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Abstract

We describe and illustrate approaches to data augmentation in multi-way contingency tables for
which partial information, in the form of subsets of marginal totals, is available. In such problems,
interestlies in questions of inference about the parameters of models underlying the table together with
imputation for the individual cell entries. We discuss questions of structure related to the implications
for inference on cell counts arising from assumptions about log-linear model forms, and a class
of simple and useful prior distributions on the parameters of log-linear models. We then discuss
“local move” and “global move” Metropolis—Hastings simulation methods for exploring the posterior
distributions for parameters and cell counts, focusing particularly on higher-dimensional problems.
As a by-product, we note potential uses of the “global move” approach for inference about numbers of
tables consistent with a prescribed subset of marginal counts. lllustration and comparison of MCMC
approaches is given, and we conclude with discussion of areas for further developments and current
open issues.
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1. Introduction

The general problem of inference in contingency tables based on partial information in
terms of observed counts on a set of margins has become of increasing interest in recent
years. We address this problem here in a framework involving inference on parameters of
statistical models underlying multi-way tables together with inference about missing cell
entries.

Some of our initial motivating interest in this area came from socio-economic and de-
mographic studies that involve and rely on survey and census data representing differing
levels of aggregation (hence marginalisation) of population characteristics. Much of the ac-
tivity in these latter areas has been referred to as micro-simulation, and the development of
micro-simulation methods in areas such as transportation policy and planning rely heavily
on an ability to impute individual household level counts, for example, from more highly
aggregated data from local or population census data.

More recently, the last several years have seen a very significant upsurge of interest in
development of methods to aid in the creation, dissemination and use of public data sets
from governmental sources, related to serious societal and legal concerns about data con-
fidentiality and security. A range of issues then arise about the potential to infer individual
level data from sets of interlinked aggregate-level data, and this can be focused on the
problem of inferring cell counts in multi-way tables based on observation of some sets of
marginal totals. Here there are questions of the extent to which sets of observed margins can
inform on cell counts under varying assumptions about the structure of candidate statistical
models (such as log-linear models), with related questions about the role and impact of spe-
cific prior distributions on parameters of such mod&lsiiman and Speed, 1988; Gelman
et al., 2003Dobra et al., 2003a

Historically, approaches to fitting models to incomplete contingency tables are discussed
in classical texts such &eming and Stephan (1940)Bishop et al. (1977)Strong interest
in the general problem area has focused on problems of counting tables with prescribed
marginal totals, a goal of interest in both data confidentiality studies and in the traditional
context of estimating significance levels in testing approachg®éti, 1992; Diaconis and
Efron, 1985; Smith et al., 1996

Bayesian inference in this context is in principle straightforward: we aim to compute
posterior distributions for the unobserved cell counts and parameters underlying models
for cell probabilities, jointly. In practice this may be addressed using Markov chain Monte
Carlo (MCMC) simulations; this requires creativity in dealing, in particular, with simula-
tions of the missing cell counts from appropriate conditional posterior distributions. The
contributions of this article address a number of questions and needs in support of the prac-
tical development of such methods. First, we describe the general problem and context, and
develop some theoretical insights into the nature and role of assumptions about model struc-
ture in its relation to the problem of inference on individual cell counts based on observation
of sets of marginal totals. Then, we discuss MCMC approaches to joint analysis of param-
eters and missing cell counts. This uses a simple but flexible class of prior distributions on
parameters of log-linear models at the parametric level. In imputing cell counts, we discuss
“local move” algorithms that rely on Markov basis construction, together with a new class
of “global move” approaches that have some relative attractions, especially as problems
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increase in dimension and complexity. A detailed discussion of an example demonstrates
both the implementation and the efficacy of the “global move” algorithm, and we conclude
with some discussion of current open issues and challenges. In addition to innovations in
modelling and computation, the work represents a selective overview of some key recent
and current issues in this field.

2. Analysis framework and goals
2.1. Definitions and notation

Consider &-way contingency table of counts ovet-®ector of discrete random variables
X={X1, Xo,..., Xs}.LetK={1,2,...,k}, and foreacly € K, supposeX ; takes values
insg;={1,...,I;}.Write /=41 x - - - x J and denote an elementgfbyi = (i1, . . ., i).

The contingency table = {n(i)};., is ak-dimensional array of non-negative integer
numbers, with cell entries(i) =#{X =i}, (i € .¥), andatotalofn=11-...- I} cells. Any
set of marginal counts is obtained by summation over one or more ¥ftheables. For any
target subset of variabld3 C K, theD-marginalnp of nhas cellsp € Sp = xjep £,
with cell entries

np(ip)= Y n(p,J).

j€IK\D

If D= thenny is the grand total over. Cells are ordered lexiographically with the index
of the kth variable varying fastest, so that= {i1,...,i"}, whereil = (1,...,1) is the
first cellandi™ = (14, ..., I;) is the last cell.

