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Abstract

We discuss the theoretical structure and constructive methodology for large-scale graphical
models, motivated by their potential in evaluating and aiding the exploration of patterns of
association in gene expression data. The theoretical discussion covers basic ideas and
connections between Gaussian graphical models, dependency networks and specific classes of
directed acyclic graphs we refer to as compositional networks. We describe a constructive
approach to generating interesting graphical models for very high-dimensional distributions
that builds on the relationships between these various stylized graphical representations. Issues
of consistency of models and priors across dimension are key. The resulting methods are of
value in evaluating patterns of association in large-scale gene expression data with a view to
generating biological insights about genes related to a known molecular pathway or set of
specified genes. Some initial examples relate to the estrogen receptor pathway in breast cancer,
and the Rb-E2F cell proliferation control pathway.
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1. Introduction and perspectives

The interest in exploratory methods for evaluating patterns of association between
many variables has been invigorated by problems involving large-scale gene
expression studies. Problems of modeling structure under the “large p, small »n”
paradigm [27] challenge modern statistical science both conceptually and compu-
tationally. We discuss some aspects of this here in the context of exploratory uses of
large-scale Gaussian graphical models in evaluating patterns of association with a
view to generating biological insights plausibly related to underlying biological
pathways. Our outlook is similar to that of [30] where direct, correlation based
analysis was able to define biologically interpretable connections transitively across
groups of genes. In contrast, however, we are concerned here with a consistent
theoretical framework, and a constructive methodological approach, to generating
proper graphical models—representing the complete joint distributions—in tens of
thousands of dimensions.

Specifically, we develop methods for modeling the covariance structure of high-
dimensional distributions with a focus on sparse structure—particularly relevant in
modeling associations in gene expression data. We develop a constructive approach
to generating large-scale undirected Gaussian graphical models based on representa-
tion of the joint distribution of variables via sets of linear regressions. Key foci
include questions of consistent prior specifications using an encompassing Wishart
prior for precision matrices (inverse covariance matrices) in undirected graphs. The
relevance of formulations in terms of directed acyclic graphs and complete
conditional distributions/dependency networks are also discussed and utilized.

The notion of sparsity of graphical models for gene expression data reflects the
view that patterns of variation in expression for a gene, G, will be well predicted by
those of a relatively small subset of other genes. Beyond parsimony, this embodies a
view that transcriptional regulation of a single gene or pathway component is
generally defined by a small set of regulatory elements. Our theoretical framework
reflects this, providing the first statistical approach to large-scale but sparse graphical
models in which each variable/gene is expected to have a small number of direct
neighbors.

The scope for application of the statistical analysis here is explicitly that of
randomly sampled, complete observational data. Graphical models are simply
models of joint distributions assuming a random sampling paradigm. We are not,
here, concerned with developing models of causal gene networks; that requires a
context of experimentation and intervention to understand directional influences,
rather than our observational, random sampling paradigm. Directed graphical
models (Bayesian networks—directed acyclic graphs or DAGs) have explicit causal
modeling goals, but our use of DAGs here is purely technical; a DAG formulation
provides a natural and useful technical step in the identification of high posterior
probability undirected graphical models for randomly sampled data.

The specific algorithmic approach to generating high-posterior probability graphs
described here utilizes forward/backward variable selection within sets of linear
regressions that define the full joint graphical model. This is an initial approach that
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demonstrates the utility of the conceptual framework of the regression model
formulation via DAGs and its feasibility in very high-dimensional problems; we are
able to efficiently generate such models with thousands of variables, going far
beyond what has been contemplated in the literature to date. We extend this to
generate multiple candidate graphical models, and this underlies our examples.

