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Abstract

We describe and illustrate approaches to data augmentation in multi-way contingency tables for
which partial information, in the form of subsets of marginal totals, is available. In such problems,
interest lies in questions of inference about the parameters ofmodels underlying the table togetherwith
imputation for the individual cell entries.We discuss questions of structure related to the implications
for inference on cell counts arising from assumptions about log-linear model forms, and a class
of simple and useful prior distributions on the parameters of log-linear models. We then discuss
“local move” and “global move” Metropolis–Hastings simulation methods for exploring the posterior
distributions for parameters and cell counts, focusing particularly on higher-dimensional problems.
As a by-product, we note potential uses of the “global move” approach for inference about numbers of
tables consistent with a prescribed subset of marginal counts. Illustration and comparison of MCMC
approaches is given, and we conclude with discussion of areas for further developments and current
open issues.
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1. Introduction

The general problem of inference in contingency tables based on partial information in
terms of observed counts on a set of margins has become of increasing interest in recent
years. We address this problem here in a framework involving inference on parameters of
statistical models underlying multi-way tables together with inference about missing cell
entries.
Some of our initial motivating interest in this area came from socio-economic and de-

mographic studies that involve and rely on survey and census data representing differing
levels of aggregation (hence marginalisation) of population characteristics. Much of the ac-
tivity in these latter areas has been referred to as micro-simulation, and the development of
micro-simulation methods in areas such as transportation policy and planning rely heavily
on an ability to impute individual household level counts, for example, from more highly
aggregated data from local or population census data.
More recently, the last several years have seen a very significant upsurge of interest in

development of methods to aid in the creation, dissemination and use of public data sets
from governmental sources, related to serious societal and legal concerns about data con-
fidentiality and security. A range of issues then arise about the potential to infer individual
level data from sets of interlinked aggregate-level data, and this can be focused on the
problem of inferring cell counts in multi-way tables based on observation of some sets of
marginal totals. Here there are questions of the extent to which sets of observedmargins can
inform on cell counts under varying assumptions about the structure of candidate statistical
models (such as log-linear models), with related questions about the role and impact of spe-
cific prior distributions on parameters of such models (Knuiman and Speed, 1988; Gelman
et al., 2003; Dobra et al., 2003a).
Historically, approaches to fitting models to incomplete contingency tables are discussed

in classical texts such asDeming and Stephan (1940)orBishop et al. (1977). Strong interest
in the general problem area has focused on problems of counting tables with prescribed
marginal totals, a goal of interest in both data confidentiality studies and in the traditional
context of estimating significance levels in testing approaches (Agresti, 1992; Diaconis and
Efron, 1985; Smith et al., 1996).
Bayesian inference in this context is in principle straightforward: we aim to compute

posterior distributions for the unobserved cell counts and parameters underlying models
for cell probabilities, jointly. In practice this may be addressed using Markov chain Monte
Carlo (MCMC) simulations; this requires creativity in dealing, in particular, with simula-
tions of the missing cell counts from appropriate conditional posterior distributions. The
contributions of this article address a number of questions and needs in support of the prac-
tical development of such methods. First, we describe the general problem and context, and
develop some theoretical insights into the nature and role of assumptions aboutmodel struc-
ture in its relation to the problem of inference on individual cell counts based on observation
of sets of marginal totals. Then, we discuss MCMC approaches to joint analysis of param-
eters and missing cell counts. This uses a simple but flexible class of prior distributions on
parameters of log-linear models at the parametric level. In imputing cell counts, we discuss
“local move” algorithms that rely on Markov basis construction, together with a new class
of “global move” approaches that have some relative attractions, especially as problems
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increase in dimension and complexity. A detailed discussion of an example demonstrates
both the implementation and the efficacy of the “global move” algorithm, and we conclude
with some discussion of current open issues and challenges. In addition to innovations in
modelling and computation, the work represents a selective overview of some key recent
and current issues in this field.

2. Analysis framework and goals

2.1. Definitions and notation

Consider ak-way contingency table of counts over ak-vector of discrete randomvariables
X={X1, X2, . . . , Xk}. LetK={1,2, . . . , k}, and for eachj ∈ K, supposeXj takes values
inIj ={1, . . . , Ij }.WriteI=I1×· · ·×Ik and denote an element ofI by i=(i1, . . . , ik).

The contingency tablen = {n(i)}i∈I is a k-dimensional array of non-negative integer
numbers, with cell entriesn(i)=#{X= i}, (i ∈ I), and a total ofm= I1 · . . . · Ik cells. Any
set ofmarginal counts is obtained by summation over one ormore of theXvariables. For any
target subset of variablesD ⊂ K, theD-marginalnD of n has cellsiD ∈ ID = ×j∈D Ij ,

with cell entries

nD(iD) =
∑

j∈IK\D

n(iD, j).