2.2. Tables with sets of fixed margins

Our interest lies in problems in which we observe only subsets of margins from the full
table. Suppose tHemarginsZ = {n?, . .., n'} are recorded. Additional information may be
available, such as upper and lower bounds for some of (or all) the cells in the full table, or
cases of structural zeroes (that can also be represented by fixed upper and lower bounds, in
this case each at zero). In such cases, the constraints can be addedthmut changing
the development below. Observing the marginsiduces constraints that imply upper and
lower bounddJ (i) =max{n(i) : n € 7 }andL (i) = min{n(i) : n € 7} on each cell entry
n(i), i € 4. This limits attention to tables satisfying these constraints. Denote the set of
such tables by —thus7 is the set ok-way tables: = {n (i)}, .., strictly compatible with
9. Write . (7") for the number of such tables.

2.3. Statistical models over tables and observed margins

Focus on the independent Poisson sampling model that underlies the canonical multino-
mial distribution forn. That is, cell counts are conditionally independent Poissn, ~
Poissorii(i)), for eachi € .7, with positive meand = {1(i)}.
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The implied probability of the observed set of marginss then, theoretically, simply

p@1)= "> pw'|. 1)

n'e7

In problems of inference o, this defines the likelihood function, but, evidently, in other
than trivial, low-dimensional problems, direct evaluation is impossible. The essential role
of n as (in part) missing or latent data underlies simulation-based methods using MCMC
approaches that, followinganner and Wong (198yiteratively resimulate the “missing”
components afiand the parameteidrom relevant conditional distributions. For the former,
note that

pn|r) ifneT,

[, —_
p(n, 2|4) = {0 otherwise. ?

Then, conditional on the observed margins and model parameters, inference on the missing
components of the table are derived directly from the implied conditional posterior

P2, ) =pmli) [ Y po'IA) €)

n'e

if n € 7, being zero otherwise. When embedded in a simulation-based analysis, a key
technical issue is that of developing methods to simulate this distribution—proportional
to the product of Poisson components conditioned by the complicated set of constraints
n() € [LG),LG)+1,...,U@G) — 1, U@G)] over cellsi € .# defined by the observed
marginsZ.

2.4. Population models and parameters

Inference about the underlying population structure is based on choices of model, such
as traditional log-linear models, for. Any model .«7 has parameterg that define/ =
A(0). Then priors are specified afi so on 1 indirectly and the latter will incorporate
deterministic constraints imposed by the model. Thus we work interchangeably between
A and@ in notation. Sampling distributions are conditional Qrthus implicitly 6. For the
given model.«Z, denote a prior density for the implied model parametely p(0|.<7).
Posterior inference is theoretically defined through the intractable likelihood function (1).
When elaborated to include the missing data to fill out the full table, the more tractable
conditional posterior is simply the prior modified by the product of Poisson likelihood
component (n|4).

2.5. MCMC framework

From the above components of the posterior distribution, we may implement MCMC
methods to generate, ultimately, samples from, 0|2, .</) by iteratively re-simulating
values off) (and hence, by direct evaluatiot), and the missing cell counts in Start with
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n® e 7. At the sth step of the algorithm, dafanner and Wong, 1987

e Simulated“ ™ from p(0].7, n®) « p(0].7)p(n®|4(0)), and compute the implied
new value ofl¢+D = J(H¢+D).
e Simulaten®tD from p(n|Z, A6*Y).

The above data augmentation algorithm represents the basis of Bayesian approaches for
analyzing contingency tables with missing data—see, for exar@aéman et al. (2003)

or Schafer (1997)This also connects to the well-known EM algorithmémpster et al.
(1977)and to the classical book about missing data_ltfe and Rubin (2002)

Section 3 discusses aspects of prior specification and model structure in their impact on
p(n|2, 2). Section 4 introduces the Czech autoworkers data used to illustrate the method-
ology. Section 5 considers specific priors and the resulting analysis in log-linear models.
Section 6 discusses algorithms to sampling the critical conditional posterior for the missing
elements of under the relevant distribution (3). Section 7 finalizes the discussion of the
Czech autoworkers data example.

3. Log-linear models and structural information

Some initial theoretical results describe structural aspects of the conditional posterior
p(n|Z, ) relevant in consideration of classes of log-linear models. We first note that the
conditional distribution (3) of course has precisely the same form if we assume multinomial
sampling fom.