Our applied perspective is that these models have utility as exploratory tools.
Graphical representations of these, and other, models provide displays of gene
expression based information that may be explored to generate insights about
pathways. Our examples illustrate this. The fitting of complete multivariate
distributions moves us beyond the usual correlation-based approaches, such as
clustering approaches, that aim to identify groups of genes with related patterns of
expression. In a graphical model, the first-order neighbors of a specific gene G are
those genes that, conditional on the underlying model, together provide the set of
predictors of gene expression variation in G. They render G conditionally
independent of all other genes. Some genes identified as neighbors of G may be
only very weakly correlated with G, but highly related in terms of partial correlation
in the context of the other neighbors, i.e., in the regression sense defined implicitly by
the graphical model. Such gene—gene relationships would simply not be
“discovered” by correlation-based methods, and it is clear that they may define
significant relationships in a biological pathway. Thus, in addition to the exploration
of transitive relationships between pairs or sets of genes based on short paths in
interesting graphs, a key applied interest in these models lies in this capacity to
expand our ability to identify candidate genes that may play roles in a specific
pathway under investigation. These points are highlighted in our example
concerning the Rb-E2F cell growth and proliferation control pathway; this
represents an example of initial applied investigations to begin the process of
moving the theory of graphical models into applications in more than a small
number of dimensions.

2. Graphs, networks and regressions

We are interested in models of the patterns of dependence in p-dimensional
normal distribution. Write x for a random normal p-vector. Assume centered data
measured on a common scale, and denote the model by x~ N, (0,2) with positive
definite variance matrix X and precision matrix @ = X~!. Denote the elements of Q
by wj;, and those of X by o;.

In our applications x is a vector of gene expression levels and p is very large; the
example has p = 12,558. Write x; for the ith univariate element of x and, for any
subset of indices Ke {1, ...,p}, write xx = {x;:ie K}. Two key subsets are [—i] =
{1,...;p\{i} and k:m={k,k+1,...,m} for any k<m. The joint distribution
implies the set of consistent complete conditional univariate distributions p(x;|x[_;)
for ie{l,...,p}. These are univariate normal linear regressions with partial
regression coefficients of x; on x; given by w;;/w;;, (je[—i]).
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2.1. Sparse Gaussian graphical models

Write ne(i) = {j: w; #0}, so that the variables x,,(; are the predictors of x,—the
variables that render x; conditionally independent of all other x; for k¢ne(i). Thus
p(xilx[—7) = p(Xi|Xpe(i)). In graph theoretic and graphical modeling terms, X,
defines the neighbors (or Markov blanket) of x; [14]. Our focus is on sparse models,
with each such conditional regression involving a relatively (to p) small set of
predictors, so that each row (hence column) of 2 will have many zero entries; thus
#ne(i) will be small. This is consistent with the view that, though a gene may play a
role in many biological pathways and be associated with many other genes, the
“influence” of many other genes will often be transitively represented by a small
number of directly “predictive” genes in a small neighborhood of x;, consistent with
sparsity of Q.

To connect more properly with (undirected) graphical models, write V =
{1, ...,p} and define the graph ¥ = (V,E) over nodes V by an edge set E such
that an edge exists between nodes i and j if, and only if, j e ne(i) (hence, by symmetry,
if and only if iene(j)). The normal distribution p(x) defines a graphical model over
the graph % [18}—a proper joint distribution for x whose conditional independence
structure is explicitly exhibited through the edge sets characterizing the p(x;[Xe(;))-

2.2. Dependency networks

The challenge of fitting high-dimensional distributions may be addressed by fitting
sets of univariate conditional distributions. This motivated the general dependency
networks of Heckerman et al. [11]. A dependency network is simply a collection of
conditional distributions {p(x;|x;_7)} that are defined and built separately. In the
specific context here, of sparse normal models, these would define a set of p separate
conditional linear regressions in which x; is regressed on a small selected subset of
other variables, say x,,; for some predictors variables pv(i), with each being
determined separately. Generally, of course, these distributions will not cohere in the
sense of being consistent with a proper joint distribution, and this is almost surely the
case in problems with many variables where variable selection and collinearity issues
will lead to inconsistent models. Even the basic consistency requirement j e ne(i) if,
and only if, iene(j) will generally be violated for many i, ;.

Nevertheless, it is most attractive and useful to explore high-dimensional data
relationships by fitting—via whatever means—sets of univariate regression models
{P(xi[xXp(»))} in which pu(i) is selected as part of the univariate modeling process.
This can then be used as an initial step in generating relevant and consistent models
of the full joint distribution, as we show below.

2.3. Compositional networks

A natural, direct route to specifying a set of univariate models that cohere is via a
“triangular”” model that defines the joint distribution by composition, i.e., p(x) =
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H,’:ll P(Xi|X(is1);p) P(xp). This requires a specific ordering of variables, which we take
here for discussion as simply 1,2, ..., p with no loss of generality.

