Shotgun Stochastic Search for “Large p” Regression
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Model search in regression with very large numbers of candidate predictors raises challenges for both model specification and computation,
for which standard approaches such as Markov chain Monte Carlo (MCMC) methods are often infeasible or ineffective. We describe a novel
shotgun stochastic search (SSS) approach that explores “interesting” regions of the resulting high-dimensional model spaces and quickly
identifies regions of high posterior probability over models. We describe algorithmic and modeling aspects, priors over the model space
that induce sparsity and parsimony over and above the traditional dimension penalization implicit in Bayesian and likelihood analyses, and
parallel computation using cluster computers. We discuss an example from gene expression cancer genomics, comparisons with MCMC
and other methods, and theoretical and simulation-based aspects of performance characteristics in large-scale regression model searches.

We also provide software implementing the methods.
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1. INTRODUCTION

Regression variable uncertainty—framed as either model se-
lection or model averaging—raises modeling and computa-
tional challenges as the number of candidate predictor vari-
ables increases. Standard methods, including stepwise methods,
best-subset regression (e.g., Furnival and Wilson 1974), and
Markov chain Monte Carlo (MCMC), often can quickly iden-
tify “good” models when the number of predictors is relatively
small. In higher-dimensional problems, stepwise methods are
prone to entrapment in local maxima of model space (Hock-
ing 1976), and often do not provide an adequate representa-
tion of the model space with the increasingly complex patterns
of collinearity that are typical with many variables. MCMC
algorithms designed to explore the posterior distribution over
regression model spaces (e.g., George and McCulloch 1993,
1997; Green 1995; Madigan and York 1995; Geweke 1996;
Raftery, Madigan, and Hoeting 1997; Brown, Vannucci, and
Fearn 1998b) rely on Gibbs sampling (Gelfand and Smith 1990)
or on the Metropolis—Hastings algorithm but are increasingly
ineffective in higher dimensions due to slow convergence. Out-
side of the regression model context, MCMC approaches have
been used for model space exploration by Chipman, George,
and McCulloch (1998) for Bayesian CART models, Wong,
Carter, and Kohn (2003) for covariance selection models, and
Tadesse, Sha, and Vannucci (2005) for clustering.

Here we introduce a novel shotgun stochastic search (SSS)
method that is inspired by MCMC but offers the ability to iden-
tify probable models much more rapidly and to move around
swiftly in the space of models as the dimension escalates.
Parallel computing is at the core of SSS methodology; rather
than naively parallelizing existing MCMC stochastic search
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methods by running parallel chains, we describe a new sto-
chastic search that is inspired by and related to Metropolis—
Hastings methods but differs fundamentally in two key re-
spects:

e SSS explores the vast discrete space of regression mod-
els by evaluating and recording many candidate mod-
els in parallel at each iteration; this contrasts with tra-
ditional MCMC methods, which move sequentially from
one model to a new model and so do not exploit the oppor-
tunity to effectively explore the model space in the neigh-
borhood of known “good” models.

e SSS is designed to move toward and aggressively ex-
plore regions of regression model space that contain mul-
tiple higher-probability models, because it looks at many
neighbors of each model selected. Thus, in contrast to
MCMC methods that move only toward individual mod-
els of higher probability, SSS is designed to automatically
seek out many “good models near good models.”

In this article we highlight the relationships between MCMC
methods and SSS, and describe and exemplify the differences
in concept and practicalities. We provide examples in which
the ability of SSS to catalog high-probability models rapidly
is superior to that of competing MCMC methods, and stress
the use of distributed computing to allow scaling to problems
with very large numbers of predictors that otherwise would be
simply infeasible.

SSS is introduced and developed in Section 2, and its use in
linear and binary regression is discussed in Section 3. The con-
ceptual basis is generic, and SSS will apply to other forms of
regression models, including designed experiments with cate-
gorical covariates and interactions, but this article presents the
ideas, methodology, and examples in main-effects models, in
which defining model neighborhoods, a key ingredient of the
methodology, is natural and interpretable. The relationship be-
tween SSS and MCMC approaches is explored in Section 4,
and results from both simulation studies and real data examples
that demonstrate the effectiveness of SSS are given. An exam-
ple involving gene expression analysis is given in Section 5, and
some concluding comments are provided in Section 6.
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2. SEARCHING FOR REGRESSION MODELS
2.1 Shotgun Stochastic Search

The example dataset described in Section 5 has p = 4,514
possible predictor variables. If we consider regression models
with up to five predictors, then there are >10'® models; even in
this constrained model space, enumeration is impossible. De-
note the model space by I'. Stochastic model search aims to
discover and evaluate a (large) set of models, I'*, to be used
in understanding model (variable subset selection) uncertainty
and for prediction. Regression model shotgun stochastic search
(RMSSS) is such a method. It is a regression model specific
implementation of a general class of SSS methods. SSS is an
iterative, local-move, neighborhood-based procedure involving
three steps:

Step 1. Use the “current” model to define a neighborhood of
proposal models.

