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Abstract

Despite the strikingly grave prognosis for older patients with
glioblastomas, significant variability in patient outcome is
experienced. To explore the potential for developing improved
prognostic capabilities based on the elucidation of potential
biological relationships, we did analyses of genes commonly
mutated, amplified, or deleted in glioblastomas and DNA
microarray gene expression data from tumors of glioblastoma
patients of age >50 for whom survival is known. No prognostic
significance was associated with genetic changes in epidermal
growth factor receptor (amplified in 17 of 41 patients), TP53
(mutated in 11 of 41 patients), p16INK4A (deleted in 15 of 33
patients), or phosphatase and tensin homologue (mutated in
15 of 41 patients). Statistical analysis of the gene expression
data in connection with survival involved exploration of
regression models on small subsets of genes, based on
computational search over multiple regression models with
cross-validation to assess predictive validity. The analysis
generated a set of regression models that, when weighted and
combined according to posterior probabilities implied by the
statistical analysis, identify patterns in expression of a small
subset of genes that are associated with survival and have
value in assessing survival risks. The dominant genes across
such multiple regression models involve three key genes—
SPARC (Osteonectin), Doublecortex, and Semaphorin3B—
which play key roles in cellular migration processes. Addi-
tional analysis, based on statistical graphical association
models constructed using similar computational analysis
methods, reveals other genes which support the view that
multiple mediators of tumor invasion may be important
prognostic factor in glioblastomas in older patients. (Cancer
Res 2005; 65(10): 4051-8)

Introduction

Glioblastomas remain one of the most lethal forms of cancers
with a median survival of 10 to 12 months (1). Whereas the
number of patients diagnosed with primary brain tumors
remains relatively small—18,500 Americans are expected to be

diagnosed in 2005 (2), the morbidity and mortality of these
tumors are severe. Unlike most other types of cancer, glioblas-
tomas rarely metastasize; rather, they induce death through
striking resistance to current therapies and invasion into normal
brain tissues (3). Gliomas are graded based on the presence of
specific histologic markers, including necrosis, nuclear pleomor-
phism, mitotic activity, and vascular proliferation (4). Among
clinical markers, age and Karnofsky performance status are
prognostic (5). Among treatment options, gross total resection (6)
and radiation therapy have been shown to improve survival with
limited benefit to chemotherapy (7). In many malignant glioma
clinical trials, tumor histology, or patient age impact patient
outcome more significantly than the therapy under investigation.
Novel therapies to specific molecular targets are currently under
development for many cancers including glioblastomas (8), and
advances in such approaches will require the determination of
the roles that specific gene products play in glioblastoma
pathophysiology.
At least two genetic pathways have been delineated in

glioblastoma development: de novo and secondary glioblastomas
(9). De novo glioblastomas represent the most frequent presen-
tation with an initial diagnosis of glioblastoma without evidence
of preexistent lower grade tumor. These patients are commonly of
older age and have a high rate of epidermal growth factor
receptor (EGFR) amplification, p16INK4A deletion, and phospha-
tase and tensin homologue deleted on chromosome 10 (PTEN;
mutated in multiple advanced cancers 1) mutations. In contrast,
secondary glioblastomas arise after a preceding diagnosis of lower
grade tumors. TP53 and RB mutations are thought to be more
common in the development of secondary glioblastomas (9).
Despite these genetic differences, no significant differentiation in
patient survival has been noted between de novo and secondary
glioblastomas when controlled for age. In fact, there have been no
widely validated prognostic genetic markers for glioblastoma
patients. Rather, several genetic changes, including PTEN and
EGFR mutations, have been linked to poor prognosis in patients
with anaplastic astrocytomas (10), suggesting that these are
markers of transformation to glioblastomas.
Molecular profiles of glioma patient specimens have suggested

that gene expression may predict patient outcome more accurately
than pathologic measures (11–14). These analyses have provided
large sets of genes which may be expected to regulate the process of
tumor progression. To explore genome-scale expression information
for potential value in defining contributors to the malignancy of
gliomas with the worst prognosis—glioblastoma patients over the
age of 50—we examined tumor RNA in relation to patient survival.