If D= ∅ thenn∅ is the grand total overn. Cells are ordered lexiographically with the index
of thekth variable varying fastest, so thatI = {i1, . . . , im}, wherei1 = (1, . . . ,1) is the
first cell andim = (I1, . . . , Ik) is the last cell.

2.2. Tables with sets of fixed margins

Our interest lies in problems in which we observe only subsets of margins from the full
table. Suppose thel marginsD={n1, . . . , nl} are recorded.Additional information may be
available, such as upper and lower bounds for some of (or all) the cells in the full table, or
cases of structural zeroes (that can also be represented by fixed upper and lower bounds, in
this case each at zero). In such cases, the constraints can be added toD without changing
the development below. Observing the marginsD induces constraints that imply upper and
lower boundsU(i)=max{n(i) : n ∈ T} andL(i)=min{n(i) : n ∈ T} on each cell entry
n(i), i ∈ I. This limits attention to tables satisfying these constraints. Denote the set of
such tables byT–thusT is the set ofk-way tablesn= {n(i)}i∈I strictly compatible with
D.WriteM(T) for the number of such tables.

2.3. Statistical models over tables and observed margins

Focus on the independent Poisson sampling model that underlies the canonical multino-
mial distribution forn. That is, cell counts are conditionally independent Poisson,n(i) ∼
Poisson(�(i)), for eachi ∈ I, with positive means� = {�(i)}.
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The implied probability of the observed set of marginsD is then, theoretically, simply

p(D|�) =
∑
n′∈T

p(n′|�). (1)

In problems of inference on�, this defines the likelihood function, but, evidently, in other
than trivial, low-dimensional problems, direct evaluation is impossible. The essential role
of n as (in part) missing or latent data underlies simulation-based methods using MCMC
approaches that, followingTanner and Wong (1987), iteratively resimulate the “missing”
componentsofnand theparameters� from relevant conditional distributions.For the former,
note that

p(n,D|�) =
{
p(n|�) if n ∈ T,

0 otherwise.
(2)

Then, conditional on the observed margins and model parameters, inference on the missing
components of the table are derived directly from the implied conditional posterior

p(n|D, �) = p(n|�)
/ ∑

n′∈T
p(n′|�) (3)

if n ∈ T, being zero otherwise. When embedded in a simulation-based analysis, a key
technical issue is that of developing methods to simulate this distribution—proportional
to the product of Poisson components conditioned by the complicated set of constraints
n(i) ∈ [L(i), L(i) + 1, . . . , U(i) − 1, U(i)] over cellsi ∈ I defined by the observed
marginsD.

2.4. Population models and parameters

Inference about the underlying population structure is based on choices of model, such
as traditional log-linear models, for�. Any modelA has parameters� that define� =
�(�). Then priors are specified on�, so on� indirectly and the latter will incorporate
deterministic constraints imposed by the model. Thus we work interchangeably between
� and� in notation. Sampling distributions are conditional on�, thus implicitly �. For the
given modelA, denote a prior density for the implied model parameters� by p(�|A).

Posterior inference is theoretically defined through the intractable likelihood function (1).
When elaborated to include the missing data to fill out the full table, the more tractable
conditional posterior is simply the prior modified by the product of Poisson likelihood
componentsp(n|�).

2.5. MCMC framework

From the above components of the posterior distribution, we may implement MCMC
methods to generate, ultimately, samples fromp(n, �|D,A) by iteratively re-simulating
values of� (and hence, by direct evaluation,�), and the missing cell counts inn. Start with
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n(0) ∈ T. At thesth step of the algorithm, do (Tanner andWong, 1987):

• Simulate�(s+1) from p(�|A, n(s)) ∝ p(�|A)p(n(s)|�(�)), and compute the implied
new value of�(s+1) = �(�(s+1)).

• Simulaten(s+1) from p(n|D, �(s+1)).

The above data augmentation algorithm represents the basis of Bayesian approaches for
analyzing contingency tables with missing data—see, for example,Gelman et al. (2003)
or Schafer (1997). This also connects to the well-known EM algorithm ofDempster et al.
(1977)and to the classical book about missing data byLittle and Rubin (2002).
Section 3 discusses aspects of prior specification and model structure in their impact on

p(n|D, �). Section 4 introduces the Czech autoworkers data used to illustrate the method-
ology. Section 5 considers specific priors and the resulting analysis in log-linear models.
Section 6 discusses algorithms to sampling the critical conditional posterior for the missing
elements ofn under the relevant distribution (3). Section 7 finalizes the discussion of the
Czech autoworkers data example.