Evaluate each proposal model in this neighborhood
in parallel.

Choose a new current model from the proposals.

Step 2.

Step 3.

A key idea is that for any “current” model, there may be many
other models with similar “fit” to the data—models with over-
lapping or collinear predictors. Quickly identifying and eval-
uating these models provides a rich description of part of the
model space and a new set of competitive models from which to
choose the next move. This generates multiple candidate mod-
els and “shoots out” proposed moves in various directions in
model space.

The neighborhood of the current model must be sufficiently
comprehensive to allow the search to move easily throughout
the model space. This is accomplished by considering each
possible predictor variable in one of the proposal models at
each iteration. This approach has the added benefit that over the
course of the search, every candidate variable is evaluated in the
context of many different regression models. Critically, step 2
can be parallelized; each of the proposal models can be eval-
uated independently on separate processors, providing a clear
advantage of SSS procedures over MCMC algorithms in which
models are proposed and evaluated one at a time, sequentially.
The criterion used to compare models is problem-specific. In a
Bayesian analysis, as described here, the model “score” is pos-
terior probability; however, the search method can be applied
with other notions of model fit/score as well.

2.2 Regression Model Shotgun Stochastic Search

The two major components of SSS are the choice of neigh-
borhood and the model move (sampling) strategy. The neigh-
borhood component should allow consideration of each possi-
ble predictor variable at every step and, to allow the search to
move freely across model size, should admit regression models
of various dimensions. We take the neighborhood to be every
regression model that is a one-variable change to the current
model.

Let p be the total number of possible predictor variables, and
let y be a p x 1 indicator vector with y; = 1(0) if variable j is
in the regression model (or not). For the moment, we consider
main-effects-only regression models with continuous covari-
ates. For a current regression model of dimension k (i.e., hav-
ing k predictor variables), the neighborhood has three elements:
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nbd(y) ={y™, y°, y "}, where y T is a set containing neighbor-
ing models of dimension k + 1, called the “addition” moves; y°
is a set containing neighboring models of dimension ., called
the “replacement” moves; and y ~ is a set containing neighbor-
ing models of dimension k — 1, called the “deletion” moves.
Set y* contains all of the models obtained by adding any one
of the p — k remaining predictor variables, set y ~ is the £ mod-
els obtained by deleting any one current variable, and y° is the
set obtained by replacing any one current variable with any one
of the p — k remaining.

For example, with p =5, if the current regression model is
{x1, x3, x4}, then

v~ = {3, xa}, for, s e, a3},

y = U {x1, x3, x4, %}, and
J€E{2,5}

y° = U {{xl,X3,Xj}, {x1, %}, xa}, {Xj,)C3,)C4}}.
JE{2,5}

Note that when 2 <k <p, |y*|=p —k, |y°| =k(p — k), and
|y ~| = k, with the convention that y+ = @ if k = p. We evalu-
ate the null model and all possible one-variable models before
starting the search, and so allow SSS to consider models only
of at least dimension k = 2.

When p is large, |y°| > |y+| > |y ™|, which is problematic
for sampling. If all of the models were to have equal weight
and one model was sampled directly from nbd(y), then as
p — 00, the probability of staying in the same dimension goes
to k/(k + 1), the probability of increasing goes to 1/(k + 1),
and the probability of decreasing dimension goes to zero. To
move across dimension effectively, we break sampling into two
steps: three models, y 1, y2, and y, are sampled from y T, p°,
and y—, and then one of the three is selected.

The (unnormalized) posterior probability, p(y|y) «
p|y)p(y), is evaluated for each model generated in SSS.
The Bayesian information criterion (BIC) can be viewed as
an approximation to the marginal likelihood of a given model,
pO|y), under a reference prior distribution (Raftery 1995) and
so could be used in similar fashion. Other scores, such as R?
and the Akaike information criterion (AIC), can be used, but
the user would have to decide how to normalize the scores into
a probability distribution from which to sample. In general, we
refer to a score for a model y that can be normalized within a
set of scores to become a probability as S(yp).

Regression Model Shotgun Stochastic Search Schema. Let
y denote a regression model, and let S(p) be its correspond-
ing (unnormalized) score. Given a starting model p[¥l, set
I'* = {19} and choose a constant B that will be the maximum
number of elements of I'*. Iterate in =1, ..., T the following
steps:

Step 1. In parallel, compute S(p) for all y € nbd(y[’]), con-
structing ¥+, °, and y~. Update T'* to be I'* U
nbd(y!"); if |T'*| > B, then remove the |T'*| — B low-
est scoring models.

Sample y, y2,and y, from y*, y°, and y —, with
probabilities proportional to S(y ), normalized within
each set.