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).
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Affymetrix gene chip analysis of 41 tumor specimens was examined
using computational statistical methods to explore the potential for
generating gene expression–based markers of survival, and to
elucidate expression-based associations among any genes showing
such potential. Additional analysis of the full genome-scale gene
expression data using statistical graphical models that define
empirical association networks over genes leads to the identification
of additional genes linked to those arising in the primary predictive
models. These results have been contrasted with traditional DNA
studies including measurement of EGFR amplification, mutational
analysis of EGFR, TP53, and PTEN, and loss of heterozygosity
detection at 9p, 10p, 10q, and 17p.

Materials and Methods

Patient characteristics. The sample of 41 patients (age over 50, with
sufficient resected tissue for expression analysis, and uniform surgical
interventions) are summarized in Table 1. Two of the 41 patients were
diagnosed with secondary glioblastomas—lower grade tumors prior to the
diagnosis of glioblastoma (one anaplastic astrocytoma, one anaplastic
oligodendroglioma). Both of these patients were diagnosed with grade 3
tumors less than 1 year before the diagnosis of glioblastoma. Postsurgical
patient treatment information was available from medical chart review on
38 of 41 patients. Only 3 of 38 patients did not undergo additional radiation
treatment (two due to poor clinical status at presentation), each suffered a
rapid clinical decline and death. Median survival among patients who did
not receive external beam radiation was 4.9 months, whereas median
survival among the patients who received external beam radiation was 18.55
months. Eight patients underwent liquid brachytherapy with a radiolabeled
monoclonal antibody (81C6; ref. 15). One patient underwent only liquid
brachytherapy without external beam radiation. Median survival among
patients who did not receive brachytherapy was 9.5 months, whereas
median survival among those who received brachytherapy was 23.55
months. Two patients underwent nitrosourea wafer implantation (Gliadel)
and one convection-enhanced delivery of a growth factor ligand-toxin
chimera (TP-38). Twenty-nine of 38 patients underwent adjuvant systemic
chemotherapy—one additional patient was treated with nitrosourea wafers
without later systemic chemotherapy—from 1 to 7 therapeutic regimens
(mean 3.0) with 1 to 17 total cycles. Patients receiving chemotherapy were
categorized into two categories (one or two regimens versus three or more).
Regimens commonly included a nitrosourea, temozolomide, or a topo-
isomerase inhibitor. External beam radiation and liquid brachytherapy were
significantly associated with increased patient survival, whereas systemic
chemotherapy was not (Table 1). Thus, the majority of patients were treated
in a similar fashion with external beam radiation and some form of
chemotherapy.

Case identification/sample collection. Cases were obtained from a
survival-based study run under the auspices of the W.M. Keck Center for
Neuro-Oncology at Duke University. Each block used in the analysis was
independently validated for the presence of >95% tumor and graded by a
neuropathologist (R.E. McLendon) using the Nelson/Burger criteria for the
presence of necrosis for the diagnosis of glioblastoma. The sample of 41
glioblastomas was collected specifically from patients >50 years of age in
order to bias the sampling to primary glioblastoma.

PCR-based molecular analysis. Normal DNA was extracted from
lymphocytes. Tumor DNA and RNA was isolated from sections cut from
the frozen block. Exons 5 to 8 of the TP53 gene and all 9 exons of PTEN
were resequenced by capillary electrophoresis on ABI 3100. EGFR DNA
amplification assay was done by co-PCR amplifying a 3V untranslated
region fragment of EGFR gene with a fragment of exon 3 of IFNG gene as
internal control, using fluorescent tagged primers. EGFR/IFNG peak area
ratios of >5 are considered as indication of EGFR gene amplification.
CDKN2A (p16INK4A) deletion assay was carried out by SYBR Green
fluorescent assay on ABI 7900HT. A DCt CDKN2A-Globin (internal
control) value of >1.7 was considered indicative of homozygous deletion
of CDKN2A. Loss of heterozygosity analysis of 9p, 10, and 17p was done by

comparing allele intensities of PCR amplified loci (three from each arm)
from tumor and corresponding patient’s lymphocyte DNA. Fragment
analysis was done by capillary electrophoresis on ABI 3100. Peak height
ratios (tumor/blood) <0.65 or >1.67 were considered indicative of loss of
heterozygosity.