3. Log-linear models and structural information

Some initial theoretical results describe structural aspects of the conditional posterior
p(n|D, �) relevant in consideration of classes of log-linear models. We first note that the
conditional distribution (3) of course has precisely the same form if we assumemultinomial
sampling forn.
SupposeA is a specified log-linear model defining� in terms of underlying log-linear

parameters�. This may be defined in terms of a specification of the minimal sufficient
statistics ofA; suppose these to be defined by the index sets{C1, C2, . . . , Cq}, where
Cj ⊂ K. WritingC= {C : ∅ �= C ⊂ Cj for somej ∈ {1,2, . . . , q}}, the log-linear model
has the form

�(i) = �
∏
C∈C

�C(iC), (4)

where�C depends oni ∈ I only through the indices inC. To make the parameters
identifiable, the aliasing constraints are to set each�C(iC)=1 whenever there existsp ∈ C

with ip = 1—see, for example,Whittaker (1990). One immediate consequence of these
aliasing constraints is that�(i1) = �. The parameter set is then

� = {�} ∪ {�C(iC) : C ∈ C, iC ∈ IC with ip �= 1 for p ∈ C}. (5)

The following theorem now shows that the posteriorp(n|D, �) from (3) simplifies and does
not depend on all the parameters� from (5). This represents an extension of an earlier result
by Haberman (1974).

Theorem 1. If the marginalnC of the full table is determined fromD, then, under model
A, the posterior distributionp(n|D, �) does not depend on the parameters�C(iC) for all
iC ∈ IC .
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Proof. It is not hard to see that, for any tablen′, we have∏
i∈I

�(i)n
′(i) = �n

′∅
∏
C∈C

∏
iC∈IC

�C(iC)
n′
C(iC).

If n′ ∈ T, it follows that the grand totals ofn′ andn are equal, i.e.,n′
∅ = n∅. Moreover, if

the marginalnC is known fromD, then the marginalsn′
C andnC coincide. Thus∏

iC∈IC

�C(iC)
n′
C(iC) =

∏
iC∈IC

�C(iC)
nC(iC)

for every tablen′ ∈ T. It follows that the terms involving�C(iC), iC ∈ IC , cancel in
the denominator and the numerator of (3) and hencep(n|D, �) does not depend on these
parameters. Note that this posterior also does not depend on the grand mean parameter�.

�

A direct consequence of Theorem 1 is that the hypergeometric distribution is a special
case of the posterior in (3) obtained by conditioning on a log-linear model whose minimal
sufficient statistics are fully determined by the available dataD:

p(n|D, �) ≡ p(n|D) =
[∏
i∈I

n(i)!
]−1/ ∑

n′∈T

[∏
i∈I

n′(i)!
]−1

. (6)

As an aside, we note thatSundberg (1975)shows that the normalizing constant in (6) can be
directly evaluated if the log-linear modelA is decomposable (Whittaker, 1990; Lauritzen,
1996); otherwise, this normalizing constant can be computed only if the set of tablesT can
be exhaustively enumerated.
Theorem 1 shows that the terms�C associated with a fixed marginalnC are redundant in

themodel sincep(n|D, �) does not depend on them.Only higher-order terms corresponding
with marginals that are not known effectively influence the simulation of a new complete
table. This means that the log-linear modelsA that have to be considered in order to obtain
different posterior distributionsp(n|D,A, ·) are those log-linear models whose minimal
sufficient statistics embed the set of fixedmarginals which constitute part or all the available
informationD.

4. Example—Czech autoworkers data

The data inTable 1come from a prospective epidemiological study of 1841 workers
in a Czechoslovakian car factory, as part of an investigation of potential risk factors for
coronary thrombosis (see,Edwards and Havranek, 1985). In the left-hand panel ofTable 1,
A indicates whether the worker smokes or not, B corresponds to “strenuous mental work”,
C corresponds to “strenuous physical work”, D corresponds to “systolic blood pressure”,
E corresponds to “ratio of� and� lipoproteins” and F represents “family anamnesis of
coronary heart disease”. We focus only on the cell(1,2,2,1,1,2) that contains the unique
count of 1.
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Table 1
Czech autoworkers data fromEdwards and Havranek (1985)

B No Yes B No Yes

F E D C A No Yes No Yes A No Yes No Yes

Neg <3 <140 No 44 40 112 67 [35,45] [35,44] [111,121] [63,72]
Yes 129 145 12 23 [128,138] [141,150] [3,13] [18,27]

�140 No 35 12 80 33 [29,39] [5,14] [76,86] [31,40]
Yes 109 67 7 9 [105,115] [65,74] [1,11] [2,11]

�3 <140 No 23 32 70 66 [16,25] [26,35] [68,77] [63,72]
Yes 50 80 7 13 [48,57] [77,86] [0,9] [7,16]

�140 No 24 25 73 57 [19,28] [16,25] [69,78] [57,66]
Yes 51 63 7 16 [47,56] [63,72] [2,11] [7,16]