Step 2.
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Step 3. Sample yU+1 from {p}, y2, y;}, with probability
proportional to S(y), normalized within this set.

Note that after running SSS, I'* contains the B best models
evaluated, not just the best of those composing the sequence
y[o], e ym. That is, I'* contains the B best models in the
collection of neighborhoods ,T:_Ol nbd(p!™).

2.3 Regression Model Shotgun Stochastic Search With
Higher-Order Terms

As introduced in Section 2.2 RMSSS is restricted to “main-
effects-only” models. With simple modifications to the model
space I' and the neighborhood structure nbd(y), RMSSS can
accommodate more complicated regression settings, such as the
inclusion of higher-order terms. Consider first the use of power
terms where for each predictor Variable x;j (the jth covariate for
the ith individual), the terms x ,d=1,...,D, are of interest.
In a case in which the 1nvest1gator will allow any of these terms
to enter freely in a model, the model space can be redefined so
that p is now a Dp x 1 vector, and the (j + (d — 1)p)th element
ofy,j=1,...,p, corresponds to xf. RMSSS then proceeds as
described in Section 2.2.

Now consider the situation in which the investigator wishes
to allow for the inclusion of interaction (including squared)
terms, x;jXjx, 1 <j <k < p, but also wishes to impose the con-
straint that if x;jx;; is in a model, then both main effects (or the
single main effect in the case of a squared term) also must be
in the model. To perform an SSS over this model space, we re-
define the neighborhood structure for a given model with speci-
fied main-effects and interaction terms as follows. The deletion
set, y —, is obtained by first deleting, one at a time, the second-
order terms, and then deleting, one at a time, the main-effects
terms, with the proviso that when a main effect is deleted, all of
the second-order terms in which it is involved are also deleted.
The addition set, y+, is obtained by first adding, one at a time,
each of the (main-effects) variables not currently in the model.
Then, for each of these p — k models, the “added” variable is
interacted, one at a time, with each of the main-effects vari-
ables currently in the model, including the added variable itself
for the squared term. The replacement set, y°, is obtained in a
similar manner by swapping each current main effect with each
of the main effects not currently in the model, deleting higher-
order terms when necessary, and interacting each “swapped in”
variable with each of the remaining main effects. For example,
if p = 3 and the current model is {x1, x2, x%}, then the neighbor-
hood would be

2
U {X1,x3,x1,ij3}},

Jje(1,3}

U {Xz,X3,ij3}H,

Jjef2.3}

Y= {{xl,m,ﬁ}, {

{x2’ X3}, {

Y~ = {12}, (), a7},

2
U {xlax27x3sxl5xjx3}}’

je(1,2,3}

+

2
y = {{x17x29x35~x1}y
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3. LINEAR AND BINARY REGRESSION
3.1 Normal Linear Regression

Consider the normal linear regression model Y ~ N(Xg,
02In), where Y is an n x 1 response variable, X = (x1, ..., x,)’
is an n x p data matrix for the n samples, and the x;’s are
p x 1 vectors of covariate information. Assume that both the
x and y data are centered and normalized, so that we do not
include an intercept term in the model. We assume priors on
0 = (B,0?) that are consistent across models in the sense
that they are derived from an encompassing model through
conditioning. Following Dobra et al. (2004) and Geiger and
Heckerman (2002), we take p(B,, lo2, %) =N(O, t~'o2I}) and
p(a?ly) = IG((8 + k)/2, t/2), where B, is the vector of re-
gression coefficients under a model y with k variables. Because
we have scaled the data to have unit variance, we typically set
7 = 1 to reflect this common scale. The prior distribution for o2
has a finite first moment for all £ > 0 when § > 2, so we typ-
ically set § = 3. To find p(y|y), we first compute the marginal
likelihood p(y|ly) = [ p(y|6, ¥)p(@|y) dd, which has a closed-
form solution under the foregoing formulation (see Dobra et al.
2004). Then, by Bayes’ theorem, the posterior probability of

any model is p(y |[y) o p(y|¥)p(¥).

3.2 Binary Regression

In the case of independent binary outcomes, y;, consider
the logistic regression p(y|B, y) =[], pf"(l — pi)' 7Y, where
pi=1/(1+exp{—(Bo —|—x§ﬁy)}) and x; contains only those vari-
ables indicated by the model y. Note the inclusion of the inter-
cept term By, which is necessary to account for the baseline
response probability. We set p(Bo, B, |¥) = N(0, Tli+1), where
k= Z’; 1 Vj» and assuming standardized predictor variables, we
typically take t = 1 to place appropriate prior mass on reason-
able values of the regression coefficients.