To detect the EGFR vIII variant, RNA extracted from tumor tissue was
reverse-transcribed using Invitrogen Superscript II kit and PCR-amplified
using primers from exons 1 and 8. The PCR products were electro-
phoresed in a 3% agarose gel. This assay generates a 111-bp product in
vIII variants and a 912-bp product in the wild-type. Levels of SPARC and
doublecortex (DCX) transcripts were assayed by SYBR Green fluorescent
assay on ABI 7900HT. Normalization of input cDNA amount was done by
comparing amplification of housekeeping genes glyceraldehyde-3-phos-
phate dehydrogenase and h2-microglobulin. DCt values represent average
Ct SPARC or DCX minus average Ct B2M or glyceraldehyde-3-phosphate
dehydrogenase.

Microarray chip RNA hybridization procedures. Total RNA was
extracted from tumor tissue with Qiagen (Valencia, CA) RNEasy kits, and
assessed for quality with an Agilent Lab-on-a-Chip 2100 Bioanalyzer.
Hybridization target probes were prepared from total RNA according to
standard Affymetrix protocols and hybridized to the human U133A
GeneChip (see Supplementary Materials for full details).

Data preprocessing prior to the formal statistical analysis involved
standard processes of normalization, expression intensity estimation and
screening for genes showing reasonable variation across samples. The
Affymetrix U133a DNA microarrays provide assay of over 20,000 probe
sets. The expression intensities for all genes across the 41 samples were

Table 1. Patient and tumor characteristics and associa-
tion with survival

Patient Characteristic Significance

Age Mean 63 (range 50-78) 0.117
Sex 15 females, 26 males 0.665
Race 36 Whites, 5 Blacks 0.858
Secondary glioblastoma 2 of 41 0.976
Resection 41 of 41 NA
External beam radiation 34 of 38 0.017
Liquid brachytherapy 8 of 38 0.021
Chemotherapy 29 of 38 0.21
Number of regimens Mean 3 (range 1-12) 0.539

Molecular Event Present
EGFR amplification 17 of 41 (41%) 0.711
EGFRvIII expression 18 of 40 (45%) 0.902
TP53 mutation 11 of 41 (27%) 0.291
PTEN mutation 15 of 41 (37%) 0.517
p16INK4A deletion 15/33 (45%) 0.286

NOTE: Patients are characterized based on age at original diagnosis.
Significance was analyzed for each characteristic using the Mann-
Whitney test except for age, which was tested using the significance of
the slope coefficient in a regression of age on log (survival time).
Median survival time was only significant for treatment with external
beam radiation (median survival among those not receiving radiation,
4.9 months; median survival among those receiving external beam
radiation, 18.55 months) and liquid brachytherapy with radiolabeled
81C6 (median survival among those not receiving brachytherapy, 9.5
months; median survival among those receiving brachytherapy, 23.55
months). EGFR was considered amplified if values were >5.0. EGFR
was also tested for significance using the slope coefficient in a
regression of log (EGFR DNA amplification) on log (survival time).
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estimated using robust multi-array average (16), with probe-level quantile
normalization, as implemented in the Bioconductor software suite (17).
The resulting robust multi-array average expression intensity estimates
were then screened to identify genes whose robust multi-array average
levels probe vary at least 4-fold across the samples, and whose maximum
level exceeded seven on the log2 scale, leading to P = 8,408 genes/probe
sets whose robust multi-array average expression intensities are the
candidate predictors in the regression model analysis and computational
search.

Statistical analysis. The predictive analysis evaluated linear regression
models of the form y = a0 + a1x1 + . . . + akxk + e , where y represents log
survival time, each xi represents the expression level of gene i , k is a small
integer, and e represents an unexplained, random component. The
challenge of statistical analysis is to search for subsets of genes that
together define significant predictive regressions—that is, to select both the
number k of genes, or variables, and then the specific set of genes x1 , . . . , xk
by searching over subsets. This includes the possibility of no association
with any genes, i.e., k = 0. Technically, with many genes available, this
requires some form of stochastic search. The analysis is based on a so-called
shotgun stochastic search (18), which in a distributed computer environ-
ment, allows the rapid evaluation of many such models so long as the search
is constrained to values of k that are reasonably small. The parallel
computational strategies implemented are very efficient and the search over
models generally focuses quickly on subsets of relevant models with higher
probability (if such a model exists).

