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Much attention has been focused recently on the problem of maintaining the confi-
dentiality of statistical data bases through the application of statistical tools to limit
the identification of information on individuals (and enterprises). Here we describe
and implement some simple procedures for disclosure limitation based on bounds
for the cell entries in contingency tables that result from knowledge about released
marginal totals or subtables. Our work draws on the ideas associated with the theory
of log-linear models for contingency tables where the minimal sufficient statistics
are in fact marginal totals corresponding to the highest-order terms in the model. We
draw on recent results associated with decomposable log-linear models and their use
in the disclosure limitation context.

Our primary illustration of the methodology is in the context of a 216 contingency
table extracted from disability data collected as part of the National Long Term Care
Survey. We treat these data as if they involved an entire population and we illustrate
the calculation of optimal releases of marginals in such a circumstance. We describe
briefly some of the analyses we have carried out on these data using the Grade of
Membership model, whose minimal sufficient statistics are not simply marginal to-
tals, and we relate this to the optimal set of releasable margins. We conclude with a
discussion of some of the possible implications of our analyses for disclosure limi-
tation in similar data sets.
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1.1 Introduction

If government agencies are to collect and publish high quality data, it is essential
that they maintain the confidentiality of the information provided by others. Typi-
cally agencies promise respondents that their data will be kept confidential and used
for statistical purposes only. Disclosure limitation is the process of protecting the
confidentiality of statistical data. A disclosure occurs when someone can use pub-
lished statistical information to identify an individual data provider. Since virtually
any form of data release contains some information about the individuals whose data
are included in it, disclosure is not an all-or-none concept but rather a probabilistic
one. For general introductions to some of the statistical aspects of confidentiality and
disclosure limitation see Doyle, et al. [13], Duncan, et al. [15], Fienberg [20], and
Willenborg and De Waal [37, 38].

Disclosure limitation procedures alter or limit the data to be released, e.g., by
modifying or removing those characteristics that put confidential information at risk
for disclosure. In the case of sample categorical data in the form of a contingency
table, a count of “1” can generate confidentiality concerns if that individual is also
unique in the population. Much confidentiality research has focused on measures of
risk that attempt to infer the probability that an individual is unique in the population
given uniqueness in the sample (e.g, see Chen and Keller-McNulty [4], Fienberg and
Makov [22, 23], Skinner and Holmes [36], and Samuels [35]). Here we will consider
only the case of population data, for which a count of “1” is unique. Moreover, a
count of “2” is also problematic for population data since it allows each of the two
people in the cell to identify one other! More generally, small counts raise issues of
disclosure risk.

In this paper we provide an overview of some recent work to develop bounds
for entries in contingency and other non-negative tables (see Dobra and Fienberg
[9, 10, 11], and Dobra, et al. [12]). We work within a statistical framework for
the release of cross-classified categorical data coming originally in the form of a
contingency table where requests from users come in the form of (marginal) sub-
tables involving a subset of the variables. Clearly, the more such subtables that are
available, the more information we have about the full joint distribution of the cross-
classifying variables. Through a detailed example we illustrate both the utility of
data releases in the form of marginals and simple methods for assessing the risk of
disclosure using bounds on the individual cell entries. Our interest in this problem
grows out of work to develop a Web-based table query system, coordinated by the
National Institute of Statistical Sciences [12]. The system is being designed to work
with a database consisting of a k-way contingency table and it allows only those
queries that come in the form of requests for marginal tables. What is intuitively
clear from statistical theory is that, as margins are released and cumulated by users,
there is increasing information available about the table entries. Such an approach to
disclosure limitation always tell the truth by releasing marginals from the full table,
albeit not the whole truth, which would entail releasing the full table (c.f., Dobra, et
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al. [12]).
The approach we outline in this paper draws heavily on the ideas associated with

the theory of log-linear models for contingency tables (see Bishop, Fienberg, and
Holland [1], and Lauritzen [31]), where the minimal sufficient statistics (MSSs) are
in fact marginal totals corresponding to the highest-order terms in the model. This
simple statistical fact has profound implications for reporting purposes as well as for
disclosure limitation methods based on reporting only subtables. If an agency knows
that a particular log-linear model fits a multi-dimensional contingency table well,
then, at least in principle, users of the data could get by with only the MSSs. If the
agency is able to release a set of marginals which include the MSSs of well fitting
log-linear models, then users can also independently assess the fit relevant log-linear
models from the released data and consider alternative models as well. It is in this
sense that an approach based on releasing marginals leads to conclusions that may
be more uncertain, but will not be erroneous.

In the next section, we introduce an example of a 216 contingency table based on
disability data from the National Long Term Care Survey, which we use to illustrate
our methods. In Section 1.3 we give a brief summary of the key technical background
on bounds for cell entries in a table when the marginals corresponding to those as-
sociated with decomposable and reducible graphical models. Then, in Sections 1.4
and 1.5, we outline a general approach to the determination of optimal releases of
marginals based on a search procedure that involves only decomposable cases and
apply it to our example. In Section 1.6 we assess our results to the 216 table, and we
conclude with a discussion of some of the possible implications for disclosure and
statistical analyses.

