4. Diagrams of the pairwise dependence between the
parameters in the posterior distribution for the strains

detected (filered cases). Top: mid-vaginal. Bottom: saliva.

4. DISCUSSION

We have presented a Bayesian approach to statistical
strain detection from bacterial metagenomic samples gen-
erated by next generation sequencing. Such samples have
been generated by multiple research projects including the
Human Microbiome Project [18] and the TerraGenome con-
sortium [38]. Our method uses posterior marginal probabil-
ities to detect specific bacterial strains, and quantifies the
dependence between pairs of strains by comparing the joint
probability of detection to the product of the marginal prob-
abilities of detection. The threshold for detecting the pres-
ence of a genome is chosen to be proportional to the length

of the genome, providing an automatic adjustment for ge-
nomic length. In order to incorporate the dependence among
reads from the same genome, we allow for a scaling factor on
the read counts for each genomic source; this scaling factor
is a nuisance parameter whose estimate takes into account
both the read length and the length of the reference genome.
The Bayes paradigm is also able to quantify the evidence in
favor of the presence of an unknown genomic source, i.e., a
source of genomic material that is not present in the refer-
ence database.

The scaling factor on the read counts can be selected
to provide a balance between false detection and failure to
detect, i.e., false positives and false negatives. This is an
advantage over existing approaches such as Pathoscope [11]
which, as the authors note, has a tendency toward parsi-
mony and can miss one of more similar substrains. In the
presence of ambivalent information, i.e., reads which align
to more than one genomic source, we share this information
across the relevant sources and quantify it probabilistically.
In our opinion this provides more information than discard-
ing ‘non-unique’ reads or only providing the ‘best choice’ for
mapping non-unique reads.

Note that the number of strains present for which Patho-
scope was demonstrated effective ranged from three to 30;
the number of strains in their reference set was 131. How-
ever, it will be very difficult to scale Pathoscope up to larger
numbers of strains present or in the reference set because
Pathoscope is based on the EM-algorithm for which both
running time and convergence diagnostics will be problem-
atic in general. By contrast, in our examples we had an
unknown number of strains present, and over 5,000 strains
in the reference set. Moreover, it is clear that our proce-
dure will scale up readily to even higher numbers of strains
present or in the reference set — irrespective of how similar
or dis-similar the strains are.

Note that our estimate of the scaling factor is not Bayes,
so the overall procedure is empirical Bayes. While philosoph-
ically impure and a limitation of the method, it is probably
not a problem in practice — at least when the sample size
is large enough. Here, we have linked the parameters γi into
a single parameter γ used to adjust for dependence. For the
smaller sample we have 405k reads and about 5k strains and
our correction for the dependence was a factor of .45. Thus
it’s as if we had .45 × 405k/5k = 36 independent data points
(reads) per parameter. A similar calculation can be done for
the larger sample. Aside from pathological cases this is usu-
ally more than enough for posteriors to exhibit convergence.
Hence, one expects good posterior behavior since the sources
of variability (e.g., the dependence) that have been included
in the modeling are typically going to have a much greater
effect than those that have been neglected (e.g., estimat-
ing γ).

It is important to note that our technique does not min-
imize false positives or false negatives; it chooses a balance
between these two extremes. If there is ambivalent informa-
tion then our use of fractional reads means it is shared and

sii338.tex; 13/08/2014; 14:40 p. 9

A Bayes testing approach to metagenomic profiling in bacteria 9



UNCORRECTED  P
ROOF

1 57

2 58

3 59

4 60

5 61

6 62

7 63

8 64

9 65

10 66

11 67

12 68

13 69

14 70

15 71

16 72

17 73

18 74

19 75

20 76

21 77

22 78

23 79

24 80

25 81

26 82

27 83

28 84

29 85

30 86

31 87

32 88

33 89

34 90

35 91

36 92

37 93

38 94

39 95

40 96

41 97

42 98

43 99

44 100

45 101

46 102

47 103

48 104

49 105

50 106

51 107

52 108

53 109

54 110

55 111

56 112

Figure 5. The strains detected with the strength of the dependence indicated by the lines connecting the vertices. Vertices
representing different strains from the same genus are given the same color. Top: mid-vaginal. Bottom: saliva.

quantified probabilistically rather than optimized to give
a ‘best guess’ or ‘best choice’. As a separate point, while
our method exploits conjugacy, it is obvious how to extend
our method to the non-conjugate prior case: It is enough
to be able to obtain the univariate posteriors, one for each
genome, in order to do the Bayes tests.