Analysis here with n = 41 samples confirms that a number of models
with three to four genes are of some interest. The analysis heavily penalizes
more complex models, initially very strongly favoring the null hypothesis of
no significant predictors in this model context among the thousands
of genes in a manner that naturally counters the false discovery propensity
of purely likelihood-based model search analyses. In addition, routine
calculations confirm that the false-positive rate for discovery of single
variable regressions as significant as those identified among the top
candidates here is tiny. Of a number of regression models involving between
three and five genes that are identified, many rely on overlapping sets of
genes with two of the three ‘‘key’’ genes—SPARC, Doublecortex, and
Semaphorin3B—appearing in a larger number of most highly scoring
models. This reflects inherent collinearities among gene subsets, some of

which is naturally induced by coregulation of genes within common
pathways, so that models based on distinct although overlapping sets of
predictive genes may well reflect a single or small number of relevant
biological pathways rather than distinct explanations.

The overall practical relevance of the set of regressions identified (as
opposed to nominal statistical significance of any one model) is evaluated
by cross-validation prediction. That is, the analysis is repeatedly done in a
leave-one-out context, with the tumor left out then being predicted based
on the set of models defined and weight by the analysis of the remaining
n!1 samples, as is (or should be) standard predictive evaluation in
problems where predictive value is of primary interest (19–21). Predictions
are based on standard weighted model averaging: models identified are
evaluated according to their relative data-based probabilities of model fit,
and these probabilities provide weights to use in averaging predictions for
the hold-out (or future) tumor samples.

Further statistical analysis of the gene expression data aimed to explore
a number of genes implicated in the survival regressions to identify
additional, statistically associated genes that would then be candidates for
potential biological interpretation. A gene showing up as a marker of
survival may be a statistical surrogate of other, potentially mechanistic
genes. This component of the statistical analysis applied the regression
model search repeatedly; now, rather than treating logged survival times as
the variable to predict, we used expression of each of a selected small set
of genes as the outcome variable. Genes selected as responses for this
analysis are the three key genes already discussed, including each of the
two probe sets representing DCX, and an additional gene, KIAA0831. These
genes represent the four (really five, with the two versions of DCX) most
highly scored genes, in terms of posterior probability of appearing in
regression models for survival of the full set of over 8,000 genes. Exploring
regression models separately for each of these genes as response generates,
in each case, a set of models and ranks the genes appearing as predictors
in those models according to posterior probabilities, just as in regressions
for survival. The four most highly scoring genes in each case are identified
in Supplementary Table 1 along with the primary genes already mentioned.
Note that, for doublecortex, where two probe sets appeared as predictors
of survival, each probe set was considered separately as a response, but
both probe sets were removed from the set of predictors for these
procedures.

Table 2. Hazard ratios associated with patient and tumor characteristics

Genetic Analysis Expression Analysis Clinical Analysis

HR P HR P HR P

Age 1.09 0.11 1.00 0.94 1.01 0.80
Race (White) 3.86 0.14 0.78 0.73 1.28 0.73
External beam radiation 0.22 0.085 0.43 0.21 0.15 0.0067
Chemotherapy 2.06 0.48 1.33 0.69 0.87 0.84
EGFR amplification 1.01 0.59 NI NI NI NI
EGFRvIII 1.63 0.54 NI NI NI NI
TP53 mutation 2.05 0.28 NI NI NI NI
PTEN mutation 1.16 0.79 NI NI NI NI
p16INK4A deletion 0.58 0.39 NI NI NI NI
SPARC NI NI 9.51 0.00000034 NI NI
Semaphorin3B NI NI 5.69 0.000010 NI NI
Doublecortex NI NI 2.40 0.000019 NI NI
KIAA0831 NI NI 0.42 0.075 NI NI

NOTE: Listed are P values and hazards ratio coefficients for three multivariate Cox proportional hazards analyses. The first is a multivariate analysis of
survival time (in months) given the genetic alteration summaries corrected for the clinical variables age, race, external beam radiation, and
chemotherapy. The second is of the expression data corrected for the clinical measures, and the third is of the clinical measures alone.
Abbreviations: HR, hazards ratio; NI, variable not included.
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Results