The marginal likelihood is not available in closed form
but can be approximated through the Laplace approxima-
tion p(y1y) = 2m)"2E1"p(yIB, )p(Bly) (DiCiccio, Kass,
and Wasserman 1997), where we find ﬁ = argmaxg p(y|B8,
y)p(Bly) through Newton’s method and compute 3 as the in-
verse of the negative Hessian matrix of log[p(y|B, ¥)p(B|y)]
evaluated at ﬁ

3.3 Prior Over the Model Space

As dimension increases, it is critical to use priors over model
dimension that encourage sparsity, because large models are of-
ten less interpretable and there is a risk of overfitting when n is
small relative to p. Here we use the standard model selection
prior p(y) = 7%(1 — 7)P~*, where k is the number of variables
in the model and 7 is a hyperparameter representing the prob-
ability that a variable is in the model (with all variables treated
exchangeably). This induces a binomial prior distribution over
model size, and thus the prior expected model size is pwr. We
typically set = = k' /p, with kK" small relative to p, to encourage
sparsity.
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3.4 Variable ldentification and Prediction

Measure the relative importance of individual models y € I'*
by

P ly) =Cpolyp(y), (D

where the norming constant is the posterior mass contained in
r* C= Zyer*P()’|}’)P(J’)~ If we could have explored the en-
tire space (so that ' =T), then (1) would represent the poste-
rior probability of model y . But because we explored only some
part of the model space, (1) represents the posterior probability
of model y conditioned on the set I'*. View p(y|y) as a mea-
sure of relative importance of model p in the context of the top
predictive models. Similarly, measure the relative importance
of variable x; by

Poi=1y =D 1p=npIy). @)
yel'*

Predictions can now be based on the set of top models, repre-
senting a conditional posterior.

4. THE NATURE AND EFFECTIVENESS OF
SHOTGUN STOCHASTIC SEARCH

4.1 Relationship to Markov Chain Monte Carlo

In cases of high-dimensional parameter spaces, MCMC ap-
proaches are often used not with the aim of performing Monte
Carlo integration to summarize the posterior distribution, but
rather as a stochastic search tool to identify regions of high
posterior probability (or, in the context of model selection, to
identify the “best” models). In this section we show that small
changes to SSS result in an MCMC algorithm of a fundamen-
tally different from than common MCMC approaches.

Consider use of a Metropolis—Hastings algorithm to sample
from a discrete distribution, P(x), where we can evaluate P(x)
up to a normalizing constant, P(x) o< Q(x). Consider proposal
distributions that sample from P(x) restricted to a neighborhood
N(),

P(X)1(x' € N(x;)) _ O()1(x" € N(x;))
> seniey PGS) > seNay) 2()

As long as we start the chain in a region of nonzero probability,
the acceptance probability at each iteration is

ZseN(x,) Q(S) }
ZseN(x/) Q(s) .

We can easily adapt the SSS algorithm described in Section 2.2
to become a Metropolis—Hastings algorithm using the proposal
distribution described earlier. Relating notation, we have that
P(x) is p(y"1y). Q) is S = pGlyMp(r1). and N(x:)
is nbd(p!"l). After performing step 1 at iteration ¢ in SSS, sam-
ple a proposal y’ from the discrete distribution S(-) normalized
within nbd(p!"), and set y+11 =y’ with probability  from
(3); otherwise, set y'*11 = y [/l _Steps 2 and 3, which are related
to the two-stage sampling process that corrects the dimensional
imbalance, are ignored.

The form of the acceptance probability (3) indicates that
Metropolized SSS behaves much differently than standard
MCMC approaches such as the MCMC model composition

T(xX';sx) =

3

o =min{1,
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(MC?) algorithm of Madigan and York (1995) and Raftery et
al. (1997), and the related approach of Brown et al. (1998a).
MC? constructs a Markov chain over the model space by first
defining a neighborhood nbd, (y!") = y* U y~ U p, using
our notation from Section 2.2. A proposal distribution T is
then defined by setting T (p’; y!/) = 0 for all ' ¢ nbd, (p'")
and setting T, (y’; y!1) constant for all »’ € nbd(py[l). As the
MC3 algorithm proceeds, if the chain is in state [, then a pro-
posed move p’ is drawn from Ty (y’; y[t]), a discrete uniform
distribution over nbd(y!"l). The proposed move is accepted with
probability

oY P }
TpOlyMpyiy )

Effectively, at each iteration, MC> randomly chooses a compo-
nent of !l and switches its value of 0/1 with probability .

The acceptance probability o, depends only on p [ and y’
and favors rejecting moves to lower-probability models. How-
ever, the acceptance probability « for Metropolized SSS, de-
pends on the amount of posterior mass in the neighborhoods
around [ and y’, and favors moves to models away from local
modes, discouraging entrapment in particular regions of model
space.

Oy =min{]

4.2 Comparison With Markov Chain
Monte Carlo Methods

Two popular MCMC approaches for model space exploration
are MC? (described earlier) and Gibbs sampling. George and
McCulloch (1997) and Smith and Kohn (1996, 1997) described
how to construct Gibbs samplers over a model space in the con-
jugate setting where p(y|y) is available in closed form. A one-
at-a-time, fixed-scan Gibbs sampler creates a sequence of mod-
els y[11 »21 . by updating the components of y by sam-
pling from p(y;ly _j,y) < pyly)p(yjly ;) for j=1,....p at
each iteration.