1.2 Example: National Long Term Care Survey Data

In this paper our primary example is a 216 contingency table n extracted from the
“analytic” data file for National Long-Term Care Survey. Each dimension corre-
sponds to a measure of disability defined by an activity of daily living, and the table
contains information cross-classifying individuals aged 65 and above. This extract
involves data pooled across four waves of a longitudinal survey, and it involves sam-
ple as opposed to population data. We henceforth act as if these were population
data. For a detailed description of this extract see [17].

The 16 dimensions of the contingency table correspond to responses to 6 activ-
ities of daily living (ADLs) and 10 instrumental activities of daily living (IADLs).
Specifically, the ADLs are (1) eating, (2) getting in/out of bed, (3) getting around
inside, (4) dressing, (5) bathing, (6) getting to the bathroom or using a toilet. The
IADLs are (7) doing heavy house work, (8) doing light house work, (9) doing laun-
dry, (10) cooking, (11) grocery shopping, (12) getting about outside, (13) traveling,
(14) managing money, (15) taking medicine, (16) telephoning. For each ADL/IADL
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measure, subjects were classified as being either disabled (level 1) or healthy (level
0) on that measure.

Of the 216 = 65,536 cells in the table, 62,384 (95.19%) contain zero entries, 1,729
(2.64%) contain counts of “1”, 499 (0.76%) contain counts of “2”. The largest cell
count is 3,853, in the (0,0, . . . ,0) cell corresponding to being healthy on all 16 mea-
sures. In fact, no relatively simple hierarchical log-linear model provides a reason-
able fit to these data in part because they all substantially underestimate the value of
this cell count in particular.

In the absence of simple parsimonious log-linear models to describe such disabil-
ity data, considerable attention has been given to analyses using what is known as
the Grade of Membership (GoM) model (see Manton, Woodbury, and Tolley [33]
and [19]). The GoM model is a partial or mixed membership model that resem-
bles a more traditional latent class model. For a random sample of subjects, we
observe K dichotomous responses, x1, . . . ,xK . We assume there are J basis subpop-
ulations, which are determined by the conditional (positive) response probabilities,
λ jk, k = 1, . . . ,K. The subjects are characterized by their degrees of membership in
each of the subpopulations, g = (g1, . . . ,gJ), which are nonnegative and add to 1.
Conditional on the subject’s membership scores, g, the subject’s response probabil-
ity for item k is given by a convex combination Pr(xk = 1|g) = ∑ j g jλ jk. We assume
that the responses x1, . . . ,xK are conditionally independent, given the membership
scores. For many purposes we may also want to add the assumption that the mem-
bership scores, g, have a Dirichlet distribution with parameters α = (α1, . . . ,αJ). For
the disability data in our example, K = 16 and a “reasonable” value of J = 5 (e.g.,
see Erosheva [17, 18]).

The GoM likelihood function is not of the exponential family type, and thus no
sufficient statistics exist for the membership scores [17]. This does not allow for
conditional likelihood estimation and also means that if the GoM model is an appro-
priate one to describe the disability data in the 216 table, then we need more than
the simple marginal totals associated with any unsaturated log-linear model to esti-
mate the GoM parameters. We return to this point after we explore the disclosure
limitation properties of bounds based on the release of marginal tables for these data.

1.3 Technical Background on Cell Entry Bounds

Bounds for entries in two-way contingency tables go back to seminal papers by Bon-
feronni [2], Fréchet [26], and Hoeffding [27]. For an I × J table with entries {ni j}
and row margins {ni+} and column margins {n+ j}, these bounds take the form

min{ni+,n+ j} ≥ ni j ≥ max{0,ni+ +n+ j −n++}. (1.1)

For simplicity, we refer to these as Fréchet bounds. Until recently, the only multi-
dimensional generalizations of this result that have been utilized involved non-overlapping
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FIGURE 1.1
Independence graph for a 6-dimensional table and a log-linear model induced

by the marginals [BF], [ABCE] and [ADE]

fixed marginals (c.f. the related work described in Joe [28]).
Any contingency table with non-negative integer entries and fixed marginal totals

is a lattice point in the convex polytope Q defined by the linear system of equations
induced by the released marginals. The constraints given by the values in the re-
leased marginals induce upper and lower bounds on the interior cells of the initial
table. These bounds or feasibility intervals can be obtained by solving the corre-
sponding linear programming problems. The importance of systematically investi-
gating these linear systems of equations should be readily apparent. If the number
of lattice points in Q is below a certain threshold, we have significant evidence that
a potential disclosure of the entire dataset might have occurred. Moreover, if the in-
duced upper and lower bounds are too tight or too close to the actual sensitive value
in a cell entry, the information associated with the individuals classified in that cell
may become public knowledge.

The problem of determining sharp upper and lower bounds for the cell entries
subject to some linear constraints expressed in this form is known to be NP-hard
(see Roehrig et al. [34]). Several approaches have been proposed for computing
bounds: however, almost all of them have drawbacks that show the need for alternate
solutions.