Molecular p53, PTEN, p16INK4A, and epidermal growth
factor receptor status do not associate with patient outcome.
Despite the relative uniformity of these patients for the most
critical determinants of patient outcome—patient age and tumor
grade—examination of the overall survival times for our patients
can be stratified. These findings suggest that important determi-
nants beyond the usual selection criteria may influence patient
outcome. Previously examined molecular prognostic indicators for
gliomas have included p53, PTEN, p16INK4A, and EGFR. However,
these markers have not been validated as independent prognostic
markers as they frequently co-segregate with tumor grade or
patient age. Patient tumor genomic DNA was examined for the
presence of p53 and PTEN mutations, amplification of wild-type
EGFR, or homozygous deletion of p16INK4A or a constitutively
active mutant EGFR (EGFRvIII; Tables 1 and 2). Prior patient
analyses have suggested that p53 mutations are associated with
gliomas presenting in younger patients and those presenting at
lower tumor grades (22). Surprisingly, we found p53 mutations in
almost one-third of our patients (11 of 41 = 27%). Whereas the
mean survival of patients whose tumors have PTEN mutations or
p16INK4A deletions was slightly lower than patients with normal
PTEN and p16INK4A (Fig. 1), none of these directed molecular
analyses yielded information that was associated with prognostic
significance either singly (Table 1) or in multivariate analysis
adjusted for patient variables (Table 2). As these genetic changes
have frequently been associated with tumor formation or
progression, it is likely that these genes may be more closely
associated with tumor initiation or progression rather than
modifying malignancy among glioblastomas.
Gene expression profiles associated with survival. Statistical

analysis evaluated linear regression models treating logged survival
times as response and logged gene expression values of multiple
genes as candidate predictors, as detailed in ref. (23) and in the
Statistical analysis section above. A large number of regression
models involving between two and five genes were identified,
weighted, and aggregated in cross-validation studies to assess
strength and relevance of the association with survival. The key

regression models—key in terms of receiving highest posterior
probability when assessed across a large number of candidate
models—involve subsets of three genes (Fig. 2A and Table 2). The
regression model analysis was assessed by leave-one-out cross-
validation, as described in Materials and Methods. Figure 2B
provides an overall summary of this assessment and speaks to the
explanatory capacity of the set of weighted regressions generated.
Figure 2B shows the aggregate linear predictions for logged survival
for each of the n = 41 samples, based on 41 separated re-analyses
leaving each sample out of the training data (the remaining 40
samples) and then predicting the left-out case. The point
predictions are accompanied by approximate 95% intervals. Note
the concordance of the data with predictions, but also that there is
wide uncertainty associated with predictions; this is due to the
combination of a relatively small sample size and the model
uncertainty arising from the combination of multiple regressions.
This latter uncertainty is very important in reflecting inherent
uncertainty about model form, and to ignore—by choosing, for
example, a single ‘‘best’’ regression model—would lead to misleadingly
precise intervals.
Figure 2C provides an indication of stratification of patients

according to survival risk. The three cases identified in Fig. 2B
represent individuals with relatively poor, moderate and higher risk
in terms of the gene expression markers. Taking the gene
expression data for each of these three cases, the model produces
predicted log survival times that, when converted to the time axis,
correspond to the three survival curves in Fig. 2C . The caution is
that, whereas the predicted survival curves certainly do represent
the differential survival outcomes related to these three regimes of
gene expression, this figure does not reflect the associated
uncertainty that is relevant for any specific future patient—
uncertainty related to that displayed in Fig. 2B on the log scale.
Expression levels of Osteonectin, Doublecortex, and Sema-