Suppose we now fit the set of p univariate regressions implied here, selecting
specific subsets of compositional predictor variables c¢pv(i)={(i + 1) : p} for each i
(and with cpv(p) empty), and choosing regression parameters and conditional
variance values for each i. This defines a set of models

Xi = Z ViXj T &is (1)
)

jecepo(i

where &~ N(0,y;). The composition of the joint distribution p(x) can then be
written in structural form as

x=Ix+e &~N,(0,9), (2)

where & = (¢, ...,¢,)', ¥ = diag(y,, ..»¥,), and I is the p x p upper triangular
matrix with zero diagonal elements and upper triangular, non-diagonal entries I';; =
Vi (>1).

Connecting with graphical models, define the directed acyclic graph (DAG) over
nodes ¥ through edges E that are directed from each element of cpv(i) to i for all
ie V. By construction this graph is acyclic, and the joint distribution p(x) defined by
composition represents a Bayesian network over the DAG [18]. The sequence of
ordered nodes i =1, ...,p defines a well ordering of the vertices underlying this
network [23]. Further, the structure corresponds to an underlying undirected graph
that is obtained directly by replacing all arrows by undirected edges, and “‘marrying”
all pairs of parents of any variable by joining them with an edge. The resulting edges
correspond to the non-zero elements of Q-nodes i, j are joined by an edge if, and only
if, Q;; #0. It is this undirected graph—that directly defines the set of neighbors of any
node and exhibits the conditional independence structure of the implied joint
distribution—that is of key interest in describing and exploring associations among
variables.

Moving to inference on the regressions, write 6; = (y;, ;) where y; is column vector
of regression coefficients {y;:jecpv(i)}, and set @ = {0;:ie V}. Then, including
parameters in the notation, we have p(x|@) = f;,l P(XilX(i1);p, 0i) P(xp0,) (and note
that 0, = ,,.) Fitting the set of regression models may be performed independently,
in parallel, assuming priors over regression parameters that are independent across
equations, or using reference priors and likelihood-based approaches. Prior
independence across equations (or global independence on the DAG [26]) implies
posterior independence and hence separate, parallel analyses provide the full joint
posterior for the 0;. Aspects of prior specification, and the issues of variable selection
to define cpv(i) within each equation, are discussed below.

The reduced form of the Bayesian network (2) is immediate: x = (I — I )718 SO
that Q = (I —TI')W~'(I —T). For any set of parameter values @ we can then
compute Q and, by inversion, ~. This computation is substantially eased by noting
that we have immediate access to a sparse Cholesky decomposition component of
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Q = LI’ where L is the sparse lower-triangular matrix L = (I — I')’¥~'/2. This then
provides direct access to variance—covariances of defined subsets of variables via the
solution of two lower-triangular systems of equations.

3. Analysis and selection of regressions

Focus now on any univariate regression equation for a chosen x;, with k;
predictors in a predictor variable index set puv(i)=[—i]. That is,
(x,»\xpv(,-),Hi)~N(x;D(i)yi,tpi) where 6; = (y;,¥,). For discussion in this section, we
look at the general case when the predictor set may involve any of the p — 1 variables
X[—j. In later sections, these results then apply to specific choices of pu(i) that arise in
dependency networks (where the elements of pv(i) can be any values in [—i]), and
then compositional networks (where, given the defined ordering of variables, the
elements of pu(i) are restricted to values in (i + 1) : p).

Prior specification may be guided by contextual information, as available, and
general statistical principles. One consideration is scale; in gene expression studies,
the x; are measured on a common scale (usually log expression). Also, for
exploratory data analysis, we will generally use priors that treat variables
exchangeably rather than aim to incorporate substantive prior information—a key
goal being to generate insights and clues about underlying biological interactions
from a relatively unbiased initial standpoint. This implies priors that treat the
elements of y; exchangeably.

A key statistical principle is the consistency of models and priors as the number of
predictor variables, k;, changes. We are interested in comparing models with
different candidate predictor sets pv(i), and each model will have its own prior for
the implied 0; parameters. We define consistent priors on subsets by embedding in an
overall encompassing model/prior, as follows.