We implemented SSS and both MC? and the Gibbs sam-
pler for the Keck dataset described in Section 4.4, using the
observed rather than the simulated data. In both cases, we
used the sparsity-inducing prior 7 = 10/p. SSS was run for
40,000 iterations, which resulted in a total of 1,137,195,208 to-
tal model evaluations; we then ran the Gibbs sampler, which
evaluates p = 8,408 models per iteration, for 135,252 itera-
tions, and ran MC3, which evaluates one model per iteration,
for 1,137,195,208 iterations, so that the three runs represent ap-
proximately the same number of model evaluations. Figure 1
shows the accumulated posterior mass in the set of the top 1 mil-
lion models for each run as a function of the number of mod-
els evaluated, with the plot normalized by the total mass found
by SSS. By the end of the run, the Gibbs sampler and MC? had
accumulated 97.49% and 92.95% of the total mass accumulated
by SSS. From the plot, however, we see that SSS dominated in
its ability to accumulate posterior mass with fewer model eval-
uations.

We note also that SSS was used in analyses of this dataset
by Rich et al. (2005) to define gene expression—based regres-
sion predictions of survival among brain cancer patients. Mul-
tiple models involving three to five predictors were identified in
that analysis, and the leave-one-out cross-validation predictions
based on model averaging across many “top models” suggests
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Figure 1. Accumulated Posterior Mass for SSS (——), Gibbs (- - - - - ), and MC3 (... ).

a reliable predictive relationship. Moreover, the most probable
models generally involve at least two of three biologically in-
terpretable genes, with other top models involving genes with
expression profiles highly correlated with these. The “top mod-
els” identified by SSS in that application were not discovered
using several variants of stepwise search.

4.3 The Null Model Scenario

It is of interest to examine how SSS performs in the situ-
ation in which the generating model is the null normal linear
model. We simulated a response vector of length n = 100 from
independent standard normal distributions, and for each obser-
vation independently simulated p = 5,000 covariates from in-
dependent standard normal distributions. The data were mean-
centered and standardized as in Section 3.1, and the best 1 mil-
lion models from a run of SSS were recorded with £’ = 10 in
the model space prior. Model-averaged fitted values are shown
in Figure 2. If the data were fit perfectly by the (weighted aver-
age of the) models, then the points would fall on the line y = x;
rather, we see considerable shrinkage toward a mean of 0, in-
dicating dominance of the null model in I'*. Indeed, the null
model was the highest scoring model found by SSS.

4.4 Simulated Data Example

In this section we report a simulation study based on a real
dataset to demonstrate the effectiveness of SSS as the number
of possible predictor variables increases. Here we do not restrict
ourselves to a fixed-dimensional SSS as in the previous two
sections. The data on which we base the simulation is a gene
expression dataset from a survival study in brain cancer based at
the W. M. Keck Center for Neuro-Oncology at Duke University.
A detailed description of the data, along with an initial analysis,
was given by Rich et al. (2005).

The study group consists of 41 patients, each of which has
gene expression data consisting of 8,408 genes from a tu-
mor specimen. We selected four genes from the dataset as
the variables composing the “true” model y* and simulated
m=1,...,50 outcomes using the actual gene expression val-
ues x;; for the j=1,...,4 “true” variables according to the re-
gression model yg’") = 1.3x;1 + 3xp — 1.2x53 — 5xi4 + sfm),
fori=1,...,41, where the 81.('")’5 are iid mean-0 normal ran-
dom variables with variance .5. The simulated outcomes were
then standardized to have mean 0 and unit variance within each
of the 50 simulations. Some information is known about the
four genes that we chose to compose the true model: one is
from the RAS oncogene family, one is a glioblastoma-amplified

fitted values

ERESHRRRRREETEAY ~ XY PYYER

T I
-1 0

true values

Figure 2. Model-Averaged Fitted Values When the True Model Is the Null Model, With 95% Intervals.
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sequence, one is a leukocyte protease inhibitor, and one is a
CAT56 protein. These genes were chosen in part because they
exhibit some correlation with other genes in the dataset. The
regression coefficients were chosen so that two were large and
two were small relative to the variance of ¢;.

To assess the performance of SSS with increasing dataset
size, we ran SSS for the 50 simulated responses using datasets
with increasing values of p, as shown in Figure 3. The datasets
were constructed by first reordering the observed 41 x 8,408
data matrix X so that the four variables used in the simulation
were designated variables 1, 2, 3, and 4. To construct a data ma-
trix XP) for a particular simulation, when p < 8,408, we ex-
tracted the first p columns of X to form XP) and then ran-
domly permuted the columns. Hence all 50 datasets X"?) for
a given p < 8,408 contain the same variables and differ only
by a column permutation. For the datasets with p > 8,408, be-
fore permuting the columns, we added p — 8,408 columns of
random draws from a N(0, I41) distribution (after centering and
scaling the random draws), effectively adding random noise to
the dataset.