phorin3B together associate with patient survival. Dominant
regression models involve probe sets for Osteonectin, Doublecortex,
and Semaphorin3B. The overall most likely model is in fact the
regression on these three genes, and other models with appreciable
posterior probability involve subsets of two of these three together
with one other gene. Together, these three genes provide
explanatory markers of survival (Table 2). Poorer survival is
associated with higher levels of each of these three genes; none of
them serves as a useful predictive marker alone, but the
concordance of higher values together seems to associate with
poorer survival (Table 3). Of note, the expression levels of individual
genes were not highly correlated with one another, except for very
high correlation between the two Doublecortex isoforms (Supple-
mentary Table 2). One informative plot that summarizes the roles of
these three genes as markers of survival is given in Fig. 2A . The
metagene plotted is simply the dominant singular factor (principal
component) of the expression levels of these three genes across
samples, and is plotted here in a three-dimensional scatter plot
together with the expression levels of two of the three—SPARC and
Doublecortex (see ref. 16 for discussion of the use of metagenes
defined as singular factors from groups of statistically associated
genes in related contexts). The points are color-coded according to
the predicted mean of log survival corresponding to the expression
levels, running from blue (lower risk) to red (higher risk).
Validation of gene expression of Osteonectin and Double-

cortex. To confirm the expression relationships derived from
analyses of Affymetrix gene chip hybridization studies, RT-PCR
confirmation of expression of these two genes was done in a subset

Figure 1. Median survival for patients associated with specific genetic
alterations. Tumor specimens were characterized in terms of genetic changes
frequently associated with gliomas as in Table 2. Mean survival with SD is
displayed based on the molecular status of the tumor. Ranges of survival
are shown in parentheses.
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of our patient specimens (20 tumors). The levels of Osteonectin and
Doublecortex message measured by RT-PCR were generally well
correlated with the levels detected in the Affymetrix chip studies
(R2 = 0.7-0.8).
Expression profiles can derive additional relationships

between genes expressed in patient specimens related to
survival. Additional statistical analysis explored statistical associ-
ations in gene expression data among a few of the key genes
implicated in the survival regressions and other genes that, in a
regression context, showed up as predictive of expression
fluctuations of this initial set of genes (see Materials and Methods).
Figure 3 displays a graph summarizing the predictive relationships
identified in this analysis, presented as a statistical graphical
association model—a subgraph of the much larger graph relating
expression levels across all genes (23, 24). The set of genes here are
listed in Supplementary Table 1. Arrows are directed from a gene A
to a gene B to represent the appearance of gene A as a predictor of
gene B in one of the three most highly weighted regressions for
expression of gene B. A dashed edge indicates that gene A had a
negative regression coefficient in the highest probability model in
which it was involved in predicting gene B. The number labeling an
edge from gene A to gene B indicates the aggregate posterior
probability of all regression models for gene B that contain gene A
as an explanatory variable—an overall measure of the relevance/
weight of gene A as predictive of gene B.

Discussion

Glioblastomas are genetically heterogeneous, suggesting that a
diverse set of gene products may act to regulate the behavior, and
thus outcome, from these tumors. Despite these limitations, we
have been able to derive relationships between the expression of
three genes and patient survival. The three genes that are the
dominant contributors to models associating gene expression
profiles with patient survival—Osteonectin, Doublecortex, and
Semaphorin3B—share roles in the regulation of cellular motility
suggesting that potential regulators of tumor invasion may play a
part in determining patient survival after tumor progression to a
glioblastoma. Unlike most other types of cancer, the morbidity and
mortality from most brain tumors comes not from metastases but
rather local invasion of the tumor preventing complete surgical
resection (3). The majority of high-grade gliomas (80-90%) recur <2
cm of the original tumor site (25), but even local control will
eventually fail due to the invasive nature of gliomas because glioma
cells frequently extend through much of the neural axis prior to
diagnosis. Many patients die due to malignant gliomas without a
significant mass present (26). Infiltrative glioma cells are a
particular therapeutic challenge due to their diffuse localization,
distance from the initial site of resection, protection by an intact

blood-brain barrier, and low frequency of mitosis (3). Whereas
there has been a dramatic increase in the understanding of the
mechanisms by which cancers initiate and grow, the process of
tumor invasion remains poorly understood.
Of the genes detected in our expression studies, Osteonectin has

been most clearly linked to glioma pathophysiology in prior studies.
Osteonectin, also known as secreted protein acidic and rich in
cysteine (SPARC) or BM-40, is an extracellular protein that plays an
important role in development, tissue healing and remodeling, and