We visualize the dependency patterns induced by the released marginals by con-
structing an independence graph for the variables in the underlying cross-classification.
Each variable cross-classified in the table is associated with a vertex in this graph.
If two variables are not connected, they are conditionally independent given the re-
maining variables. Models described solely in terms of such conditional indepen-
dencies are said to be graphical (e.g. see Lauritzen [31]). For example, Figure 1.1
shows the independence graph for a 6-variable cross-classification with the variables
{A,B,C,D,E,F} corresponding to the 6 nodes. Of the 15 possible edges, 6 are ab-
sent and correspond to conditional independencies.

Decomposable models are a subclass of graphical models that correspond to trian-
gulated graphs and have closed form structure and special properties. In particular,
the expected cell values can be expressed as a function of the fixed marginals. To
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be more explicit, the maximum likelihood estimates are the product of the marginals
divided by the product of the separators. For example, the graph in Figure 1.1 is tri-
angulated and, for the corresponding decomposable log-liner model, the marginals
[BF], [ABCE], and [ADE], corresponding to the cliques in the graph, are the MSSs.
The cliques are “separated” from one another by subsets of connected nodes, which
we refer to as separators.

By induction on the number of MSSs, Dobra and Fienberg [9], developed general-
ized Fréchet bounds for sets of margins that correspond to the MSSs of any decom-
posable log-linear model. These generalized Fréchet bounds are sharp in the sense
that they are the tightest possible bounds given the marginals and there are feasible
tables for which these bounds are attained.

Theorem 1 (Fréchet Bounds for Decomposable Models). Assume that the re-
leased set of marginals for a K-way contingency table correspond to the MSSs of
a decomposable log-linear model. Then the upper bounds for the cell entries in the
initial table are the minimum of relevant margins, while the lower bounds are the
maximum of zero, or sum of the relevant margins minus the separators.

When the log-linear model associated with the released set of marginals is not
decomposable, it is natural to ask ourselves whether we could reduce the computa-
tional effort needed to determine the tightest bounds by employing the same strategy
used for decomposable graphs, i.e. decompositions of graphs by means of complete
separators. An independence graph that is not necessarily decomposable, but still
admits a proper decomposition (i.e., looks like a decomposable graph but whose
components are not fully connected), is called reducible (Leimer [32]). Once again,
we point out the link with maximum likelihood estimation in log-linear models. We
define a reducible log-linear model in [9] as one for which the corresponding MSSs
are marginals that characterize the components of a reducible independence graph.
If we can calculate the maximum likelihood estimates for the log-linear models cor-
responding to every component of a reducible graph G , then we can easily derive
explicit formulae for the maximum likelihood estimates in the reducible log-linear
model with independence graph G [9].

Theorem 2 (Fréchet Bounds for Reducible Models). Assume that the released set
of marginals is the set of MSSs of a reducible log-linear model. Then the upper
bounds for the cell entries in the initial table are the minimum of upper bounds of
relevant components, while the lower bounds are the maximum of zero, or sum of the
lower bounds of relevant components minus the separators.

Finally, we note that when the released margins correspond to a log-linear model
that is neither decomposable nor reducible, a more elaborate form of bounds calcula-
tion is required. Dobra [7, 11] has developed an iterative algorithm for this situation,
generalizing the original “shuttle” procedure proposed by Buzzigoli and Giusti [3],
which can be used to compute sharp bounds. Unfortunately, as the dimensionality
of the table grows, this algorithm is computationally elaborate and is not especially
useful as the main component of a search for an optimal form of marginal release.
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Instead we adopt simplified search strategies and then use the algorithm only after
we have focused in on a small subset of sets of marginal releases. In the following
sections, we turn to such simplified search strategies that exploit the bounds calcula-
tion in the decomposable case. When we apply these to the 216 table from Section
1.2, we also describe the results of applying the generalized shuttle algorithm.

1.4 Decomposable Frontiers

Here we briefly describe the method of Dobra et al. [12] to identify a releasable set of
marginals based on a search using decomposable bounds and we apply the approach
to out 216 example.

The set S of all 2k marginals of a k-way table n is partially ordered by set inclusion
of variable. If the variables associated with a marginal n1 are contained in the set of
variables associated with another marginal n2, we say that n1 is a child of n2 and
n2 is a parent of n1. The released frontier RF of a set R of released marginals
consists of the maximal elements of R–those with no released parents. Clearly, any
set of released marginals is completely identified by its frontier. The elements of
RF consist of sets of marginals and they represent the trade-offs that occur when
the release of some marginals make others unreleasable. Our goal here is to identify
useful elements of RF .

For simplicity, we consider a set R to be releasable if and only if the minimum
difference between the upper and lower bounds for the small count cells of “1” or
“2” in table n is greater or equal to some threshold β .