3.1. Regression parameter priors

Return to the full set of p variables x~N,(0,2). Any specified index set a(i) =
(i, pv(i)) defines the corresponding 6; as a transformation of elements of . Hence a
prior for X, or equivalently its inverse 2, defines consistent priors on any regression
model parameters for any chosen indices. The selection of subsets can then be
governed by a variable selection prior that defines prior inclusion/exclusion
probabilities for variables. In the encompassing model, we utilize the Wishart/
inverse Wishart prior structure that is simple and effective in terms of both the
statistical features (scale, exchangeability) and in terms of computation. We use the
notation for inverse Wishart models of Dawid [5] (see also [9] and, with somewhat
different notation, [8]). Begin with an inverse Wishart prior [5,6] X ~IW),(d,tI) with
o0 degrees of freedom and scale matrix t/,, for some t>0. For small 6 (and in this
notation, the constraint is only that 6 >0), this is a diffuse prior that, through the
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diagonal scale matrix, shrinks towards lack of correlation between variables and
respects the common scale of measurement.

Now, the variable subset x4 = (xi, X)) has variance matrix X,; from the
relevant components of X, and the prior implies that X, ~IWj, 1(6, k1)
Partition X,(;) as

5 1 gji K;
“ = k[ Ki va(i)

From standard normal theory, the regression is x; ~N(x;w(i)y,-, V;) where y;, = Z;vl([)xi

and ; = g; — K?Z;D](i)Kj. Using standard distribution theory [8,6] we deduce the

implied prior of the normal/inverse gamma form
(i) ~ Ni (0,7 ili,)  and y7' ~Ga((6 + ki) /2, 1/2). (3)

These priors are consistent with the encompassing prior on the full covariance
structure of all variables, so we are working in a consistent framework as we move
across equations i and subsets pv(i) within equations.

3.2. Posterior distributions and marginal model likelihoods

Consider now the posterior and predictive aspects of analysis on processing n
observations. For notation, write y; for the n-vector of observed values of x;, and Z;
for the n x k; design matrix defined by the corresponding n observations on the
predictor vector x,,;). The vector form is simply y; ~ N,(Z:y;,¥;I,) and the posterior
and predictive distributions follow in standard normal/inverse gamma form [29]

d (Vi'l//byhzi) NNkf(Mi_IZz/'yiv lpi]‘/[i_l) where M; = T]ki + Z;Z,'; and
® (i 'y, Zi)~Ga((8 + ki +n)/2, (x+ ¢;)/2) where q; = yiyi — V;Z:M' Zly;.
To compare models based on different subsets of predictor variables we require the
value of the marginal model likelihood, i.e., the observed value of the prior
predictive density function p(y;|Z;). This follows, after some manipulation (see also
[9,29]) as
FP2T((n+6+ki)/2)

| M| P{1 4 qifc} I (6 4 Ki) /2)

We do need to consider the special cases of the null model—when there are no
predictors. Formally, k; = 0 and y, is null. The results are as above, but with k; =0
and ¢q; = yy;.

p(ilZi)oc 4)

3.3. Variable subsets and inclusion probabilities

Our interest in sparse models recommends priors on subsets of variables pv(i) in
the compositional network that are penalized for larger values of k; = #pv(i). A
traditional Bayesian variable selection prior, specified in terms of a common



A. Dobra et al. | Journal of Multivariate Analysis 90 (2004) 196-212 203

inclusion/exclusion probability, is a first step, and the basis of analysis in examples
explored here. Assuming a common inclusion probability of 3, the prior probability
of a model on a specific set of k predictors relative to that on a different, though

possibly overlapping, set of k + & specified predictors is just (1 — ﬁ)h B~". To be
effective in problems with many candidate predictors the variable-inclusion
probability must be very small. The implied binomial prior on the number of
predictors in the regression can be used to assess this. With r candidate predictors,
for p values smaller than 1/r the prior mass on k = 0 increases, to a value of, for
example, about 0.6 if f = 0.5/r and around 0.9 at § = 0.1/r. These values give crude
guidelines as to what “‘small” means relative to the number of available predictors.
Smaller  values more strongly penalize complexity and induce sparsity of the
resulting compositional network.