Prior distributions over the parameter space in the simulation
study are consistent with those used in the analysis by Rich
et al. (2005), with T =1 and § = 3 as described in Section 3.1.
For the model space prior, we set m = 4/p as in Section 3.3 to
maintain focus on sparse models as p increases. We note that the
general conclusions and features of this (and other) examples
remained similar as we reran the analysis using different values
of mr, although it is of course critical that 7 be small, to ensure
a focus on relatively small models. Inference on 7 itself in the
SSS context is an open question.

For a given run of SSS, we declared that SSS had found
the true model when the true model was evaluated [i.e., when
y* € nbd(y!")]. For each value (m, p), if SSS found the true
model within 10,000 iterations, then we recorded the number
of iterations required to find the model and the elapsed time.
If the model was not found within 10,000 iterations, then we
recorded the time required for the 10,000 iterations.

Computation was done using 21 processing elements (1 head
node and 20 compute nodes) on a cluster of dual-processing,
3.1-GHz Intel x86-based machines running Linux. SSS was run
for one value of (m, p) at a time using the 21 processors. Results
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from the simulation study are shown in Figure 3. Although in-
creasing the number of irrelevant variables in the dataset re-
sulted in an increased number of iterations needed to find the
true model, the true model was still found by SSS a large per-
centage of the time.

4.5 Fixed-Dimensional Shotgun Stochastic Search for
Orthogonal Designs

Another metric by which we can compare SSS with an
MCMC method is to examine the expected number of iterations
until the “true” model is found. Consider a fixed-dimensional
SSS, where we condition on a particular number of variables k
and allow moves only within this dimension, effectively set-
ting nbd(y) = p°. A fixed-dimensional SSS creates a Markov
chain {y!"1} over the state space of models restricted to size k.
Assuming that the true model y* is of dimension k, we can de-
fine a mapping Z; = ¥ (p[1) =k — Zj;l yily; — yj[-t]|, where
Z; € {0, ..., k} indicates how many of the variables in y, are
shared by y*. Under certain restrictions on the model space
(described later), the one-step transition probabilities for the in-
duced Markov chain {Z;} can be easily computed, and the ex-
pected number of iterations until the true model y* is found can
be evaluated.

Consider the case in which all possible predictor variables are
orthogonal, that is, where x;xj =0 for all i #j. It can be shown
(see the on-line technical report) that under the model specifica-
tion in Section 3.1, the marginal likelihood for a given model is
simply a function of the least squares estimates of the regression
coefficients. Moreover, the one-step transition probabilities for
the induced Markov chain {Z;} can be computed by making the
further assumption that all variables not in the true model have
the same (relatively small) scaled regression coefficient € = x]’-y,
and that all variables that are in the true model have the same
(relatively large) scaled regression coefficient A = xJ’.y.

The solid lines in Figure 4(a) show the expected number of
steps until the true model is evaluated (on the log;, scale) as
a function of p for values k = 3,4, 5, 6 under the foregoing
assumptions. Here we took n = 500 and set € = (n — 1).005,
A= (m—1).1, 7 =1, and § = 3. The dashed lines provide a
comparison to a fixed-dimensional MCMC search; each step in
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Figure 3. Time Required to Find the True Model for the Simulation Study Described in Section 4.4. The numbers in parentheses indicate the
number of models not found by SSS in 10,000 iterations for a given dataset size p, denoted by x in the plot. The boxplots are based only on runs

for which SSS found the true model.
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Figure 4. Comparison of Fixed-Dimensional SSS and MCMC (Metropolis) Approaches Under the Assumptions Given in Section 4.5. (a) Base
10 logarithms of the average number of steps needed before the true model is found, as a function of p; (b) Base 10 logarithms of the average
number of model evaluations needed before the true model is found, as a function of p. (——, SSS; - - - - - , MCMC.)

the chain proceeds by randomly proposing to replace one vari-
able in the current model with one variable not in the current
model and then accepting the proposed move with probability
computed through the Metropolis ratio. SSS clearly dominates
with respect to the number of steps needed on average before
the true model is evaluated; however, this comparison is unfair
from a computational perspective, because fixed-dimensional
SSS evaluates k(p — k) models per step, whereas the Metropolis
algorithm evaluates only one model per step. A more level com-
parison between the two methods is provided in Figure 4(b),
which shows the expected number of model evaluations until
the true model is evaluated. SSS is competitive with MCMC
for small p and dominates as p grows larger.