Figure 2. Expression analysis of genes related to patient survival. A, scatterplot
of 41 glioblastoma cases according to expression levels on two of the three key
genes underlying regression models evaluated. The metagene (first principal
component of expression values for the three key genes SPARC, Doublecortex,
and Semaphorin3B) which dominate in survival predictions is also included. The
color bar/coding indicates survival time. The three samples numbered represent
cases with poor (red), moderate (green ), and better (blue ) survival risks.
B, leave-one-out cross-validation predictions from the aggregate regression
model for log (base 2) survival times. For each patient, the predicted mean log
survival time is plotted, with associated 95% interval, against the observed log
survival time (horizontal axis). C, predicted survival functions for three
hypothetical populations of individuals whose values of gene expression on the
three key genes—SPARC, Doublecortex and Semaphorin3B—are the same as
those of the three real patients marked in (B ).
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angiogenesis (reviewed in ref. 27). Osteonectin/SPARC was origi-
nally discovered as an important component of bone (28) but is also
expressed in epithelia exhibiting high rates of turnover (gut, skin,
and glandular tissue), as well as vascular smooth muscle cells and
endothelial cells (29). In addition to its normal physiologic role,
Osteonectin/SPARC is abnormally expressed in cancers. Many
cancers, including cancers of the gastrointestinal tract, breast, lung,
kidney, adrenal cortex, prostate, bladder, and meninges (29–33),
express increased SPARC levels that are associated with a
conversion to invasive and metastatic tumors. Gene expression
analysis of potential tumor markers in malignant gliomas by
sequential analysis of gene expression found a 10-fold over-
expression of SPARC (34). Immunohistochemical analysis of human
gliomas reveals that SPARC is expressed specifically at sites of
tumor invasion—in tumor cells at the tumor-brain interface,
endothelial cells of tumor-associated vessels, and reactive astro-
cytes (30). In vitro assays of gliomas have further implicated SPARC
expression in increased glioma invasion (35) and angiogenesis (36).
We and others have shown that forced expression of SPARC in
human glioma cell lines promotes tumor cell invasion in both cell
culture and animal models associated with matrix metalloprotei-
nase expression (37, 38). More recently, we have shown that SPARC
expression in human glioma cell lines induces increased activation
of AKT and promotes cell survival with serum survival (39). Thus,
the prominent role of SPARC in influencing patient survival
suggests that regulation of the cellular microenvironment may
significantly contribute to tumor behavior beyond the progression
to high-grade malignancy.
Doublecortin and doublecortex are gene products encoded by

the locus linked to X-linked lissencephaly (40). Whereas males with
X-linked lissencephaly display abnormally smooth brains, female
patients develop brains with abnormal heterotopic gray matter
regions reminiscent of a second cortical region. During brain
development, neuronal precursors are generated at periventricular
regions then migrate outwards to populate the cortical layers.
Heterotopic gray matter regions have been linked to impaired
migration of neuronal cell bodies. Doublecortin encodes a
microtubule-associated protein with two actin-binding domains
that regulate neuronal migration (41–43). The activity of double-
cortin is suppressed by phosphorylation at specific residues (42, 43).
The kinases regulating these phosphorylation events include Cdk5,

MARKS, and protein kinase A (42, 43). These kinases may be
abnormally expressed or regulated in some cancers, including
gliomas. The expression levels and contributions of doublecortin in
cancer have been previously unrecognized. Likewise, the regulation
of doublecortin expression is poorly understood. A recent report
linked targeted disruption of PTEN expression to changes in
doublecortin expression (44). The striking relationship that we have
detected between the expression levels of SOX4 and doublecortin
strongly suggest co-regulation of these genes. SOX4 is a SRY box
containing transcription factor that is expressed during brain
development in the cerebellar external granule layer (45). The
functions of SOX4 have been dissected through targeted disruption
in mice, resulting in early vascular death with defects in cardiac
outflow tract formation and pro-B lymphocyte generation (46).
SOX4 has not been widely studied in cancer, but SOX4 has been
shown to be overexpressed in another central nervous system
cancer, medulloblastoma (47). The link between SOX4 expression
and that of both doublecortin isoforms strongly suggests that SOX4
may regulate doublecortin expression. In a strong validation of the
potential biological relationships that may be derived by the
statistical analyses used in our studies, we have detected a similar
relationship between SOX11 and one of the expressed transcripts of
doublecortin. SOX11 is the SOX family member most closely related
to SOX4 with potential overlapping functions.