Suppose+ is a specified log-linear model definirign terms of underlying log-linear
parameterg). This may be defined in terms of a specification of the minimal sufficient
statistics of.«/; suppose these to be defined by the index §€isC>, ..., C,}, where
C; CK.Writing%={C : 9 # C C C; forsomej € {1, 2, ..., q}}, the log-linear model
has the form

Miy=p [ veto). @)

Ce%

wherey - depends on € .# only through the indices itC. To make the parameters
identifiable, the aliasing constraints are to set egetic) =1 whenever there exisise C
with i, = 1—see, for examplé/Vhittaker (1990) One immediate consequence of these
aliasing constraints is thatil) = u. The parameter set is then

0={w Ulyclic): C €%, ic € Fcwithi, # 1forp e C}. (5)

The following theorem now shows that the posteyfi¢t |2, A) from (3) simplifies and does
not depend on all the parametérsom (5). This represents an extension of an earlier result
by Haberman (1974)

Theorem 1. If the marginaln¢ of the full table is determined frow, then under model
=/, the posterior distributiorp(n|Z, 1) does not depend on the parametgys(ic) for all
ic € fc.
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Proof. Itis not hard to see that, for any tablg we have

[T/ O=ws TT TT vetoree.

et Ceb iceSIc

If n” € 7, it follows that the grand totals of andn are equal, i.en; = ny. Moreover, if
the marginak is known fromZ, then the marginals,. andn ¢ coincide. Thus

1_[ wc(ic)n’c(ic): 1_[ ‘/fc(iC)nC(iC)

icedc icedc

for every tablen’ € 7. It follows that the terms involving/-(i¢), ic € ¢, cancel in

the denominator and the numerator of (3) and hemneeZ, 1) does not depend on these

parameters. Note that this posterior also does not depend on the grand mean parameter
(I

A direct consequence of Theorem 1 is that the hypergeometric distribution is a special
case of the posterior in (3) obtained by conditioning on a log-linear model whose minimal
sufficient statistics are fully determined by the available data

-1 -1
p(nl2.2) = p(n|2) = [1‘[ n(i)!} > []‘[ n’(i)!} : (6)

ied n'e7 Lies

As an aside, we note th&undberg (1975hows that the normalizing constant in (6) can be
directly evaluated if the log-linear modet is decomposabléNhittaker, 1990; Lauritzen,
1996; otherwise, this normalizing constant can be computed only if the set of tabtem
be exhaustively enumerated.

Theorem 1 shows that the termig associated with a fixed marginat are redundantin
the model since (n|Z, 1) does not depend onthem. Only higher-order terms corresponding
with marginals that are not known effectively influence the simulation of a new complete
table. This means that the log-linear modeighat have to be considered in order to obtain
different posterior distributiong(n|Z, «, -) are those log-linear models whose minimal
sufficient statistics embed the set of fixed marginals which constitute part or all the available
informationZ.

4. Example—Czech autoworkers data

The data inTable 1come from a prospective epidemiological study of 1841 workers
in a Czechoslovakian car factory, as part of an investigation of potential risk factors for
coronary thrombosis (seEdwards and Havranek, 198%n the left-hand panel dfable 1,

A indicates whether the worker smokes or not, B corresponds to “strenuous mental work”,
C corresponds to “strenuous physical work”, D corresponds to “systolic blood pressure”,
E corresponds to “ratio of anda lipoproteins” and F represents “family anamnesis of
coronary heart disease”. We focus only on the ¢EIR, 2, 1, 1, 2) that contains the unique
count of 1.



Table 1
Czech autoworkers data froBdwards and Havranek (1985)

No Yes B No Yes
F E D C A No Yes No “Yes A No Yes No Yes
Neg <3 <140 No 44 40 112 67 [35, 45] [35, 44] [111, 121 [63,72]
Yes 129 145 12 23 [128 138 [141, 150] [3,13] [18,27]
>140 No 35 12 80 33 [29, 39] [5, 14] [76, 86] [31, 40]
Yes 109 67 7 9 [105 115] [65, 74] [1,11) 2,11
>3 <140 No 23 32 70 66 [16, 25] [26, 35] [68,77] [63,72]
Yes 50 80 7 13 [48,57] [77, 86] [0, 9] [7,16]
>140 No 24 25 73 57 [19, 28] [16, 25] [69, 78] [57, 66]
Yes 51 63 7 16 [47, 56] [63,72] [2,11] [7,16]
Pos <3 <140 No 5 7 21 9 [4,14] [3,12] [12, 22] [4,13]
Yes 9 17 4 [0, 10] [12, 21] [0, 10] [0, 9]
>140 No 4 3 11 8 [0, 10] [1,10] [5,15] [1,10]
Yes 14 17 5 2 [8, 18] [10, 19] [1,11] [0, 9]
>3 <140 No 7 3 14 14 [5, 14] [0, 9] [7,16] [8,17]
Yes 9 16 2 3 (2,11 [10, 19] [0, 9] [0,9]
>140 No 4 0 13 11 [0,9] [0, 9] [8,17] 2,11
Yes 5 14 4 4 [0,9] [5, 14] [0, 9] [4,13]