5. SHOTGUN STOCHASTIC SEARCH EXAMPLE
USING GENE EXPRESSION DATA

5.1 Data and Prediction Analysis Context

The dataset comprises coupled gene expression and lymph
node positivity status in human breast cancers. From a data-
base of about 350 cases, we identified those clinically defined
as low risk for disease recurrence or death from disease in terms
of lymph node negativity (no evidence of cancer metastasis in
the axillary lymph nodes) at the point of surgery; we compared
these patients with those in a generally much higher-risk group
(i.e., those with at least nine nodes in the axillary regions show-
ing evidence of cancer metastasis). This analysis follows previ-
ous work and relates to the general interest in the potential for
tumor-derived gene expression profiles to aid in prognosis—in
this case, improved prediction of low risk versus high risk based
on genomic information could affect decisions about postsurgi-
cal treatments (West et al. 2001; Huang, West, and Nevins 2002;
Nevins et al. 2003; Huang et al. 2003; Pittman et al. 2004). Pre-
diction of lymph node status based on gene expression profiles
is a challenging problem, due to the complex heterogeneity of
the disease in terms of genetic/genomic and environmental fac-
tors, and also due to the levels of experimental and technical
noise in gene expression data. Advances in our ability to bet-
ter predict the state would be of substantial interest in clinical
cancer genomics.

The data consist of n = 148 samples with ngp = 100 low-
risk (node-negative) and n1 = 48 high-risk (high node-positive)
cases. Gene expression data are available on Affymetrix

HU95aV2 oligonucleotide microarrays, which were processed
using the current standard RMA method (Irizarry et al. 2003a,b)
to generate summary estimates of expression levels of each
gene in each sample. These primary RMA data were then fur-
ther screened and normalized, and we selected a total of 4,512
genes showing evidence of more than trivial variation above the
noise levels. In addition to these candidate predictors, some tra-
ditional clinical factors are available for each patient, including
estimated tumor size (in centimeters) and protein assay—based
estrogen receptor (ER) status, coded as a binary covariate. Us-
ing the gene expression data together with these two clinical
factors thus provides p = 4,514 candidate predictors.

5.2 Small Subsets Regression Analysis

We use binary regression models as described in Section 3.2
to assess the relative importance of the individual genes and
clinical factors in the context of lymph node invasion and to
serve as a predictive model. We take y; = 0 to denote node neg-
ative cases and y; = 1 to denote advanced nodal metastasis. The
full vector of covariates, x;, is a 4,515 x 1 vector consisting of
an intercept term, the two clinical variables (tumor size and ER
status), and the 4,512 gene expression variables.

Because our focus is on sparse models, we take the prior dis-
tribution over the model space to be as described in Section 3.3
with 7 = 10/4,514. For p(B|y), we take T = 1 as described in
Section 3.2. After running SSS for 20,000 iterations and sav-
ing the top 100,000 models evaluated, we combined the results
through the model-averaging techniques outlined in Section 3.

5.3 Results

The top 100,000 models evaluated contain a mix of between
one and seven variable models, as shown in Table 1. We com-
pute a measure of posterior importance of model size, |y|, as
Uy =kly) =3y cr+ L{jy|=0P(¥|y), where |p| in the context
of binary regression refers to the number of predictors in the
model minus the intercept term. Under our model specification,
the data give the most support to small subset regressions of size
five, six, and four, in that order. SSS did not find any models of
size eight or greater to belong in the list of top models.

Conditionally on I'*, eight genes were found to have a pos-
terior importance measure (2) >.10, as shown in the diago-
nal entries of Table 2. These genes dominate the list of mod-
els, because most of the four-, five-, and six-variable mod-
els include some subset of these genes. The most important
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Table 1. Model Size (k) Importance Measures, Conditioned on the Top 100,000
Models Discovered by SSS

k

1 2 3 4 5 6 7
Number of models 1 54 1,311 11,838 54,597 30,619 1,580
Byl = kly) <001 .001 .020 184 534 253 .007

gene, RGS3, occurs in almost all of the models. We also com-
puted pairwise importance measures according to p(y; = y; =
1y) =y e+ Lyi=y=1)p(¥[y). These values, reported for the
top eight variables in the off-diagonal entries of Table 2, con-
firm that models consisting of the top four variables dominate
the list. Indeed, the four-way inclusion probability, conditional
on I'*, for the top four variables is .244, just less than one-third
of the total mass for models with k=5, 6, 7.

To assess the fit of the model, we computed model-averaged
mean probabilities p; and associated 80% intervals using the
top 10 models. Figure 5 plots these model-averaged fitted val-
ues versus the linear predictor log(p;/(1 — p;)), which serves
as a linear risk index. The fitted values have been corrected for
the baseline incidence rate of 32%, so that .5 provides a ref-
erence point. As is well known, logistic models adapt to the
empirical base rate (here about 32%) in estimating the intercept
of the regression, so the resulting predictive probabilities have
the interpretation as posterior probabilities relative to an im-
plicit prior probability of about .32. To reference any other base
rate, say Pr(y; = 1) = a, we can simply adjust p; to p{, where
pi/(1—=ph) =a(l —.32)p;/((1 —a).32(1 — p;)). We generally
prefer to present predictions referenced to a = .5 unless there
is substantive prior information about a scientifically relevant
base rate. The model fit is quite good: 96% of the positives are
>.5, and 89% of the negatives are <.5.