In the context of the Web-based query system, the set S is partitioned at any time
t as follows:

S = R(t)∪M (t)∪U (t), (1.2)

where R(t) are the released marginals at time t, M (t) are the possible future releases
at time t, and U (t) are the marginals that became un-releasable by releasing R(t).
As we release additional marginals, we select elements from M (t) for inclusion in
R(t) and at the same time move other elements into U (t).

W may not want to allow all elements in U (t) to be a potential release at time t
because the release of some would essentially foreclose on the possibility of releasing
others at a later time. Therefore, the system might also maintain a list of candidate
releases C M (t) ⊂ M (t).

Now assume a user requests a marginal n0. In order to accept or deny this request,
the system would have to dynamically evaluate whether the set R(t)∪{n0} is re-
leasable provided that n0 belongs to C M (t). If n0 is released, the system needs to
update the sets U (t +1) and C M (t +1) very quickly to be ready to process a new
request. In addition, evaluating the disclosure risk is a lot more difficult if the system
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takes into account the fact that it gives away information about n when denying a
request.

In actual applications, the underlying categorical database n might have 40 or
more dimensions and/or millions and millions of cells. Consequently, dynamically
evaluating whether a marginal is releasable as well us updating the sets U and C M

involve huge computations that cannot be done on today’s computers. Besides scala-
bility issues, there are other concerns relating to user equity: if we release a marginal,
some other marginals become unreleasable and hence those users requesting these
marginals might suffer if a policy of “first come, first served” would be applied.

A possible solution would be to replace sequential releases with one-time releases.
In this case, the complete set of marginal S contains the released marginals R and
the un-released marginals U . The only difficulty of this approach is identifying the
“best” R according to some data utility criteria. The tedious dynamic risk compu-
tations are now replaced by a one-time computation that can be done offline. Users
can be polled on the choice of R. This simplified static version of the table server is
not prone to be attacked by intruders as the dynamic server was.

1.4.1 Calculating Decomposable Frontiers

we say that a release R is decomposable if its corresponding frontier defines the
MSSs of a decomposable graphical model. A decomposable frontier is the frontier
of a decomposable release. In this case, the upper and lower bounds induced by R

can be computed using formulas [9], which reduces to almost zero the computational
effort required to establish whether R is releasable or not.

We quantify the data utility DU(R) of a release R by the total number of marginals
contained in R. To maximize DU(R) over the space of decomposable releasable sets
R we use a simulated annealing approach that involves generating random draws
from the distribution

π(R) ∝ exp(DU(R)/T ), (1.3)

where T is a scale parameter called temperature The temperature T is slowly de-
creased toward 0 as the algorithm progresses. Given a current state R0, a new de-
composable set of sub-tables R1 is selected from a uniform distribution on a neigh-
borhood N(R0) of R0. If DU(R1) ≥ DU(R0), R1 is “accepted” with probability 1,
that is R1 becomes the current state. Otherwise, if DU(R1) < DU(R0), R1 could
be accepted with probability

min{exp((DU(R1)−DU(R0))/T ),1} . (1.4)

We repeat this simulation process and the resulting sequence The Markov chain
{R j} forms a Markov chain that will concentrate in a smaller and smaller region
around a local maxima of DU(R) as T approaches 0. Therefore, at higher temper-
atures, the simulated annealing algorithm can “escape” local optima of the criterion
function and eventually converge to a global optimum.
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The neighborhood N(R) of a decomposable set of sub-tables R is taken to be all
the sets of sub-tables determined by decomposable independence graphs obtained
by deleting or adding one edge from the independence graph associated with R.
Very efficient algorithms for finding N(R) are presented in [6]. Any two decom-
posable graphs can be “linked” by a sequence of decomposable graphs that differ by
exactly one edge (see, for example, [31]), and hence the resulting Markov chain is
irreducible.

1.4.2 Analysis of the 216 NLTCS Example

It is standard survey practice to release the one-way marginals for all variables, and
thus we begin by assuming that these have already been released. We ran the sim-
ulated annealing algorithm for searching a decomposable frontier for three different
threshold values, β = 3,4,5. The resulting decomposable frontiers are:

RF (β = 3) =
{

[5,10,12,13,14,15,16], [5,10,11,14,15,16], [9,10,12,13,14,15],

[6,10,12,13,15,16], [4,10,12,13,14,15], [4,8,10,12,13,14],

[3,4,12,13,14,15], [3,4,7,12,13,15], [2,12,13,14,15,16],

[1,9,12,13,14,15]
}

, (1.5)

RF (β = 4) =
{

[6,9,12,13,15,16], [6,8,12,13,15,16], [2,6,8,12,13,15],

[2,6,11,12,13,15], [2,4,6,11,12,13], [2,4,11,12,13,14],

[2,4,6,10,12,13], [2,4,5,10,12,13], [2,3,6,8,12,13],

[1,8,12,13,15,16], [2,4,6,7,11]
}

, (1.6)

RF (β = 5) =
{

[6,8,10,14,15,16], [4,6,8,10,14,15], [15,14,8,6,4,3],

[3,4,6,8,13,15], [3,4,6,12,14,15], [3,4,6,9,13,15],

[2,4,6,8,13,15,13], [2,4,8,11,13,15], [3,4,6,7,14],

[4,5,6,12,14,12], [1,4,6,14,15]
}

, (1.7)

Two of these frontiers contain 6-dimensional marginals, while the third, RF (β =
3), contains a 7-dimensional marginal. Summaries of the released sets of marginals
determined by these frontiers are presented in Tables 1.1, 1.2 and 1.3.