Pos <3 <140 No 5 7 21 9 [4,14] [3,12] [12,22] [4,13]

Yes 9 17
1

4 [0,10] [12,21] [0, 10] [0,9]
�140 No 4 3 11 8 [0,10] [1,10] [5,15] [1,10]

Yes 14 17 5 2 [8,18] [10,19] [1,11] [0,9]
�3 <140 No 7 3 14 14 [5,14] [0,9] [7,16] [8,17]

Yes 9 16 2 3 [2,11] [10,19] [0,9] [0,9]
�140 No 4 0 13 11 [0,9] [0,9] [8,17] [2,11]

Yes 5 14 4 4 [0,9] [5,14] [0,9] [4,13]

The left-hand panel contains the cell counts and the right-hand panel contains the bounds given the marginsR1. The cell containing the unique count of 1 and its
corresponding bounds are marked with a box.
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Table 2
Relevant log-linear models forR1

Log-linear model Minimal sufficient statistics

A1 R1 ∪ {n{B,C,D,E,F }}
A2 R1 ∪ {n{A,B,C,E,F }}
A3 R1 ∪ {n{A,B,C,D,F }}
A4 R1 ∪ {n{B,C,D,E,F }, n{A,B,C,E,F }}
A5 R1 ∪ {n{B,C,D,E,F }, n{A,B,C,D,F }}
A6 R1 ∪ {n{A,B,C,E,F }, n{A,B,C,D,F }}
A7 R1 ∪ {n{B,C,D,E,F }, n{A,B,C,E,F }, n{A,B,C,D,F }}
A8 Saturated

We assume that the information we have about this six-way tablen consists of the set of
marginals

R1={n{A,C,D,E,F }, n{A,B,D,E,F }, n{A,B,C,D,E}, n{B,C,D,F }, n{A,B,C,F }, n{B,C,E,F }}.
Note thatR1 contains most of the marginals of the Czech autoworkers data—the omissions
are three five-way marginals. LetT1 be the set of dichotomous six-way tables consistent
with R1. Using the generalized shuttle algorithm (Dobra et al., 2003b; Dobra, 2002) we
find thatT1 contains 810 tables. The upper and lower bounds on cell entries induced by
R1 are given in the right-hand panel ofTable 1. GivenR1, every cell in this table can take
10 or 11 possible values.
If the marginalsR1 are fixed, the corresponding set of relevant log-linear models is

given inTable 2. These are the models that contain at least one interaction term that is not
associated with known marginals.

5. Prior specification and posterior sampling of model parameters

Consider a general log-linear modelA with minimal sufficient statistics specified by
the index sets{C1, C2, . . . , Cq}. Thus, if � = {�(i)}i∈I is consistent withA, then�(i)
is represented as in (4). As developed inWest (1997), and then extended inTebaldi and
West (1998a)andTebaldi andWest (1998b), independent gamma priors on the multiplica-
tive parameters in the log-linear model representation imply that all complete, univariate
conditional posteriors are also of gamma form. Thus drawing new values for the model pa-
rameters, and hence the values of the�(i), is immediately accessible using Gibbs sampling.
Specifically, we note that:

• p(�|A, n, �\�) ∝ p(�)�n∅ exp{−�
∑

i∈I
∏

C∈C �C(iC)}.
• For each� := �C0

(i0C0) ∈ �\�, the complete conditional posterior for� is proportional
to

p(�)�nC0(i
0
C0

) exp


−��

∑
{i∈I:iC0=i0C0

}

∏
C∈C

�C(iC)


 . (7)
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Now, whenA is the saturated log-linear model,A is specified by one minimal sufficient
statistic given by the complete index setK. In this caseC is comprises all the non-empty
subsets ofK. For i ∈ I the conditional posterior for� := �K(i) is then proportional to

p(�)�n(i) exp


−��

∏
{C:C⊂K, C �=K}

�C(iC)


 .

Thus gamma priors are conditionally conjugate. Alternatively, finite uniform priors might
serve as at least initial objective priors. Thus, conditional on a complete tablen, we can
simulate new parameter values for Poisson rates�(i), i ∈ I, via sets of independent draws
from gamma distributions, or truncated gamma distributions.

6. Imputing cell counts

The major component of MCMC analyses relates to the sampling algorithms to generate
complete tables of countsn that are consistent with the constraints defined by the marginal
count informationD. Direct sampling is computationally infeasible because thenormalizing
constant in (3) would have to be evaluated at each iteration, and this evaluation cannot be
done quickly, if at all, due to the existence of a huge number of tables consistent withD.
Hence, some form of embeddedMetropolis–Hastings method is required within the overall
MCMC that also samples�.
Given a current state(n(s), �(s+1)), a candidate tablen∗ is generated from a specified

proposal distributionq(n(s), n∗), and accepted with probability

min

[
1,

p(n∗|�(s+1))q(n∗, n(s))
p(n(s)|�(s+1))q(n(s), n∗)

]
. (8)

The only requirement the proposal distribution has to satisfy is thatq(n(s), n∗)>0 if and
only if q(n∗, n(s))>0. In contrastwith thedirect samplingapproaches, it is neithernecessary
to identify the supportTofp(n|D, �), nor to evaluatep(n|�) completely across the support.
If a proposal distribution generates candidate tables outsideT, they will be rejected as they
lead to zero acceptance probabilities. Two approaches are considered: “local” and “global”
moves methods.