To assess how the top genes combine across models in a pre-
dictive context, we took the genes composing the top 10 mod-
els (a total of 18 genes) and created 2 “metagenes,” the first 2
principal components from a singular value decomposition of
the (mean-centered) 18 genes. Figure 6 shows the association
between these two metagenes and the model-averaged linear
predictor computed earlier. We expect to find a concordance be-
tween this empirical metagene and the averaged predictions, but
it is evident from the variation in the scatterplot that the com-
plex, data-weighted mixing over the set of regression models
generates predictions that are not simply captured by a single
linear fit—the metagene—to the selected set of most interest-
ing predictor variables.

One key interest in model averaging in the face of regres-
sion model uncertainty is the consequent robustness generally
realized in out-of-sample prediction as a result. Selecting one
model, as in typical applications of stepwise procedures, will
almost surely underestimate predictive uncertainties and lead
to less robust and reliable out-of-sample predictions. Prediction
is also the key tool in model assessment, and we use it here to
assess aspects of the current model fit. To do this, we perform
a leave-one-out cross-validation prediction analysis. Leaving
out observation i, we recompute model-probabilities and de-
rive model-averaged predictions of the response probability for
case i based on the remaining observations. A histogram of pre-
dicted risk index, log(p;/(1 — p;)), is shown in Figure 7. On the
basis of simple thresholding of these point estimates at 0, cor-
responding to a simple thresholding of the corresponding point
predictions of metastasis, the analysis indicates an approximate
sensitivity of 79.2% and a specificity of 76%. This level of pre-
dictive discrimination is quite high and suggests promise for the
approach relative to previous analyses on much smaller and se-
lected subsets of patients (West et al. 2001; Huang et al. 2003).

6. ADDITIONAL COMMENTS

We have presented a novel stochastic search approach for
exploring regression model spaces using the power of distrib-
uted computing to allow consideration of potentially tens of
thousands of possible predictor variables. The SSS approach
is quite general and, in addition to the linear and binary re-
gression models that we have considered here, can be applied
to any generalized linear regression model as long as the mar-
ginal likelihood can be evaluated or approximated. SSS meth-
ods also can handle generalized linear modeling frameworks in
which there is uncertainty in the choice of link function; con-
sider SSS for binary regression where nbd(y) is doubled in size
by computing each model under both a probit link and a logit
link. Some current and recent analyses demonstrate the abil-
ity of SSS to rapidly identify multiple regions of model space
exhibiting high posterior probability—or, more generally, high
model “scores”—and the utility of the approach in contexts in

Table 2. Genewise and Pairwise Importance Measures

RGS3 DXYS155E ATP6V1F MGcs721 VDAC1 GEM WSB1 PRRG1

RGS3 .991 .716 .495 .351 169 133 125 110
DXYS155E .716 .454 .319 .069 .069 21 101
ATP6V1F .498 .250 .010 .045 .108 .039
MGC8721 .352 .016 .042 .054 .006
VDAC1 A7 .037 .001 .047
GEM 134 * *

WSB1 125 .002
PRRG1 110

NOTE: The diagonal elements are the quantities p(y; = 1|y), and the off-diagonal elements are the quantities p(y; = y; = 1ly). The character “*” indicates a value <.001.
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which traditional search and MCMC methods are simply in-
effective due to both dimension and the subtlety of predictive
relationships in the context of noise and complex patterns of
collinearity. Two recent examples in cancer genomics studies,
one using linear regression (Rich et al. 2005) and one using lo-
gistic regression (Dressman et al. 2006), have illustrated this
in connection with both predictive utility and variable selec-
tion/identification in challenging contexts.

We note that applications outside of regression are possible
as well. For example, Jones et al. (2005) considered SSS in
the context of Gaussian graphical model determination, and we
anticipate further developments in that area as well as others.
Some topics of current interest include improved computational
implementation and more general classes of prior distributions
over model spaces.

Software implementing the SSS analysis for linear regres-
sion, binary regression using logistic models, and survival re-
gression using Weibull models is available for use by inter-
ested readers. The code is written in C4++4 and uses MPI
for implementation in a distributed Beowulf cluster environ-
ment. Executable files for a serial implementation of SSS
are also available, and the code may be modified to imple-
ment other sampling distributions. Full details are available at
www.stat.osu.edu/~hans/sss/ or at www.isds.duke.edu/research/
software under the SSS item listing.

[Received June 2005. Revised October 2006. ]
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