A possibly controversial feature of our method is that
it does not use a multiple comparisons correction. In fact,

to be very strict about it, the Bayes multiple testing prob-
lem has not really been clearly defined. Nevertheless, most
authors agree that Bayes procedures have a built in push to-
wards sparsity, sometimes called the ‘Ockham’s razor’ effect,
that often obviates the need for explicit multiple compar-
isons corrections. Hence, many authors agree that there are
many cases where Bayes procedures have a multiple cor-
rection built in, see [3], [33], [2], [28] and [13], [34]. Some
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of these authors try to specify conditions where a multi-
ple comparisons correction is necessary, but the conditions
they find do not seem to coincide partially because they are
studying different settings. Nevertheless, taken together, the
line of thought these papers represent, seems to suggest that
putting an extra layer of variability on the hypotheses i.e.,
converting them to a ‘model selection problem’, is a good
methodology, even if it is unclear how the structure of the
data (independent from test to test or not for instance) or
the dependence among the parameters in the joint prior af-
fects this. Indeed, it is not clear when this procedure differs
from merely having a prior probability on each null hypoth-
esis being true; the explanation may be that in a real model
selection problem the prior has two layers, the within-model
prior and the across-models prior, whereas in other testing
problems (such as here) there is no analog of the across-
model prior to use in marginal tests.

A different approach is taken in [16]. They develop statis-
tics that look essentially frequentist but are asymptoti-
cally Bayes in a decision theoretic sense. Indeed, these au-
thors state: ‘thresholding the marginal posterior probability
amounts to controlling the positive FDR’ (at least in their
setting). Their setting, like some of the others, assumes the
data for each hypothesis are independent, the parameters
in the tests are different, and there are no nuisance parame-
ters. While somewhat ad hoc, the reliance on decision theory
makes sense because Bayes testing is based on the fact that
the Bayes factor (or more precisely thresholding the poste-
rior probability) is the Bayes action under generalized zero-
one loss. It should be noted that other authors such as [28]
also take a decision theoretic approach. On the other hand,
this procedure seems difficult to implement, suffers from in-
coherency (see below) in finite samples, and its asymptotics
may make it equivalent to an empirical Bayes procedure
such as those criticized in [34].

A different approach again is taken in [34]. They argue
that prior selection should be used to effect a multiple com-
parisons correction in a linear model selection problem so
that in essence the built-in multiple correction effect from
the Bayes formulation can be exploited. They also criticize
empirical Bayes approaches such as used here, in [16], and
originating in [14]. However, the framework in [34] really is
a model selection problem so unlike some other cases, e.g.,
[33], the prior on the hypotheses is the across model prior
and hence is an essential component of the Bayesian for-
mulation rather than an added construct to combine the
hypotheses into one big measure space (the Bayes contain-
ment principle). That is, the multiple testing problem does
not have to be converted into a model selection problem
because it already is one.

At root, there are two ways to justify Bayes testing at
least in the simplest cases. One is the well-known decision
theoretic criterion posterior risk under the generalized zero-
one loss function. The other is via coherency arguments such
as originate in [8] and were developed in [12]. The decision-
theoretic approach is constructive in that it leads to the

posterior probabilty of a hypothesis as the right thing to
use even if the threshold depends on the loss function. The
optimality of the use of the posterior odds under coherency
amounts to saying that any other way of posting odds leads
to a certain loss of money by the bookie.