6.1. Local moves

Diaconis and Sturmfels (1998)proposed generating a candidate tablen∗ ∈ T using
Markov bases of “local moves”. A local moveg = {g(i)}i∈I is a multi-way array contain-
ing integer entriesg(i) ∈ {. . . ,−2,−1,0,1,2, . . .}. A Markov basis MB(T) associated
with T allows any two tablesn1, n2 in T to be connected by a series of local moves
g1, g2, . . . , gr , i.e.,

n1− n2=
r∑

j=1
gj .
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If the chain is currently atn(s) ∈ T, a new candidaten∗ is generated by uniformly choosing
a moveg ∈ MB(T). The candidaten∗ = n(s) + g belongs toT if and only if n∗(i)�0 for
all i ∈ I. Such a moveg is said to be permissible for the current tablen(s). If the selected
move is not permissible, the chain stays atn(s). Otherwise, the chain moves ton(s+1) = n∗
with probability min{1, �}, where

� := p(n∗|�(s+1))
p(n(s)|�(s+1)) =

∏
{i∈I:n∗(i) �=n(s)(i)}

n(s)(i)!
n∗(i)! exp{g(i) log�(s+1)(i)}.

Note that the proposal distributionq(·, ·) induced by a Markov basis is symmetric, i.e.,
q(n∗, n(s)) = q(n(s), n∗).
The Markov basis required by the “local move” algorithm constitutes both the strength

and the weakness of this sampling procedure. The basis has to be generated before the
actual simulation begins. This extra step is likely to involve long and tedious computations
in algebra systems (such as Macaulay (Bayer and Stillman, 2002) or Cocoa (CoCoATeam,
2004)) following the approach for computing a Markov basis suggested byDiaconis and
Sturmfels (1998). They showed that a Markov basis for a set of tablesT can be determined
from a Gröbner basis of a well-specified polynomial ideal.
An alternative to this algebraic approach was proposed byDobra (2003), who gave

direct formulæ for dynamically generating a Markov basis in the special case when the
informationD available about the original tablen consists of a set of marginals that define
a decomposable log-linear model. Although the use of Dobra’s formulæ require minimal
computational effort, they cannot be extended to more general cases (non-decomposable
models). Nevertheless, once a Markov basis is computed, the “local move” method can be
very fast since generating a new candidate table is done only by additions and subtractions.
Another possible disadvantage of the “local move” method is that the current table and

the candidate table can be very similar, and this is critical ifT is large. The Markov bases
associated with such large spaces of tables contain moves that change only few table entries
and the change can be as small as±1. For example, in the case of two-way tables with fixed
row and column totals, themoves have counts of zero everywhere except four cells that con-
tain two counts of 1 and two counts of−1. This type of moves are called primitive.Actually,
Dobra (2003)proved that primitive moves are the only moves needed to connect tables in
the decomposable case mentioned above. Changing only four cells in a high-dimensional
contingency table that might contain millions of cells will undoubtedly lead to high depen-
dencies between consecutive sample tables and the corresponding parameter values.
Therefore, with the “local move” method, one cannot control how far the chain “jumps”

in the space of feasible tables because the jumps are pre-specified by the Markov basis
employed.We present an alternative to the “local move” method, which we call the “global
move” method, that allows one to control and adjust the distance between the current and
candidate tables.

6.2. Global moves

The idea behind the “global move” method is straightforward, and utilizes compositional
sampling: a new table inT can be generated by sequentially drawing a value for each cell
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in the table from the set of possible values for that cell while updating the corresponding
upper and lower bounds for the rest of the cells. This strategy is similar to the approach
and algorithm ofTebaldi and West (1998a,b)that was modified to a sequential form as
utilized by Liu (2001). Moreover, the same idea constitutes the core of the generalized
shuttle algorithm (Dobra et al., 2003b; Dobra, 2002) that calculates sharp upper and lower
bounds for cells in a contingency tables only by efficiently exploiting the unique structure
of the categorical data.
Using the chain rule, we re-write the target distributionp(n|D, �) ∝ p(n|�) from (3) as

p(n|�) = p(n(i1), . . . , n(im)|�)
= p(n(i1)|�)

m∏
a=2

p(n(ia)|n(i1), . . . , n(ia−1), �). (9)