The left-hand panel contains the cell counts and the right-hand panel contains the bounds given thesmarirescell containing the unique count of 1 and its
corresponding bounds are marked with a box.

T9¢€ 2/£-5G€ (9002) 9ET @2uaIaju| pue Buiuue|d [eansHeIs Jo [eudnor / ‘e 18 eilqoq ueupy



362 Adrian Dobra et al. / Journal of Statistical Planning and Inference 136 (2006) 355—-372

Table 2

Relevant log-linear models fa#1

Log-linear model Minimal sufficient statistics

/1 RV {n(p,c,p,E,F))

o2 A1 {na,B,C.E F)}

3 A1 U {nga,B,c,D,F)}

o 4 R1Y{n(B,c,D,E,F)» "{A,B,C.E,F}}
/5 R1U{n(g.c,p,E,F}> "{A,B,C,D,F}}
A A1 U {n(A,B.C.E.F)» "{A,B.C.D.F}}
o7 R1Un(B,c,p,E,F}> N{A,B,C,E,F}» "(A,B,C,D,F}}
g Saturated

We assume that the information we have about this six-way tabtmsists of the set of
marginals

R1={n{a.c.p.E.F}, "{A,B.D.E.F}» "{A.B.C.D.E}> "(B.C.D.F}» "{A,B.C.F} "{B.C.E.F}}-

Note that#1 contains most of the marginals of the Czech autoworkers data—the omissions
are three five-way marginals. L&t be the set of dichotomous six-way tables consistent
with #1. Using the generalized shuttle algorithibapra et al., 2003b; Dobra, 20p%e
find that.7 1 contains 810 tables. The upper and lower bounds on cell entries induced by
%1 are given in the right-hand panel ®ble 1 Given#1, every cell in this table can take
10 or 11 possible values.

If the marginals#, are fixed, the corresponding set of relevant log-linear models is
given inTable 2 These are the models that contain at least one interaction term that is not
associated with known marginals.

5. Prior specification and posterior sampling of model parameters

Consider a general log-linear model with minimal sufficient statistics specified by
the index set§Cy, Co, ..., Cy}. Thus, if A = {A(i)};c s is consistent withe/, then 4(i)
is represented as in (4). As developedhiest (1997) and then extended ifebaldi and
West (1998apndTebaldi and West (1998hindependent gamma priors on the multiplica-
tive parameters in the log-linear model representation imply that all complete, univariate
conditional posteriors are also of gamma form. Thus drawing new values for the model pa-
rameters, and hence the values ofttg, is immediately accessible using Gibbs sampling.
Specifically, we note that:

o p(ulet,n, O\ o< p(p" expl—p Y e s [eeg Ve i)}
e Foreach: := lpco(igo) € O\ u, the complete conditional posterior fgis proportional
to

()"0 expl —ap > 1 vetiorg @)

liesicy=id)) C<C
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Now, when.«Z is the saturated log-linear mode¥, is specified by one minimal sufficient
statistic given by the complete index s&tin this case? is comprises all the non-empty
subsets oK. Fori € .# the conditional posterior foff := (i) is then proportional to

PRV expy—pu ] el

(C:CCK, C£K)

Thus gamma priors are conditionally conjugate. Alternatively, finite uniform priors might
serve as at least initial objective priors. Thus, conditional on a completertakle can
simulate new parameter values for Poisson ratgsi € .7, via sets of independent draws
from gamma distributions, or truncated gamma distributions.

6. Imputing cell counts

The major component of MCMC analyses relates to the sampling algorithms to generate
complete tables of countsthat are consistent with the constraints defined by the marginal
countinformatiorz. Direct sampling is computationally infeasible because the normalizing
constant in (3) would have to be evaluated at each iteration, and this evaluation cannot be
done quickly, if at all, due to the existence of a huge number of tables consistenwith
Hence, some form of embedded Metropolis—Hastings method is required within the overall
MCMC that also samples.