With priors specified we can search the model space stochastically or
deterministically. It is understood that generating search or sampling methods for
even moderately large values of p is a major challenge and a currently active research
area. Our study and example here are based on forward/backward variable selection
to identify a set of locally optimal regressions, one for each x;, that define local
modes in regression model space for each i. That is, for each i, we apply
forward/backward selection with respect to the defined set of candidate
predictors, and score each regression by the posterior model probabilities; for a
regression on k parameters from a candidate set of r, the unnormalized posterior

probability is simply <(1 — )" *
Eq. (4).

multiplied by the model marginal likelihood of

4. Constructing graphical models from regressions

Our constructive approach to generating sparse graphical models builds on the
simplicity of dependency networks and univariate regressions just described. In
summary:

® We build sets of regressions in an initial dependency network framework, and use
these to generate an appropriate ordering of the variables to underlie a
compositional network.

® With this ordering, variable selection for each linear model for the ordered
variables produces a DAG.

® This DAG implies a unique undirected graph, and posterior distributions for the
sets of regression parameters in the DAG then provide the means for inferences in
the undirected graph.

Key to this approach is an understanding of the evaluation of posterior graph
probabilities arising from DAGs, and the intuition behind the specific method of
ordering variables to define a DAG. Let {(x;|x,,;)):i = 1,2, ..., p} be a dependency

network obtained by maximizing the posterior regression probabilities p(x;[X,()) -
p/(1 - [3))#1’”(’77 i=1,2,...,p. Define the score associated with this dependency
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network to be the product:
H P x1|xpo () ﬁ/(l - ))#pb ) (5)

Were the dependency network to be, in fact, a compositional network, then the score
in (5) would be proportional to the posterior probability of the implied DAG model.
Geiger and Heckerman [8] prove that, under priors for the regression parameters
induced by the inverse Wishart prior on the covariance matrix 2, any two DAGS in
the same equivalence class [2] have the same marginal likelihood. Moreover, two
such equivalent DAGs have the same number d of directed edges and hence they

have the same prior probability (f/(1 — ﬁ))d; hence they each have posterior
probability proportional to (5).

In a dependency network, the predictors for each variable x; can be selected from
all the other variables. A compositional network restricts this choice: candidate
predictors for x; are restricted to the variables that succeed x; in the ordering. As a
result, the score in (5) represents an upper bound for the unnormalized posterior
probability of the DAG resulting from a compositional network {(x;|xgu()) i =
1,2, ...,p}. The closer the dependency network is to a DAG, the closer this score will
be to the required posterior probability. This underlies the use of the score to define
the ordering of variables in our DAG: the ordering aims to maximize the resulting
posterior probability on the resulting model in an iterative process that, at each step,
decreases the overall score (5) the least. The construction is now fully described.

4.1. Model construction

4.1.1. Dependency network initialization

For each i, find a regression model (x;|x,,(;)) by search over all possible variables
pu(i)=[—i]. Use forward/backward selection method (for example) to find local
posterior modes in regression model space with predictor sets pv(i).

Set iterate counter & = 0. Initialize an ordered variable index vector O as the null
vector, and the candidate variable index set C = V = {1, ..., p}. Assign each x;, je C,
the explanatory score:

= T pCxilxpuan ) (B/ (1 = By
ieC
The earlier discussion motivates the use of this score on theoretical grounds, and we
note also that, the smaller the score, the greater is the “importance” of this variable
in explaining the other variables. The score of x; can be easily obtained from the
score of the current dependency network {(x;|x,.;):i€ C} by re-calculating the
posterior probability of the regressions in which x; is an explanatory variable.

4.1.2. Iterative ordering of variables and compositional DAG generation
For h=1,2,...,p — 1, repeat the following:

(1) Choose the candidate variable with highest score, j; = argmax eC{S }.
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(2) Variable x;, becomes the next in the well-ordering, recorded by an update of the
ordered variable index vector from O to [O,j,]. Record cpuv(j,) = pv(ji) for this
variable.

(3) Remove jj from the candidate variable index set by an update of C to C\{j}.

(4) For all ie C such that j,epv(i), reselect and fit the regression model for x;
choosing potential predictors from C only, to generate possibly revised models.
These models then define updates of the sets pv(i) and explanatory scores s for
all ie C.