The support ofp(n(i1)|�) is a subset of the set of integersH1 defined by the upper and
lower bounds induced byD on the celli1, i.e.,H1 := {L(i1), L(i1) + 1, . . . , U(i1) −
1, U(i1)}. Similarly, the support ofp(n(ia)|n(i1), . . . , n(ia−1), �) is a subset of the set of
integersHa defined by the upper and lower bounds induced on the cellia byD and by the
additional constraints resulted from fixing the counts in the cellsi1, . . . , ia−1, i.e.,Ha :=
{L(n; ia), L(n; ia) + 1, . . . , U(n; ia) − 1, U(n; ia)}, whereL(n; ia) =min{n′(ia) : n′ ∈
T, n′(i1)=n(i1), . . . , n′(ia−1)=n(ia−1))} andU(n; ia)=max{n′(ia) : n′ ∈ T, n′(i1)=
n(i1), . . . , n′(ia−1) = n(ia−1)}.
If a Markov basis associated with the set of feasible tablesT can be constructed

such that this basis contains only primitive moves, then the supports ofp(n(i1)|�) and
p(n(ia)|n(i1), . . . , n(ia−1), �) will be exactlyH1 andHa , respectively. Otherwise, to the
best of our knowledge, there is no theoretical result which shows that the supports of these
two distributions should coincide withH1 andHa , although examples when this property
does not hold have recently been discovered (Sullivant, 2004).
A candidate tablen∗ ∈ T is generated with the “global move” method as follows:

• Draw a valuen∗(i1) fromH1.
• for a = 2, . . . , m do
(1) CalculateL(n∗; ia) andU(n∗; ia).
(2) Draw a valuen∗(ia) fromHa .
end for

We still need a way to draw cell values fromH1,H2, . . . ,Hm such that the resulting
candidate tablesn∗ will be neither “too different” nor “too similar” to the current state
n(s) ∈ T. Candidate tables that are “too different” are very likely to be rejected by the
Metropolis–Hastings step, while candidates that are “too similar” will be likely to be ac-
cepted, but the chain will not advance fast enough in the target space, so inducing very
correlated sample path. One approach to balancing these issues uses an annealing idea.
Consider the scaling factorsv1, v2, . . . , vm with va ∈ (0,1). For eacha ∈ {1,2, . . . , m},

draw a valuen∗(ia) from the proposal distribution with probabilities

qa(n
(s)(ia), n∗(ia)) ∝ v|n∗(ia)−n(s)(ia)|

a . (10)
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Note that the current valuen(s)(ia) of cell ia does not have to belong to the support
Ha of qa(n(s)(ia), ·). However, candidate cell values inHa that are closer ton(s)(ia)
receive a higher probability to be selected. This probability increases as the scaling fac-
tor va decreases towards 0. The full unnormalized proposal distribution can then be
written as:

q(n(s), n∗) =
m∏
a=1

qa(n
(s)(ia), n∗(ia)), (11)

over contingency tablesn∗ ∈ T. Any feasible tablen∗ ∈ T has a strictly positive prob-
ability of being sampled given any current staten(s), hence the Markov chain obtained by
employing the proposal distributionq(·, ·) from (11) will be irreducible.

7. Czech autoworkers example

A numerical example focuses on inference about the rate�0 associated with the cell
(1,2,2,1,1,2) of the Czech autoworkers data given the observed marginalsR1 and using
the corresponding set of relevant log-linear models inTable 2. Using the “global move”
method,wesimulated fivesamplesof size20,000 from the joint distributionp(n, �|R1,Aj )

for eachj = 1,2, . . . ,8. The starting points were tables selected at random fromT1. To
reduce the correlation between two consecutive draws, we discarded 25 pairs(n, �) be-
fore selecting another pair in the final sample. The burn-in time was 5000 which should
be appropriate given the small number of tables inT1. The scaling factorsva were
taken to be equal to 0.5 for cell (1,1,1,1,1,1) and 0.05 for the rest of the cells. Pri-
ors on log-linear model parameters are all taken as uniform on a fixed, large
range.
Fig. 1shows the sample mean of the posterior draws for�0 calculated across iterations

from each of the five starting points undermodelA8. The fact that a relatively large number
of iterations are needed until convergence is not surprising sincep(n, �|R1,A8) effectively
depends only on the sets of interaction terms�{B,C,D,E,F },�{A,B,C,E,F },�{A,B,C,D,F } and
�{A,B,C,D,E,F }. The other�-terms cancel in the conditionalp(n|D, �), but are still needed
when simulating�(i), i ∈ I. Fig. 1provides an excellent proof of the mixing properties of
our data augmentation procedure.
Fig. 2 gives the marginal posterior distributions for�0 as estimated from the resulting