The releasable frontier consists of multiple sets of releases, and for each the re-
leased marginals are maximal in the sense that any additional marginal is unre-
leasable. The simulated annealing algorithm happened to find the sets of releases
on the releasable frontiers given above, but there are likely several other frontier
elements.
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Dimension Released Marginals Total Number of Marginals Percent
1 16 16 100%
2 66 120 55%
3 125 560 22.32%
4 125 1,820 6.87%
5 66 4,368 1.51%
6 16 8,008 0.20%
7 1 11,440 0.00%

Breakdown of the released set of sub-tables RF (β = 3). The columns show the
dimension of sub-tables, how many sub-tables of that dimension are in

RF (β = 3), the total number of sub-tables and the percentage of released
sub-tables. The total number of released sub-tables is 415.

Dimension Released Marginals Total Number of Marginals Percent
1 16 16 100%
2 64 120 53.33%
3 116 560 20.71%
4 109 1,820 5.99%
5 52 4,368 1.19%
6 10 8,008 0.12%

Breakdown of the released set of sub-tables RF (β = 4). The total number of
released sub-tables is 367.

As the threshold β decreases, the number of released sub-tables increases for each
dimension. Examining the decomposable frontiers for β = 3,4,5, we first notice that
they are not nested. For example, the released sets of sub-tables defined by frontiers
RF (β = 4) and RF (β = 5) are not subsets of the set of sub-tables defined by
RF (β = 3). Note that all marginals of the “most generous” decomposable frontier
RF (β = 3) contain 0-2 ADL and 4-6 IADL variables, but most marginals of the
frontier RF (β = 5) contain 3 ADL and 3 IADL variables. Thus, it seems that re-
leasing fewer ADL variables in the marginals allows us to maximize the total number
of marginals released for a lower value of threshold β . This might be related to an
existing theory which says that ADL variables are approximately hierarchical, e.g.,
see Katz et al. [29]. If the small counts of 1 and 2 are indicative of “imbalance” in
the marginals, and if responses on ADL items are more structured than responses on
IADL items, releasing more IADL items is ”safer” than releasing more ADL items.

1.5 “Greedy” Frontiers

Searching for decomposable releases, although appealing from a computational point
of view, can be considered to be too restrictive from a practical perspective. In this
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Dimension Released Marginals Total Number of Marginals Percent
1 16 16 100%
2 62 120 51.67%
3 108 560 19.29%
4 97 1,820 5.33%
5 44 4,368 1.00%
6 8 8,008 0.10%

Breakdown of the released set of sub-tables RF (β = 5). The total number of
released sub-tables is 335.

section, we present a heuristic procedure for identifying an arbitrary release that is
based on a consistent methodology for assessing the disclosure risk associated with
releasing a particular marginal. We illustrate the components of this algorithm using
the 216 table example.

We begin by introducing the notion of the most parsimonious model correspond-
ing to a sub-table. Let K = {1,2, . . . ,k} denote the indices of the variables cross-
classified in a k-dimensional table n = nK .

DEFINITION 1.1 The most parsimonious model associated with the C-

marginal of n is the model with minimal sufficient statistics

{C}∪





⋃

j∈K\C

{{ j}}



 . (1.8)

Definition 1.1 says that the most parsimonious model in which a given marginal ap-
pears is defined by that marginal and by the one-dimensional marginals correspond-
ing to the variables in the table which do not appear in that marginal. For example,
the most parsimonious model corresponding to the [1,2]-marginal of a six-way table
has minimal sufficient statistics {[1,2,3], [4], [5], [6]}.

We would like to find a way to quantify how “problematic” the release of a certain
marginal might be. In this context, “problematic” means “potentially problematic”
because a marginal is released after some other marginals have already been released.
The level of how “problematic” a marginal might be is therefore relative to the rest of
the marginals and is not an absolute measure that would have a meaning if it would
be considered alone. To define such a measure, we propose looking at all the models
in which a given marginal is involved, i.e., we consider all possible sets of releases
containing that marginal. The most parsimonious model is embedded in all these
sets of releases, and, because it has the loosest bounds, it suffices for us to study only
this model. If the release of this model is problematic, the release of all other models
are problematic as well. On the other hand, if the release of the most parsimonious
model is not problematic, one cannot say anything about all the other models that
include the marginal.
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There is an immediate intuitive interpretation of evaluating the disclosure risk of a
marginal based on its most parsimonious model: in order to see how much “damage”
this marginal could do, we release this marginal alone along with some minimal
information about the variables not contained in this marginal. Another attractive
feature of these most parsimonious models is that they are decomposable, hence
calculating the upper and lower bounds associated with them is straightforward and
can be done by means of explicit formulas.