Given a current state:®), 267Y) a candidate table* is generated from a specified
proposal distribution (n*), n*), and accepted with probability

i | 4 @A g n®)
’ p(n(s)|i(‘€+l))q(n(s), n*)

©)

The only requirement the proposal distribution has to satisfy is¢h&t’, n*) > 0 if and

onlyif g(n*, n®) > 0. In contrast with the direct sampling approaches, itis neither necessary
toidentify the suppor? of p(n|Z, 1), norto evaluate (n|4) completely across the support.

If a proposal distribution generates candidate tables outsidaey will be rejected as they

lead to zero acceptance probabilities. Two approaches are considered: “local” and “global”
moves methods.

6.1. Local moves

Diaconis and Sturmfels (199®foposed generating a candidate tablee  using
Markov bases of “local moves”. A local moye= {g(i)};c.» iS a multi-way array contain-
ing integer entrieg(i) € {...,—-2,-1,0,1, 2,...}. A Markov basis MR.7") associated
Wlith f‘ allows any two tables1, n in 7 to be connected by a series of local moves
g, 85 ...,¢", e,

P
n1—n2=2g1.
j=1
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If the chain is currently ai®® € .7, a new candidate* is generated by uniformly choosing
amoveg € MB(7). The candidate* =1 + g belongs to7 if and only if n*(i) >0 for
alli € .#. Such a move is said to be permissible for the current tabf&. If the selected
move is not permissible, the chain stays 4t. Otherwise, the chain moves#&*+ = n*
with probability min{1, p}, where

p(n* M(H—l))
T POy

) (7)1
I1 ”n*(il))' explg(i) log A4+ D (i)},
{ied n*(()#n®) (i)
Note that the proposal distributian(-, -) induced by a Markov basis is symmetric, i.e.,
q(*,n®) =qn®, n*).

The Markov basis required by the “local move” algorithm constitutes both the strength
and the weakness of this sampling procedure. The basis has to be generated before the
actual simulation begins. This extra step is likely to involve long and tedious computations
in algebra systems (such as MacaulBgyer and Stillman, 2002r Cocoa CoCoATeam,

2009) following the approach for computing a Markov basis suggesteBibgonis and
Sturmfels (1998)They showed that a Markov basis for a set of tablesan be determined
from a Grébner basis of a well-specified polynomial ideal.

An alternative to this algebraic approach was proposedolra (2003) who gave
direct formulee for dynamically generating a Markov basis in the special case when the
informationZ available about the original tabkeconsists of a set of marginals that define
a decomposable log-linear model. Although the use of Dobra'’s formulee require minimal
computational effort, they cannot be extended to more general cases (hon-decomposable
models). Nevertheless, once a Markov basis is computed, the “local move” method can be
very fast since generating a new candidate table is done only by additions and subtractions.

Another possible disadvantage of the “local move” method is that the current table and
the candidate table can be very similar, and this is critical ifs large. The Markov bases
associated with such large spaces of tables contain moves that change only few table entries
and the change can be as smalids For example, in the case of two-way tables with fixed
row and column totals, the moves have counts of zero everywhere except four cells that con-
tain two counts of 1 and two counts-efl. This type of moves are called primitive. Actually,
Dobra (2003)proved that primitive moves are the only moves needed to connect tables in
the decomposable case mentioned above. Changing only four cells in a high-dimensional
contingency table that might contain millions of cells will undoubtedly lead to high depen-
dencies between consecutive sample tables and the corresponding parameter values.

Therefore, with the “local move” method, one cannot control how far the chain “jumps”
in the space of feasible tables because the jumps are pre-specified by the Markov basis
employed. We present an alternative to the “local move” method, which we call the “global
move” method, that allows one to control and adjust the distance between the current and
candidate tables.

6.2. Global moves

The idea behind the “global move” method is straightforward, and utilizes compositional
sampling: a new table i can be generated by sequentially drawing a value for each cell
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in the table from the set of possible values for that cell while updating the corresponding
upper and lower bounds for the rest of the cells. This strategy is similar to the approach
and algorithm ofTebaldi and West (1998a,lthat was modified to a sequential form as
utilized by Liu (2001) Moreover, the same idea constitutes the core of the generalized
shuttle algorithmDobra et al., 2003b; Dobra, 20Dthat calculates sharp upper and lower
bounds for cells in a contingency tables only by efficiently exploiting the unique structure
of the categorical data.