samples of size 100,000 under each log-linear modelAj . The posterior distributions under
modelsA1, . . . ,A5 seem to be unimodal. The other three models contain the combination
of four-way interactions�{A,B,C,E,F } and�{A,B,C,D,F } that seem to induce a second mode
and longer right tails in the posterior of�0. The estimated value in cell(1,2,2,1,1,2)
as given by the posterior modes are 2, 1.8, 1.5, 2.3, 1.6, 2, 2.3 and 1.3, respectively.
These estimates are consistent with the true value of 1 in this cell. Remember that the
possible values for the(1,2,2,1,1,2) count given the marginalsR1 are {0,1, . . . ,10},
thus conditioning on the log-linear modelsAj effectively shrinks the estimates to the
actual cell count.
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Fig. 1. Convergence of the data augmentation method for the Czech autoworkers data. Thex-axis represents the
iteration number on a log10 scale, while they-axis gives the sample mean of�0 from five starting points under
modelA8.

Fig. 2. Approximate posterior distributions for�0 under the log-linear modelsA1, . . . ,A8. The dotted lines
represent estimates of the posterior mode and the corresponding 95% confidence intervals.
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8. Counting tables

The “global move” method for sampling tables consistent with a set of constraints can
be employed to estimate the total number of tables consistent with these constraints. Write
M(T) for the number of tables in the constrained setT. EstimatingM(T) by sampling
from the uniform distribution onT, i.e.,p(n|D)=1/M(T), is infeasible in any but trivial
cases (e.g., two-way tables with fixed one-waymarginals). Instead, we simulate tables from
the proposal distribution defined in (11) with scaling factorsva equal (at least eventually) to
1 for all the cells in the table. This particular choice of the scaling factor makes this proposal
distribution independent of the table previously sampled, i.e.,

q(n) ∝
m∏
a=1

1

U(n; ia) − L(n; ia) + 1.

FollowingChen et al. (2003)we write:

1=
∑
n∈T

p(n|D)

q(n)
q(n) = 1

M(T)

∑
n∈T

1

q(n)
q(n).

This suggests an estimate forM(T) given by

1

S

S∑
s=1

1

q(n(s))
= S−1

S∑
s=1

m∏
a=1

[U(n(s); ia) − L(n(s); ia) + 1], (12)

wheren(1), n(2), . . . , n(S) are sampled independently fromq(·).
As an example, consider two sets of marginals of the Czech autoworkers data. LetR2

be the 15 four-way marginals of the Czech autoworkers data. The upper and lower bounds
induced byR2 are given in the left-hand panel ofTable 3. We generated 100 samples of
5000 tables each fromT2, the set of tables consistent withR2. Using a modified version
of the generalized shuttle algorithm (Dobra et al., 2003b; Dobra, 2002), we determined
that the true number of tables inT2 is 705,884. The mean of our estimates ofM(T2) is
703,126, while a 95% confidence interval forM(T2) is 650,000–750,000.
The second example assesses the number of dichotomous six-way tables that have a count

of 1 in cell(1,2,2,1,1,2) (which identifies the population unique in theCzechautoworkers
datan) and that are consistent with themarginalsR3 := {n{B,F }, n{A,B,C,E}, n{A,D,E}}. Let
T3 denote this set of tables. The upper and lower bounds associated withT3 are given in
the right-hand panel ofTable 3.We generated 1000 samples of 35,000 tables each fromT3.
We work on the log10 scale asM(T3) is very large. The mean of log10{M(T3)} is 58%
and a 95% confidence interval is 57–59. The true number of tablesM(T3) is unknown
to us.

9. Concluding comments

Combined parameter inference and missing-data imputation in contingency tables is a
very broad-reaching problem. The specific context of inference based on data in terms
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Table 3
Bounds for the Czech autoworkers data given the marginalsR2 (left-hand panel) and given the marginalsR3 (right-hand panel)

B No Yes B No Yes

F E D C A No Yes No Yes A No Yes No Yes

Neg <3 <140 No [27,58] [25,56] [96,134] [44,82] [0,88] [0,62] [0,224] [0,117]
Yes [108,149] [123,168] [0,22] [9,37] [0,261] [0,246] [0,24] [0,38]

�140 No [22,49] [0,24] [60,96] [16,52] [0,88] [0,62] [0,224] [0,117]
Yes [91,127] [45,85] [0,18] [0,20] [0,261] [0,151] [0,24] [0,38]

�3 <140 No [10,37] [17,44] [48,86] [49,89] [0,58] [0,60] [0,170] [0,148]
Yes [30,68] [58,102] [0,19] [0,25] [0,115] [0,173] [0,20] [0,36]

�140 No [13,37] [8,36] [55,90] [38,76] [0,58] [0,60] [0,170] [0,148]
Yes [30,67] [45,86] [0,19] [0,27] [0,115] [0,173] [0,20] [0,36]