By employing the notion of parsimonious models, we completely drop the (very)
strong decomposability constraint we imposed when we searched for a decompos-
able frontier. Moreover, we take into account sets of releases that are only required
to be hierarchical! This represents the highest level of generality we could hope to
achieve. In addition, the size of the space of releases we take into consideration is
huge. A search strategy similar to simulated annealing is hopeless if employed on a
space of this size!

DEFINITION 1.2 The critical width of a marginal nC is the minimum of

the difference between the upper and lower bounds for the cells containing small

counts of “1” or “2”. These bounds are induced by the most parsimonious

model associated with nC.

The critical width is the minimum of the difference between the relevant bounds
for cells with counts of “1” and “2” because all the cells containing small counts in
the table have to be protected in order to consider a release to be safe at a given level.
If one such small count cell is not adequately protected according to the risk criteria
we employ, we consider the entire release to be problematic.

DEFINITION 1.3 The marginal nC1 is said to be more problematic than

the marginal nC2 if the critical width of nC1 is smaller than the critical width

of nC2 .

We calculated the critical widths for all the marginals of the 16-dimensional table.
The critical widths corresponding to the one-dimensional marginals of a table are
equal by definition since they are all calculated based on the same model–complete
independence of the variables in that table. Typically agencies attempt to release at
least the one-dimensional marginal corresponding to each variable.

In our case, the critical width associated with the one-dimensional marginals is
large, i.e., 2,285. On the other hand, all the 8-dimensional marginals have a critical
width of 1. Hence, by releasing only one eight-way sub-table after releasing all the
one-way sub-tables, at least one small count cell will be made public. The critical
widths for the marginals of dimension 2,3, . . . ,7 are given in Figure 1.2. As the
dimension of released subtables increases, the critical widths decrease, tend to be
less scattered and gradually cluster around 1.

The most problematic two-way table is, by far, [7,8] with a critical width of 8.
One obvious reason why this marginal is so problematic is the count of 8 in cell



Disclosure Limitation for Large Contingency Tables 13
0

500
100

0
150

0
200

0

Dimension 2

0
200

400
600

800
100

0

Dimension 3

0
50

100
150

200
250

Dimension 4

0
10

20
30

40
50

60
70

Dimension 5

5
10

15

Dimension 6

1.0
1.5

2.0
2.5

3.0

Dimension 7

FIGURE 1.2
Boxplots with critical widths associated with marginals of dimension 2,3, . . . ,7.

(1,0) which is very small compared with the other three counts in this marginal.
This count corresponds to respondents who could not do IADL light house work,
but were able to do IADL heavy house work. The next most problematic two-way
marginal is [1,7] with a critical width of 64, while the third most problematic two-
way sub-table is [5,1] with a critical width of 82. The most problematic three-way
marginals are [7,8,12], [7,8,10] and [1,7,8], all with a critical width of 3. We note
that [7,8] is a child of these three marginals. We also note that the decomposable
frontiers of Section 1.4.2 do not contain these most problematic three-way marginals.
The most problematic four-way marginals have a critical width of 1. Variables 8, 7
and 1 appear in most of the 36 four-way marginals having this critical width. Other
variables, such as 16, 12 and 11 also have a significant presence in these marginals.

To choose a release, we construct a list, L , which contains the marginals in de-
creasing order with respect to their critical widths. Therefore the least problematic
marginals will appear at the top of this list, while the most problematic marginals
will be placed at the end. According to our definition, two marginals are “equally
problematic” if they have the same critical width. However, to maximize the amount
of released information, we might prefer to release, if possible, a higher dimensional
marginal instead of a lower dimensional marginal if both marginals have the same
critical widths. Consequently, we re-order the marginals in L having a certain fixed
critical width in decreasing order with respect to their dimension.

More explicitly, let nC1 and nC2 be two marginals with dimensions k1, k2 and with
critical widths w1 and w2. Denote by l1 and l2 the ranks of nC1 and nC1 in the list L .



14 CRC Book

Dimension Released Marginals Total Number of Marginals Percent
1 0 16 0%
2 0 120 0%
3 0 560 0%
4 263 1,820 14.45%
5 1,311 4,368 30.01%
6 103 8,008 3.78%

Non-decomposable frontier obtained from the greedy procedure for β = 3. The
total number of sub-tables in this frontier is 1,677.

Dimension Released Marginals Total Number of Marginals Percent
1 16 16 100%
2 120 120 100%
3 547 560 97.68%
4 1,566 1,820 86.04%
5 1,659 4,368 37.98%
6 103 8,008 3.78%

Breakdown of the released set of sub-tables corresponding to the frontier in Table
1.4. Compare with the released set corresponding with the decomposable frontier

RF (β = 3)–see Table 1.1. The total number of released sub-tables is 4,011.

If w1 > w2, then l1 < l2. However, if w1 = w2 and k1 > k2, then we also require that
l1 < l2.