Using the chain rule, we re-write the target distributjo@m |2, 1) « p(r|A) from (3) as

pl2) = pGh), ... .nG™)L)

= pHID [T par9InGh,....nG*™, 2. ©

a=2

The support ofp(n(i1)|2) is a subset of the set of integers; defined by the upper and
lower bounds induced by on the cellil, i.e., #1 := {LGY), LGY) +1,..., UG —

1, U(iY)}. Similarly, the support op (n(i%)|n(iY), ..., n(i*1), ) is a subset of the set of
integers#’, defined by the upper and lower bounds induced on theétely £ and by the
additional constraints resulted from fixing the counts in the ¢élls. ., i1, i.e., #, :=
{L(n;i%), L(n; i) +1,...,U@m;i% — 1, U(n;i%)}, whereL(n; i%) = min{n'(i%) : n' €
T, (H=n@Y, ..., (D =n@i* )y andU (n; i) =max{n’(i?) :n' € 7,0’ (1) =
n(@Y), ..., 0 (Y =n@e ).

If a Markov basis associated with the set of feasible tabfecan be constructed
such that this basis contains only primitive moves, then the suppontgngfl)|/) and
p(()|n@h), ..., n@%1), 1) will be exactly.#'1 and.#,, respectively. Otherwise, to the
best of our knowledge, there is no theoretical result which shows that the supports of these
two distributions should coincide wit#’1 and#,, although examples when this property
does not hold have recently been discovedl{vant, 2004.

A candidate table* € 7 is generated with the “global move” method as follows:

o Draw a valuer*(i1) from #7.

e fora=2,...,mdo
(1) CalculateL(n*;i%) andU (n*; i%).
(2) Draw a value:*(i%) from 7.
end for

We still need a way to draw cell values frowf1, #, ..., #, such that the resulting

candidate tables™ will be neither “too different” nor “too similar” to the current state

n® e 7. Candidate tables that are “too different” are very likely to be rejected by the

Metropolis—Hastings step, while candidates that are “too similar” will be likely to be ac-

cepted, but the chain will not advance fast enough in the target space, so inducing very

correlated sample path. One approach to balancing these issues uses an annealing idea.
Consider the scaling factorg, vo, ..., v, with v, € (0, 1). Foreach: € {1, 2, ..., m},

draw a value:*(i*) from the proposal distribution with probabilities

Ga(® (), n* (i) oc ol 07N, (10)
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Note that the current value® (i) of cell i does not have to belong to the support
Hq of go(n® (i), -). However, candidate cell values i, that are closer ta'®) (i)
receive a higher probability to be selected. This probability increases as the scaling fac-
tor v, decreases towards 0. The full unnormalized proposal distribution can then be
written as:

q(f’l(‘?), l’l*) — 1_[ qa(n(s)(i”), I”l*(la)), (11)

a=1

over contingency tables® € 7. Any feasible table:* € 7 has a strictly positive prob-
ability of being sampled given any current stat&, hence the Markov chain obtained by
employing the proposal distributiay(-, -) from (11) will be irreducible.

7. Czech autoworkers example

A numerical example focuses on inference about the igtassociated with the cell
(1,2,2,1,1, 2) of the Czech autoworkers data given the observed margitaénd using
the corresponding set of relevant log-linear model3able 2 Using the “global move”
method, we simulated five samples of size 20,000 from the joint distribptioni| 21, o ;)
foreachj =1, 2,..., 8. The starting points were tables selected at random ffomTo
reduce the correlation between two consecutive draws, we discarded 2%mpdiyde-
fore selecting another pair in the final sample. The burn-in time was 5000 which should
be appropriate given the small number of tablesZin. The scaling factors, were
taken to be equal t0.B for cell (1,1, 1,1, 1, 1) and Q05 for the rest of the cells. Pri-
ors on log-linear model parameters are all taken as uniform on a fixed, large
range.

Fig. 1shows the sample mean of the posterior drawslforalculated across iterations
from each of the five starting points under modé]. The fact that a relatively large number
of iterations are needed until convergence is not surprising giicel| %21, .«/g) effectively
depends only on the sets of interaction tetmg ¢ p £ ) ¥(a.5.c.E, F}» ¥ia.B,c.0,F} @Nd
V(4 B.c.p.E.F)- The othenj-terms cancel in the conditionaln|Z, /), but are still needed
when simulatingi(i), i € .#. Fig. 1provides an excellent proof of the mixing properties of
our data augmentation procedure.