Table 3. Combined impact of elevated expression of
SPARC, Doublecortex, and Semaphorin3B on survival

Number of genes
highly expressed

Median
survival

Number of
patients

0 41.9 2
1 19.2 22
2 9.5 13

3 7.6 4

NOTE: A crude combined measure of expression of SPARC, Double-
cortex, and Semaphorin3B was defined in terms of high (>median in
the sample) versus low (Vmedian in the sample) expression of each of
the three genes on gene chip studies. The combined variable counts
the number of genes expressed at the high level. The table summarizes
survival in months as a function of this variable.

Figure 3. A graph representing a small component of the large-scale gene
expression–based graphical association network of >8,000 genes. This graph
displays genes that are implicated in regression models predicting survival, and
additional genes that arise in regression models predicting gene expression
fluctuations of that initial group. An arrow from gene A to gene B indicates that
gene A appears in one of the top three most highly weighted regression models
predicting gene expression fluctuations of gene B; the arrow is dashed (full)
according to whether the estimation regression coefficient of gene A in the most
highly weighted of those regressions is negative (positive). The number on
an arrow from gene A to gene B is the estimated posterior probability of all
regression models for gene B that contain gene A as an explanatory variable.
See discussion in text (Statistical analysis in Materials and Methods) and
Supplementary Table 1 for details on all genes.
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Semaphorin3B (SEMA3B) is a class III, secreted semaphorin with
SEMA, immunoglobulin, and short basic domains. In parallel to
other semaphorins, SEMA3B regulates neuronal migration.
SEMA3B antagonizes SEMA3A neuronal growth cone repulsion at
neuropilin-1 homodimers but acts as an agonist at neuropilin-1/2
heterodimers or neuropilin-2 homodimers (48). The neuropilins are
transmembrane receptors without clear independent signaling
functions that may act as accessory receptors for vascular
endothelial growth factor (VEGF). Although VEGF has been most
closely linked to endothelial cell proliferation and increased
vascular permeability, evidence of the role of VEGF in cellular
migration and brain development are apparent. The SEMA3B locus
is located at 3p21.3, which is a homozygous deletion region in small
cell lung cancer, suggesting that SEMA3B may act as a tumor
suppressor gene in some cancers (49). Reintroduction of p53 into
the p53-null U373MG human malignant glioma cell line induced
SEMA3B expression (50). The dichotomous role of SEMA3B
parallels that of SPARC, which can also restrict tumor cell
proliferation and exhibit tumor suppressive roles in cancers as
well. The putative SEMA3B receptors, the neuropilins, are
expressed in human gliomas and may serve biological roles in
tumor malignancy.
In summary, this gene expression study provides evidence that

three genes which regulate cellular motility may contribute to the
poor prognosis of patients with glioblastomas. No previous studies,
of which we are aware of, have elucidated the conclusive links
between expression of specific genes and survival of older
glioblastoma patients. Although cellular mitogenesis and resistance
to apoptosis have been the targets of many biological therapies,
our regression analyses using gene expression to explain the

survival outcomes revealed that genes whose primary cellular
effects may be the regulation of cellular migration appear as
candidate markers of poor survival. Together, these results suggest
that tumor migration may represent an important effector of
glioblastoma malignancy and may warrant accelerated develop-
ment of specific therapies. Current targeted therapies for
glioblastomas have focused on cellular pathways that primarily
regulate proliferation and apoptosis. Clinical experience suggests
that tumor invasion is a severe challenge in the management of
glioblastoma patients. Elegant studies by Berens, Bjerkvig, Rao and
others have shown that glioma invasion can be the target of
directed therapies and that these approaches may augment the
efficacy of traditional therapies (reviewed in ref. 3). Our studies
may lend further weight to these approaches and suggest that the
gene products whose expression is now linked to poor survival may
be useful therapeutic targets. Future studies will prospectively
determine the link between the expression of SPARC, Double-
cortex, and SEMA3B in gliomas of all grades and patient outcome.
Additional studies under way will further dissect the contributions
of these gene products to the biology of gliomas, including tumor
cell invasion, proliferation, apoptosis, and secretion of angiogenic
factors.
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