At h = p, there is a single variable remaining in C that completes the ordered list O.
The result is a compositional network defined by O and the index sets cpv(i), i.e., a
Bayesian network over the resulting DAG. We can now extract inferences about
various aspects of the model, including regression coefficient estimates and, by
transformation, estimates of 2 and hence whatever components of X are deemed of
interest. Finally, by removing arrows and marrying all parents of any node in the
graph we deliver the resulting “moralised” graph—the undirected graph, with the
associated unnormalized posterior probability.

4.2. Sampling to generate multiple graphs

This specific construction, employing forward/backward selection methods for
finding regression models as well as the iterative procedure for variable ordering, is
deterministic. It is a so-called greedy deterministic approach and, as such, is
naturally sensitive to data perturbations that would lead to other final models.
Clearly the ideas here are general and the specific construction represents an initial
approach that could be modified and extended in a number of ways. Generating
multiple candidate regression models for each variable in the compositional network
allows us to evaluate multiple resulting DAGs, hence undirected graphs, and
compare and contrast them, and this can easily be embedded in the DAG generation
step. It is critical to begin to explore multiple models to understand model
uncertainty and, in particularly, to address collinearities that are very strongly
evident in gene expression studies.

An extension of the above approach begins to allow this by considering multiple
orderings of the variables prior to generating DAGs, as follows. At each step of the
iterative ordering of variables, we have a set of candidate variables for selection as
next in the order, each with its current score. Rather than selecting just the variable
with the highest score, we can consider several possible orderings using a set of
variables with high scores, and/or sample from the variables according to some
probabilities. This is easily implemented and underlies our analyses for the examples
here. Specifically, we use an annealed approach that draws variables i according to
probabilities proportional to (s) for some annealing parameter a>0, so
introducing stochastic variation into the generation of the ordering. Repeatedly
developing models this way leads to multiple candidate DAGs, each with their
resulting posterior probabilities, and thus classes of high probability graphical
models. In our experiments with several datasets, this strategy indeed identifies
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graphs of higher posterior probability than the direct deterministic search (the latter
corresponding to a— o0), though too small a value of a leads to the generation of
models that are more widely dispersed in graph space and can have much lower
probability than those found by deterministic search. Based on initial experiments,
we use a = 25 in the example analyses.

5. Breast cancer gene expression analyses

We have developed the analysis on expression data from 158 breast cancer
samples arising in our studies of molecular phenotyping for clinical prediction
[15,16,28]. Snapshots of this analysis here focus on how aspects of associations
exhibited in generated graphs relate to known biology and how other aspects
may suggest biological investigation. Our analysis fits the model to the full set
of 12,558 probe sets (after deleting 67 controls) on the Affymetrix U95aV2
microarrays; we use log2, full quantile normalized transforms of the Affymetrix
MASS.0 signal measure of expression [15]. The analysis adopts hyper-parameter
p=1/(p —1), a prior that is consistent with sparsity and constrains proliferation
of edges in the resulting graphs. The prior mean of k; = #cp(i) is then 1, with
prior probability of about 0.3 on each of k; = 0, 1. Using the annealing parameter
a = 25, the analysis was run as described, and a total of 150 graphs saved. The
summary examples draw on the highest scoring graph, an approximate local
posterior mode in graph space, together with some aspects of additional high scoring
graphs.

5.1. Estrogen receptor pathway genes

A proof-of-principle exploration focuses on small pieces of the resulting graphs
related to the estrogen receptor (ER) gene. ER and the estrogen pathway play key
roles in breast cancer and the evolution and behavior of tumours [13,17,21]. ER is a
transcription factor that directly regulates a variety of genes in an estrogen-
dependent manner [19], and so this component of the network is of key interest. One
such ER target is the TFF1 gene, shown in past work to be a direct target of ER with
an estrogen response element (ERE) within the critical promoter sequences [3]. As a
starting point in the analysis of the network, we extracted the subgraph on a set of
genes known to lie in the ER pathway and relate to TFF1, and identified all links
between these genes in the top graph generated as well as ten others (Fig. 1). Most of
the genes here have additional neighbors, not shown. Two key transcription factors
are FOXA1 (HNF3a) and GATA3. FOXA1 has been shown to play a direct role in
the transcription of the TFF1 gene [4]; the TFF1 promoter contains a binding site for
FOXAT1 as well as multiple GATA sites. Also, though we are not aware of work
showing a direct role for GATAJ3 in the transcription of TFFI, the related GATA6
protein is so implicated and this is dependent on the GATA elements [1]. The graphs
also give a very clear indication of an intermediary role for TFF3, another member
of the intestinal trefoil factor family and close cousin of TFF1. Hence small paths in