Fig. 2 gives the marginal posterior distributions foy as estimated from the resulting
samples of size 100,000 under each log-linear madglThe posterior distributions under
models</1, ..., /5 seem to be unimodal. The other three models contain the combination
of four-way interactiong/ 4 5 ¢ g r) @aNdY(4 p . p. ) that seemto induce a second mode
and longer right tails in the posterior @f. The estimated value in cell, 2,2,1, 1, 2)
as given by the posterior modes are 28,115, 23, 16, 2, 23 and 13, respectively.
These estimates are consistent with the true value of 1 in this cell. Remember that the
possible values for thél, 2, 2, 1, 1, 2) count given the marginal®, are{0, 1, ..., 10},
thus conditioning on the log-linear modeis ; effectively shrinks the estimates to the
actual cell count.
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Fig. 1. Convergence of the data augmentation method for the Czech autoworkers dataxiheepresents the
iteration number on a lgg scale, while the-axis gives the sample mean &f from five starting points under

model.«Zg.
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8. Counting tables

The “global move” method for sampling tables consistent with a set of constraints can
be employed to estimate the total number of tables consistent with these constraints. Write
() for the number of tables in the constrained . getEstimating.# (") by sampling
from the uniform distribution o7, i.e.,p(n|2) =1/.4 (7), is infeasible in any but trivial
cases (e.g., two-way tables with fixed one-way marginals). Instead, we simulate tables from
the proposal distribution defined in (11) with scaling factgrequal (at least eventually) to
1 for all the cells in the table. This particular choice of the scaling factor makes this proposal
distribution independent of the table previously sampled, i.e.,

m 1
q(m) }:[1 Un:i%) — L(n:i%) + 1’

Following Chen et al. (2003)ve write:

p(nl2) 1 1
1= —_— = .
2 PR TES 2 2 1

neg

This suggests an estimate fa (7)) given by

S S m
1 1 _ . .
52 oo =S X [Twe®sin - ratsi + 1, (12)
s=1 s=1 a=1
wheren® n@ .. 1S are sampled independently frang).

As an example, consider two sets of marginals of the Czech autoworkers datéa, Let
be the 15 four-way marginals of the Czech autoworkers data. The upper and lower bounds
induced by#, are given in the left-hand panel ®&ble 3 We generated 100 samples of
5000 tables each fromi 5, the set of tables consistent wi#y. Using a modified version
of the generalized shuttle algorithrdgbra et al., 2003b; Dobra, 2002ve determined
that the true number of tables i1, is 705,884. The mean of our estimates4{.7 ,) is
703,126, while a 95% confidence interval faf(.7 ») is 650,000—750,000.

The second example assesses the number of dichotomous six-way tables that have a count
oflincell(1, 2, 2,1, 1, 2) (which identifies the population unique in the Czech autoworkers
datan) and that are consistent with the margingls:= {nz.r}, n(a.B,c.E}, {a,D,E}}. L€t
7 3 denote this set of tables. The upper and lower bounds associated yilne given in
the right-hand panel dfable 3 We generated 1000 samples of 35,000 tables each4rem
We work on the log, scale as# (7 3) is very large. The mean of lgg{.# (7 3)} is 58%
and a 95% confidence interval is 57-59. The true number of tal#l€g 3) is unknown
to us.

9. Concluding comments

Combined parameter inference and missing-data imputation in contingency tables is a
very broad-reaching problem. The specific context of inference based on data in terms



Table 3

Bounds for the Czech autoworkers data given the margi#alfleft-hand panel) and given the margina#s (right-hand panel)

No Yes B No Yes
F E D C No Yes No Yes A No Yes No Yes
Neg <3 <140 No [27, 58] [25, 56] [96, 134] [44, 82] [0, 88] [0, 62] [0, 224] [0, 117]
Yes [108 149 [123 168 [0, 22] [9, 37] [0, 2617] [0, 246 [0, 24] [0, 38]
>140 No [22, 49 [0, 24] [60, 96] [16, 52] [0, 88] [0, 62] [0, 224] [0, 117]
Yes [91, 127 [45, 85] [0, 18] [0, 20] [0, 2617] [0, 157] [0, 24] [0, 38]
>3 <140 No [10, 37] [17, 44] [48, 86] [49, 89] [0, 58] [0, 60] [0, 170 [0, 148
Yes [30, 68] [58, 102 [0, 19] [0, 25] [0, 115 [0, 173 [0, 20] [0, 36]
>140 No [13,37] [8, 36] [55, 90] [38, 76] [0, 58] [0, 60] [0, 170 [0, 148
Yes [30, 67] [45, 86] [0, 19] [0, 27] [0, 115 [0, 173 [0, 20] [0, 36]
Pos <3 <140 No [0, 15] [0, 13] [4,31] [0, 23] [0, 88] [0, 62] [0, 125] [0, 117]
[0, 10] [1,1]
Yes [0, 21] [3,30] [0, 9] [0, 134 [0, 134 [0, 38]
>140 No [0, 11] [0, 10 [0, 24] [0, 18] [0, 88] [0, 62] [0, 125] [0, 117]
Yes [0, 26] [2,30] [0, 11] [0, 9] [0, 134 [0, 134 [0, 24] [0, 38]
>3 <140 No [1, 14] [0, 9] [0, 26] [0, 26] [0, 58] [0, 60] [0, 125] [0, 125]
Yes [0, 19] [4, 29] [0, 9] [0, 9] [0, 115 [0, 134 [0, 20] [0, 36]
>140 No [0, 9] [0, 9] [0, 26] [0, 22] [0, 58] [0, 60] [0, 125] [0, 125]
Yes [0, 19] [0, 23] [0, 9] [0, 13] [0, 115 [0, 134 [0, 20] [0, 36]