The stance (gingerly) taken here is the following and is
supported by the fact that the results are more-or-less in
the range one would expect by comparison with the HMP
results for strain/species detection. First, each individual
univariate hypothesis test should be coherent in the sense of
[12] so that means one must use the marginal posterior odds
from the single posterior conditioned on all the data. Prior
selection to avoid multiple comparisons is relatively undevel-
oped and from a Bayes persepctive can be good only when
one has no other auxilliary information to be built into the
prior. However, here, we thought we should invoke a Princi-
ple of Insufficient Reason to insist all the αj ’s be the same
and then set them to one to maximize the effect of the data.
Therefore, the only parameter left in the analysis to use in
a multiple comparisons correction is the threshold of the
posterior probability that in principle comes from the gen-
eralized zero-one loss function. In effect, this means taking
different loss functions for the different tests. The problem
is that pre-experimentally we do not know how to formulate
the right generalized zero-one loss function and hence can-
not identify the ‘right’ cutoff value for the posterior for each
hypothesis. Hence we de facto assumed that all the loss func-
tions were the same and so would lead to the same threshold.
Therefore, we merely looked for the largest marginal poste-
rior probabilities using uncorrected thresholds (backformed
from requiring the Bayes factor to be greater than 3.2). So,
two obvious ways to improve the present analysis would be
to bring more subject matter knowledge to bear on the selec-
tion of the parameters in the generalized zero-one loss func-
tion and the verification that the empirical Bayes method
used here really is an approximately fully Bayes method (or
has some other feature that makes it reasonable).
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APPENDIX A. COMPUTATIONAL DETAILS

Bacterial reference sequences

456,865 whole genome bacterial reference sequences, in
FASTA format, were downloaded from the Integrated Mi-
crobial Genomes (IMG) database (version 4.0) [24]. The
456,865 reference sequences accounted for 5,168 bacte-
rial references — these included sequences from bacterial
genomes and bacterial plasmids. The 5,168 bacterial refer-
ences were isolated by relying on bacterial taxon names and
sequence identifiers obtained from the Genome Browser at
the IMG website (http://img.jgi.doe.gov).
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Figure 6. Mapping quality values (MAPQ) for both HMP
samples as reported by Bowtie2 where the mapping quality is
assessed using phred scores. As noted, phred score ≥19 was

used to filter the alignments for downstream analysis.

Metagenomic samples

Two human metagenomic samples were downloaded from
the Human Microbiome Project data portal [15]: a Saliva
sample (accession SRS014468) and a Mid-Vaginal Sam-
ple (accession SRS015072). Both samples are available at
http://www.hmpdacc.org/HMSCP/ and consist of 100-bp
paired-end reads; The Saliva sample contains 1,159,503
reads, while the Mid-Vaginal sample contains 495,256.

Data processing and local alignment

Both Saliva and Mid-Vaginal samples were aligned to the
456,865 bacterial sequences using the Bowtie2 [21] aligner in
the local-alignment mode (reads were not aligned using the
traditional end-to-end alignment). The following Bowtie2
command was used:

bowtie2 --local -D 20 -R 3 -N 0 -L 20 -i S,1,0.50 --time -f -x -S

Previous versions of Bowtie employed a global alignment
policy to align reads to a reference. This policy allowed only
a certain number of mismatches in the read, and reads were
aligned “end-to-end”. Bowtie2’s support of local alignment
expands the alignment policy to support the alignment of
small chunks in the reads, and allows reads to be aligned
without a strict end-to-end policy. The resulting alignments
for both samples (Saliva & Mid-Vaginal) were filtered by
mapping qualities Samtools (0.1.18) [22]. A phred score of 19
or greater was used as the threshold to filter the alignments
by Figure 6.

After filtering, the Saliva sample contained 322,541
paired-reads while the Mid-Vaginal sample contained
202,487 reads.

Post processing

The filtered reads are then analyzed using a custom
PERL script that counts the number of hits that a given

bacterial reference sequence (genome or plasmid) has. Read
hits to a reference are normalized by the number of ref-
erences that a given hit maps to. Reports at the Strain,
Species, and Genus level are then generated.
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