Pos <3 <140 No [0,15] [0,13] [4,31] [0,23] [0,88] [0,62] [0,125] [0,117]

Yes [0,21] [3,30] [0, 10] [0,9] [0,134] [0,134] [1, 1] [0,38]
�140 No [0,11] [0,10] [0,24] [0,18] [0,88] [0,62] [0,125] [0,117]

Yes [0,26] [2,30] [0,11] [0,9] [0,134] [0,134] [0,24] [0,38]
�3 <140 No [1,14] [0,9] [0,26] [0,26] [0,58] [0,60] [0,125] [0,125]

Yes [0,19] [4,29] [0,9] [0,9] [0,115] [0,134] [0,20] [0,36]
�140 No [0,9] [0,9] [0,26] [0,22] [0,58] [0,60] [0,125] [0,125]

Yes [0,19] [0,23] [0,9] [0,13] [0,115] [0,134] [0,20] [0,36]
The bounds for the cell(1,2,2,1,1,2) are marked with a box. These bounds were calculated using the generalized shuttle algorithm.
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of subsets of marginal counts is pervasive, and is central in problems of data disclosure,
dissemination and confidentiality. Issues of prior specification are relevant both for direct
analysis, and in connection with questions about potential uses of data released to multiple
consumers who will each bring their own priors, or classes of priors, to bear on interpreting
the margins. Our work describes some of the basic theoretical and structural issues in the
context of log-linear models, and presents a detailed development of MCMC approaches,
with examples.
Central to the work reported is the development and implementation of data augmen-

tation under a specific class of structured priors for log-linear model parameters, and the
introduction and development of a “global move” simulation approach for imputing miss-
ing elements of contingency tables subject to observed margins. Both “local” and “global”
move algorithms for sampling tables have their advantages and disadvantages, though we
generally prefer the “globalmove” approachas it is relatively easily set up and implemented.
The speed of the above procedure is directly influenced by the number of cells that need to
be fixed at a certain value before a full table consistent with the dataD is determined. Every
time we assign a value to a cell, we need to update the upper and lower bounds for the rest
of the cells in the table. Consequently, the smaller the number of cells we need to fix, the
faster the algorithm is. This number is a function of the pattern of constraints induced by
the full informationD.

One of the requirements of the “global move” approach sampling algorithm is that the
bounds defining the values a cell count can take given dataD and given that some other
cells have been fixed at a certain value have to be sharp. Gross bounds approximating the
corresponding sharp bounds will frequently lead to combinations of cell values that do not
correspond to tables inT, and hence the use of gross bounds will significantly decrease the
efficiency of this sampling procedure. Unfortunately, computing sharp bounds to determine
the admissible values of every cell in the target table could become a serious computa-
tional burden in the case of large high-dimensional tables having thousands or possibly
millions of cells. Therefore, one very difficult computational problem (the generation of a
Markov basis) from the “local move” algorithm is replaced, in the “global move” algorithm,
with another very challenging problem—the calculation of sharp integer bounds. Even if
sharp bounds are calculated and used at each step, infeasible combinations of cell values
might still be generated. Note that the “local move” method also generates candidate tables
that are outsideT if a move that is not permissible for the current state of the chain is
selected.
A simulation algorithm employing the “global move” method can be started right away

without any possibly tedious preliminary computations required in most cases by the “local
move” method. There are situations when the generation of a Markov basis could take too
long to complete (hence no samples can be drawn with the “local move” method), while
the “global move” method might still be applied and samples will still be generated even if
these samples might be expensive in term of computing time.
As opposed to the “local move” method that modifies only some small subset of cells

affected by the chosen local move, the “global move” method potentially changes the entire
table at each step, which leads to sequences of tableswith very low correlation fromone step
to the next, and clearly facilitates an effective exploration of the multidimensional support
of the random variables in exam.
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Throughout thepaperweemployed thegeneralizedshuttle algorithm (Dobraet al., 2003b;
Dobra, 2002) to compute sharp upper and lower bounds. This is a very flexible algorithm
that allows one to specify different types of constraints on the cell entries of a table. These
constraints can be, but are not limited to, fixed marginals or cells fixed at a certain value.
Moreover, the generalized shuttle algorithm can be modified to exhaustively enumerate the
tables consistent with a set of constraints.
We have illustrated how posterior inferences on cell counts can vary based on assumed

forms of log-linear models. It may in future be of interest to consider extensions of this
work to build analyses across models, utilising model-mixing and model-averaging ideas
(Kass and Raftery, 1995; Madigan andYork, 1995), and some further developments of the
proposed MCMC methods here that extend to reversible-jump methods will be relevant
there.
Finally, software for performing the simulations as illustrated is freely available at

http://www.stat.duke.edu/ ∼adobra/sampletable.htm .
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