The bounds for the celll, 2, 2, 1, 1, 2) are marked with a box. These bounds were calculated using the generalized shuttle algorithm.
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of subsets of marginal counts is pervasive, and is central in problems of data disclosure,
dissemination and confidentiality. Issues of prior specification are relevant both for direct
analysis, and in connection with questions about potential uses of data released to multiple
consumers who will each bring their own priors, or classes of priors, to bear on interpreting
the margins. Our work describes some of the basic theoretical and structural issues in the
context of log-linear models, and presents a detailed development of MCMC approaches,
with examples.

Central to the work reported is the development and implementation of data augmen-
tation under a specific class of structured priors for log-linear model parameters, and the
introduction and development of a “global move” simulation approach for imputing miss-
ing elements of contingency tables subject to observed margins. Both “local” and “global”
move algorithms for sampling tables have their advantages and disadvantages, though we
generally prefer the “global move” approach as itis relatively easily set up and implemented.
The speed of the above procedure is directly influenced by the number of cells that need to
be fixed at a certain value before a full table consistent with thedagaletermined. Every
time we assign a value to a cell, we need to update the upper and lower bounds for the rest
of the cells in the table. Consequently, the smaller the number of cells we need to fix, the
faster the algorithm is. This number is a function of the pattern of constraints induced by
the full information%.

One of the requirements of the “global move” approach sampling algorithm is that the
bounds defining the values a cell count can take given @dadéad given that some other
cells have been fixed at a certain value have to be sharp. Gross bounds approximating the
corresponding sharp bounds will frequently lead to combinations of cell values that do not
correspond to tables i, and hence the use of gross bounds will significantly decrease the
efficiency of this sampling procedure. Unfortunately, computing sharp bounds to determine
the admissible values of every cell in the target table could become a serious computa-
tional burden in the case of large high-dimensional tables having thousands or possibly
millions of cells. Therefore, one very difficult computational problem (the generation of a
Markov basis) from the “local move” algorithm is replaced, in the “global move” algorithm,
with another very challenging problem—the calculation of sharp integer bounds. Even if
sharp bounds are calculated and used at each step, infeasible combinations of cell values
might still be generated. Note that the “local move” method also generates candidate tables
that are outsideZ if a move that is not permissible for the current state of the chain is
selected.

A simulation algorithm employing the “global move” method can be started right away
without any possibly tedious preliminary computations required in most cases by the “local
move” method. There are situations when the generation of a Markov basis could take too
long to complete (hence no samples can be drawn with the “local move” method), while
the “global move” method might still be applied and samples will still be generated even if
these samples might be expensive in term of computing time.

As opposed to the “local move” method that modifies only some small subset of cells
affected by the chosen local move, the “global move” method potentially changes the entire
table at each step, which leads to sequences of tables with very low correlation from one step
to the next, and clearly facilitates an effective exploration of the multidimensional support
of the random variables in exam.
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Throughout the paper we employed the generalized shuttle algoiitbbrd et al., 2003b;
Dobra, 2002 to compute sharp upper and lower bounds. This is a very flexible algorithm
that allows one to specify different types of constraints on the cell entries of a table. These
constraints can be, but are not limited to, fixed marginals or cells fixed at a certain value.
Moreover, the generalized shuttle algorithm can be modified to exhaustively enumerate the
tables consistent with a set of constraints.

We have illustrated how posterior inferences on cell counts can vary based on assumed
forms of log-linear models. It may in future be of interest to consider extensions of this
work to build analyses across models, utilising model-mixing and model-averaging ideas
(Kass and Raftery, 1995; Madigan and York, 19@Hd some further developments of the
proposed MCMC methods here that extend to reversible-jump methods will be relevant
there.

Finally, software for performing the simulations as illustrated is freely available at
http://www.stat.duke.edu/ ~adobra/sampletable.htm
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