A. Dobra et al. | Journal of Multivariate Analysis 90 (2004) 196-212 207

Fig. 1. Sub-graphs of breast cancer based gene expression graphs (on 12,558 genes) involving ER and
TFFI1. Some genes have multiple sets of oligonucleotide sequences on the microarray, and hence the
appearance of multiples of some genes: estrogen receptor itself (ESR1, HG3125-HT3301), MYB (U22376,
MYBa, MYBc, MYBd, MYBe, MYBf), AR (AR, ARa), c-MAF (MAF, MAFa), TFF3 (TFF3, TFF3a,
TFF3b, TFF3c), XBP (XBPl, XBPla) and IGFIR (IGFIR, IGF1Ra). The most probable graph
generated has edges indicated in black. The additional green edges are those appearing in at least 5 of the
top 10 graphs generated.

the graph that link ER with TFFI1, based on predictive/regression based
dependencies of expression of these genes, reveal a set of activities that directly
participate in the control of TFF1 expression as well as insights into other potential
interactions.

This sub-graph has additional features linked to known functional interactions.
FOXAT1 links directly to androgen receptor (AR), which is known to regulate ER
expression [24]. Also, a direct link to FOXA1 is the c-MAF oncogene which also
links to FOXF1. MAF is a transcription factor that inhibits MYB activity [12], and
MYB is a key link from ER to TFF1. FOXF1 is a member of the forkhead family of
transcription factors, and several other forkhead family members do interact with
ER [25]. Our analysis directly implicates FOXF1 and so suggests a broader role for
the family in interactions with the ER pathways, promoting an interest in further
biological study of FOXF1. A further key gene, IGF1R, is seen to directly link to ER
and also MYB. MYB is known to play a role in activating IGF1R [22]; also, IGF1,
the ligand for IGF1R, has been shown to be regulated by AR [24]. So we reveal a
series of functional interactions involving the genes that form the paths between ER
and TFF1 as identified by patterns of association in expression, and also clues about
other, incompletely understood or as yet undefined biological interconnections.
Other interpretable features include additional genes that are known to be regulated
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by, or co-regulated with ER (such as LIV-1 and BCL-2), and additional clues about
potential biological interconnections with genes not shown. Even at this first cut with
one initial candidate model, the potential use of sparse statistical graphs in reflecting
known biology in very high-dimensional data as well as in generating insights and
clues for further study is clear.

Much more information can be generated by successfully exploring genes in
neighborhoods of genes of interest. One positive point of note is that the
transcription factors FOXA1 and GATA3 here have many more first-order
neighbors than other genes displayed. This is natural in that biologically key
transcription factors are expected to have a sustained influence on cascades of
downstream genes, and the graph reflects this. The broader understanding of the
roles of key transcription factors may be enhanced by such studies through the
generation of investigations of sets of genes in such neighborhoods.

On a technical point, the Affymetrix data includes multiple probe sets for some
genes, including ER (ESR1, HG3125-HT3301), MYB (U22376, MYBa, MYBe,
MYBf), AR (AR, ARa), cc-MAF (MAF, MAFa), TFF3 (TFF3, TFF3b), XBP
(XBP1, XBPla) and IGFIR (IGF1R, IGF1Ra) in this sub-network. The tight
linking of multiple probe sets for one gene in the graph is positive, and a facility to
“collapse” together the corresponding node would underscore the above discussion.
This feature is also useful in identifying probe sets (such as other probe sets for MYB
not shown) that do not tie-in so tightly to their sibling probe sets, perhaps reflecting
on the issue of probe design and selection.

5.2. RBIE2F pathway exploration

The Rb-E2F pathway is the key regulatory process governing the transition
of cells from a quiescent state to a growing state [7,20]. The E2F transcription
factors regulate a large group of genes involved in DNA replication, mitosis, and
cell cycle progression. The Rb protein controls the activity of the pathway by
binding to and regulating the E2F factors. As an example in using the graphical
networks to extend the understanding of the Rb pathway, we identify a sub-graph
that contains genes known to function in the Rb-E2F pathway; see Figs. 2 and 3.
Fig. 2 depicts the general outline of the Rb-E2F pathway with a number of
genes that are known to function in the pathway. This includes a selected group
of known targets for the E2F transcription factors; these targets are grouped
according to roles in DNA replication, mitosis, cell cycle progression, and
the apoptopic response. Genes used for the query of the graph are indicated
in green, with those appearing in the sub-graph represented as solid green
symbols. The sub-graph generates other genes as linkers between query genes.
This provides a first step to the discovery of other genes potentially linked to the
pathway.