Let n1, n2,. . ., nL be the marginals of n in the order in which they appear in L .
We want to identify the unique rank l0 ∈ {1,2, . . . ,L} such that the set of marginals
{n1, . . . ,nl0} is releasable according to our risk criteria, but {n1, . . . ,nl0 ,nl0+1} is
not. Instead of sequentially adding new marginals starting from the top of list L , we
determine l0 by employing a much more efficient bisection search strategy.

We used this greedy algorithm to determine a releasable set of marginals for the
16-dimensional table for thresholds 3, 4 and 5. These releases are summarized below.
We note that the releases obtained from the greedy algorithm contain 10 times more
marginals than the decomposable releases resulting from the simulated annealing
search described in Section 1.4. Therefore, when the decomposability constraint is
dropped, the resulting set of possible releases is much richer. The fact that a non-
decomposable frontier is 10 times larger than a decomposable frontier that satisfies
the same constraints tells us that decomposability is a very restrictive constraint.

The released marginals for these three thresholds have dimension six or smaller.
For thresholds 4 and 5, only one two-way marginal, [7,8], is not released. This
marginal is contained in the greedy frontier for threshold 3. From the summaries
presented in tables below we learn that, if we were considering the data in this table
to be the entire population rather than a sample, almost all the three-way marginals
would be releasable.

We can modify the greedy algorithm so that the hierarchical frontier identified
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Dimension Released Marginals Total Number of Marginals Percent
1 0 16 0%
2 0 120 0%
3 0 560 0%
4 338 1,820 18.57%
5 1,176 4,368 26.92%
6 55 8,008 0.69%

Frontier obtained from the greedy procedure for β = 4. The total number of
sub-tables in this frontier is 1,569.

Dimension Released Marginals Total Number of Marginals Percent
1 16 16 100%
2 119 120 99.17%
3 546 560 97.5%
4 1,531 1,820 84.12%
5 1,396 4,368 31.96%
6 55 8,008 0.69%

Breakdown of the released set of sub-tables corresponding to the frontier in Table
1.6. Compare with the released set corresponding with the decomposable frontier

RF (β = 4)–see Table 1.2. The total number of released sub-tables is 3,663.

Dimension Released Marginals Total Number of Marginals Percent
1 0 16 0%
2 0 120 0%
3 5 560 0.89%
4 405 1,820 22.25%
5 1,110 4,368 25.41%
6 17 8,008 0.21%

Frontier obtained from the greedy procedure for β = 5. The total number of
sub-tables in this frontier is 1,537.

Dimension Released Marginals Total Number of Marginals Percent
1 16 16 100%
2 119 120 99.17%
3 545 560 97.32%
4 1,480 1,820 81.32%
5 1,189 4,368 27.22%
6 17 8,008 0.21%

Breakdown of the released set of sub-tables corresponding to the frontier in Table
1.8. Compare with the released set

corresponding with the decomposable frontier RF (β = 5)–see Table 1.3. The total
number of released sub-tables is 3,366.
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FIGURE 1.3
Boxplots with the bounds for the non-zero cells determined by the frontier
RF (β = 3).

includes the MSSs of well fitting log-linear models, provided that these MSSs are
simultaneously releasable according to the risk criteria employed. It is sufficient
to put the MSSs at the top of the list L , followed by the rest of the marginals in
decreasing order of their critical widths. This straightforward approach maximizes
the utility of a release from the point of users trying to model the data in the full
cross-classification.

1.6 Bounds

In this section, we provide details on the bounds determined by the decomposable
and greedy frontiers associated with a threshold equal to “3.”

1.6.1 Bounds in the Decomposable Case

We calculated the bounds corresponding to the frontier RF (β = 3) by employing
the formulas described in Dobra and Fienberg (2002)–see Figure 1.3.

The upper bounds are strictly bigger than the lower bounds for all the cells in the
table. The sum of the differences between the upper and lower bounds for the non-
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FIGURE 1.4
Boxplots with the bounds for the cells having a count of 1 determined by the
frontier RF (β = 3).

zero cells is 345,534. All the cells but one have lower bounds equal to 0. The only
cells with a non-zero lower bound is the (0,0, . . . ,0) cell in the table, and this lower
bound is equal to 667. This cell contains the largest count in the table and conse-
quently has the largest upper bound and the largest difference between the bounds.
The minimum value for the upper bounds is 3 and is attained for 11 cells. There are
36 cells with an upper bound of 4, 27 cells with an upper bound of 5 and 55 cells
with an upper bound of 6. All the corresponding lower bounds are 0.

In Figure 1.4 and Figure 1.5 we give the bounds associated with the small count
cells of 1 and 2, respectively. All the lower bounds for these cells are zero.

1.6.2 Bounds in the Non-decomposable Case

By employing the generalized shuttle algorithm, we calculated the bounds associated
with the greedy frontier from Table 1.4–see Figure 1.6.

A number of the 24,148 cell containing non-zero counts have the upper bounds
equal to the lower bounds. However, for the cells having a count of 1, the minimum
difference between the bounds is 3 (there are 14 cells for which this minimum is
attained), while the minimum difference between the bounds for the cells having a
count of 2 is 4 (only two cells have this property).