Of 48 genes used to search the network, all but 11 appeared in proximity in the
sub-network (green genes in Fig. 2). The search was limited to those genes that were
connected by no more than two edges in the top scoring graph, thus restricting the
number of genes to those most closely related in expression to the search group. That
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Fig. 2. Genes related to the Rb-E2F pathway. The initial set of query genes was based on genes known to
function in the Rb-E2F pathway and they are grouped by functional role. Those appearing directly
connected in the sub-graph appear as solid green symbols, the others as open green symbols. The
discovered linker genes—that lie between pairs of queries in the sub-graph—appear as red, and are placed
here according to known or suspected function in the pathway.

so many genes connect in the resulting sub-network argues strongly that their
association relates to the functional context. Indeed, similar searches on random
collections of genes yields highly disconnected sub-graphs with far fewer edges. It is
also clear that many of the genes discovered in the Rb-E2F sub-network are in fact
related to Rb-E2F pathway function. Of the 33 genes discovered as “linkers”
between genes in the query, 13 (in red) can be readily be identified as functioning in
the pathway based on a literature search. Thus the graphical models appear to
provide information relevant to extending understanding of gene regulatory
pathways. One key exploratory use of these models is clearly evident: the additional
linker genes discovered that are not easily explained or already understood to play
functional roles in the pathway are now candidates for further study based on being
implicated in the function of the pathway through predictive association in the
graphical model.
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Fig. 3. The sub-graph containing Rb-E2F pathway query (green) and linker (red and uncolored) genes as
described in Fig. 2, arising from the exploring the first-order neighbors of the set of query genes in the most
highly scored, 12,588 node gene expression graphical analysis of the breast cancer data.

6. Additional comments

The example represents a graphical model in p = 12,558 dimensions. We are
unaware of previous work that attempts analysis in such high dimensions. It is very
important to fit the entire distribution—that is, to consider all genes—even though
substantive interest and evaluation must focus on small subsets. Otherwise, we may
find associations induced through variables not included in the analysis, with
potential to mislead. In even moderate dimensions, sparsity is critical in aiding
implementation, since sparser graphs are much easier to generate and explore, and
we again stress the relevance and criticality of sparsity from the biological point of
view.

The two examples from analysis of breast cancer data begin to demonstrate the
potential utility of such models in generating biological insights and gene candidates
related to a specific pathway of interest. We note that, beyond exploring the analysis
outputs based on model fits to a single data set, it will be of broader interest to
develop analyses of multiple data sets and some of the future potential lies in
exploring and contrasting structure of sub-graphs on specific sets of genes in a
known pathway.
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Current developments include foci on the key next steps statistically: developing
stochastic search and model selection procedures to generate not just local posterior
modes in model space but multiple, representative models and sets of high-posterior
probability graphs as a result. Biological interpretation and insights require some
appreciation of the limitations of one selected model, and generating an expanding
set of plausible graphs, will aid in this. Further, in even very low dimensions high and
complex patterns of collinearity among genes is the norm, and to deal properly with
this requires the evaluation of many plausible models. The approach here does
indeed explore multiple models with small, stochastic perturbations of the
deterministic search algorithm, as a start in this direction. Our current research
focuses on developing more advanced stochastic search methods with this goal.

It is tempting to imagine developments towards more extensive, confirmatory
styles of analysis could in principle begin to build biological information into the
prior distributions, especially in connection with known and expected pathway
interactions, but we are some way from developing appropriate formalisms; at this
point, we stress the use and development of exploratory analyses with the more
“unbiased” priors described here as a tool to aid in structure discovery and
elucidation. It is likely that this utility will be enhanced substantially by the
development of methods to integrate with information systems that provide for
similar exploration of biological/literature databases, so that the gene discovery
process can iterate between statistical discovery and biological confirmation.
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