The sum of the differences between the upper and lower bounds for the non-zero
cells is 249,759, hence the bounds are tighter than the bounds for the decomposable
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FIGURE 1.5
Boxplots with the bounds for the cells having a count of 2 determined by the
frontier RF (β = 3).

frontier RF (β = 3). Moreover, 22 non-zero cells have lower bounds greater or
equal to 1. Again, the first cell in the table has the largest lower bound, the largest
upper bound and the largest difference between the bounds.

The lower bounds for the small count cells of 1 or 2 are all zero–see Figure 1.7
and Figure 1.8.

1.7 Discussion

In this paper we presented two methods for determining a releasable frontier. The
first method that computes a decomposable frontier is fast and will work for arbi-
trarily large tables with any number of dimensions and with millions of cells. The
scalability of this approach relates to the fact that it is based on computing bounds
based on formulas whose usage involve little or no computational effort. The only
drawback of using this method is that the decomposability can be a serious con-
straint in many situations: in our example, the size of the frontiers generated by the
two methods differed by an order of magnitude.

The second method relaxes this assumption and computes a hierarchical frontier
that could have any structure. The first step in applying this method is calculating
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Boxplots with the bounds for the cells having a count of 2 determined by the
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the critical widths associated with each marginal and this calculation also scales
to arbitrary multi-way tables since it is based on the same formulas for computing
the bounds. The critical widths have another immediate use: it provides us with
a consistent way of ranking variables with respect to how problematic they are for
disclosure. As we mentioned before, as the critical width of a marginal gets larger,
that marginal tends to tighten the bounds less. Therefore, one would expect that
the “less problematic” variables will be contained in marginals with larger critical
widths.

We define the disclosure score associated with each variable cross-classified in the
target table to be the mean of the critical widths for all the marginals in which that
variable belongs to–see Table 1.10. In our running example, each variable belongs
to 32,767 marginals. We ordered the variables in increasing order with respect to
their scores. An increase in the score corresponding with a sequence of variables in-
dicates that the variables in that sequence make the bounds less and less tight, there-
fore those variables become less and less “problematic.” In Table 1.10 we grouped
the 16 variables in three groups defined by the disclosure scores: Group 1–very
problematic variables; Group 2–problematic variables; Group 3–slightly problem-
atic variables. Group 1 contains two variables, 1 (ADL eating) and 7 (IADL doing
heavy house work), which appear to be significantly more “problematic” than the
other variables. It seems important to emphasize that this is not in contradiction with
our previous findings which identified [8,7] to be the most problematic combination
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Group 1 Variable 1 7
Disclosure Score 1.82 1.88

Group 2 Variable 16 8 11 4 10 9 5 2
Disclosure Score 2.84 2.91 3.01 3.15 3.17 3.23 3.24 3.26

Group 3 Variable 6 3 12 14 15 13
Disclosure Score 3.37 3.39 3.52 3.66 3.74 3.85

Assessing how problematic every variable in the NLTCS dataset is using disclosure
scores.

of two variables for disclosure limitation purposes: combinations of several variables
have properties different than the properties of each variable taken by itself. Group 2
contains a combination of ADL and IADL variables. The least problematic variables
are four IADL variables and ADLs 3 (getting around inside) and 6 (getting to the
bathroom or using a toilet). Based on disclosure scores, other ADL variables appear
to be quite ”problematic”, with the most problematic ADL eating. The IADL vari-
ables appear to be divided into two groups: with more ”problematic” variables num-
ber 7 (doing heavy house work), 16 (telephoning), 8 (doing light house work), and
11 (grocery shopping), and less problematic variables number 12 (it getting about
outside), 14 (managing money), 15 (taking medicine), and 13 (traveling).

While there is a natural gap in disclosure scores between groups 1 and 2, groups
2 and 3 less separate. In fact, the difference in scores between variables 2 and 6 is
smaller than that between variables 3 and 12. If we were to place variables 3 and
6 into group 2, then it would contain all of the ADL variables except for variable
1 and along with some IADL variables. The methods we have applied are most
directly appropriate when the table of counts presents population data. It is worth
remembering that the data in this example come from a sample survey where the
sampling fraction is relatively small, and thus the release of the entire table might
well be deemed safe by most disclosure limitation standards.

Finally, address the potential utility of marginal tables released using methodology
illustrated in this paper. Users would like to be able to perform statistical analyses on
and draw the same inferences from the released marginals as they would were they
in the possession of the complete dataset. In principle, it is straightforward to assure
the consistency of inferences by making sure that the relevant marginals involved
in log-linear models that fit the data well were released. But in the present example,
there is no unsaturated log-linear model that fits the data well, and alternative models
such as the grade of membership model discussed by Erosheva [17, ?] seem much
more appropriate. These alternative models do a far better job of fitting the very large
cells in the table, e.g., the cell corresponding to those with no disabilities, and thus
these cells may need to be part of any release, along with a set of marginals. This is
an issue we hope to pursue in future research.
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