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We describe two classes of software systems that release tabular summaries of an underlying database.
Table serversrespond to user queries for (marginal) sub-tables of the “full” table summarizing the
entire database, and are characterized by dynamic assessment of disclosure risk, in light of previously
answered queries.Optimal tabular releasesare static releases of sets of sub-tables that are character-
ized by maximizing the amount of information released, as given by a measure of data utility, subject to
a constraint on disclosure risk. Underlying abstractions — primarily associated with the query space,
as well as released and unreleasable sub-tables and frontiers, computational algorithms and issues,
especially scalability, and prototype software implementations are discussed.

1. Introduction

Federal statistical agencies, and many other organizations as well, must balance con-
cern over confidentiality of their data — in particular, identities of data subjects and sensi-
tive attributes — with their obligation to report information to the public [10]. Advances
in information technology threaten confidentiality: for example, powerful capabilities en-
able record linkage across multiple databases. However, new technologies can also protect
confidentiality while meeting user needs in innovative ways.

In this paper we describe two classes of software systems being developed by the Na-
tional Institute of Statistical Sciences (NISS) under its Digital Government (DG) project
[29]:

Table Servers disseminate tabular summaries of statistical data in response to user queries
for marginal sub-tables of a large (e.g., 40 dimensions with 4 categories each) contin-
gency table containing counts or sums. The distinctive characteristic of table servers
is that theyevaluate disclosure risk dynamically, in light of previously answered
queries.

Optimal Tabular Release technologies calculate (for subsequent release) fixed sets of
marginal sub-tables of a single large table that maximize the information released,
subject to a constraint on disclosure risk. They are distinguished by accounting ex-
plicitly for both the value and the risk of the information that is disseminated.

The central challenge to building both classes of systems are development of the under-
lying abstractions, discussed in §, and construction of scalable algorithms that implement
the abstractions, which are described in § and §.

2. Background
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2 Software Systems for Tabular Data Releases

Here we introduce basic concepts associated with evaluation and reduction of disclo-
sure risk for tabular data releases.

Consider a databaseD of microdata elementsDi , each consisting ofnN numerical
attributes(NAi 1, . . . , NAinN ) andnC categorical attributes(CAi 1, . . . , CAinC ). Some of
the latter may be derived from numerical attributes by quantization (“binning”).

Tabular Data Summaries. In this paper we focus oncount (frequency) tablescon-
structed fromD ; these are cross-tabulations ofD indexed by subsetsC of the categorical
attributes. IfC contains attributesc1, . . . , ck — k is termed thedimension— then the
count table CT(C) is ak-dimensional array counting how many microdata elements have
each combination of category values associated withC. Specifically,

CT(C)(h1, . . . , hk) = #{i : CAic1 = h1, . . . , CAick = hk}, (1)

where eachh j is a possible category value for categorical attributec j . There are 2nC count
tables constructible fromD, ranging from the caseC = ∅ (which by convention contains
the grand total of elements inD) to the case thatC contains allnC of the categorical
attributes — the “full table.” Tables other than the full table are termedsub-tables.

(The other principal form of tabular summaries —magnitude tables— are defined by
a subset of the categorical attributes and a single numerical attribute. Each cell, rather than
containing a count of data elements with specified category values, contains thesumof the
specified numerical attribute over all such data elements.)

Risk Evaluation. The simplest method for evaluation of disclosure risk in count tables
representing an entire population is then–rule [43]: the sub-table CT(C) is too risky if any
non-zero cell count is less thann, and safe to release otherwise. In practice,n is often 3.
Analogously, for magnitude tables there is the(n, p)–rule: a sub-table is too risky if the
underlying cell count is less thann or if any of the data elements contributing to the sum in
that cell dominates in the sense that it comprises more thanp% of the sum. A typical value
in practice isp = 60%.

For tables with sample counts, uniqueness in the sample may or may not pose a risk of
disclosure. Thus the literature [17, 18, 32] looks at the proportion of sample uniques that
are in fact population uniques. If this is small, then the risk is small even in the presence of
a large number of counts of 1 or 2 in the table. A major determinant of this proportion is
the sampling fraction.

For count tables there are statistical and other methodologies to compute bounds on
entries in the full table in terms of released information such as marginal cross-tabulations,
and the tightness of such bounds forms an alternative measure of risk, which we employ in
§ and . In the important cases that the released marginals constitute a decomposable model,
the bounds are both sharp and computable using scalable methods [4, 9]; see §.

Risk Reduction. Numerous strategies exist for reducing disclosure risk and thereby
protecting against identity disclosure for subjects of tabular data [42]. Some of these,
such as aggregation [21, 22, 25], cell suppression [6, 31], perturbation [11, 12, 19, 20]
and controlled rounding [5], operate on the full table itself. Other methods, such as data
swapping [7] and jittering (addition of noise to numerical data attributes) [43], operate
directly on the underlying database, prior to formation of tables.

The software systems described in this paper, in effect, control disclosure risk by not
responding to user queries that are “too risky.” Table servers (§ and ) use dynamic evalua-
tion of the risk of queries, in light of previously released information. The technology for
optimal tabular releases described in § and constructssetsof sub-tables that maximize the
information to be disseminated but prevent identify disclosure nevertheless, by satisfying a
constraint on disclosure risk. Both kinds of systems share two important characteristics.

First, disclosure risk depends on theentire collective of released information, whether
dynamically for table servers or statically for optimal tabular releases. By contrast, some
extant systems evaluate risk only for queries in isolation, ignoring the risk associated with
interacting queries.

Second, confidentiality is ensured byrestricting the level of detail at which data are
released, rather than — as is the case for data swapping and jittering — distorting the data.
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Heuristically, table servers and optimal tabular releases always tell the truth, albeit not the
whole truth. This is especially important for statistical inference from the data: conclusions
may be more uncertain, but will not be erroneous.

3. Abstractions

In this section, we discuss the abstractions underlying table servers (§) and optimal
tabular releases (§).

3.1. Table Servers

Queries and Responses.User queries to a table server are for (marginal) sub-tables
of a large count table: the user forms the query by specifying the variables to be tabulated
(see Figure 3). Potential responses include the requested sub-table (as text, visualized or
in XML), its “projection” onto the released frontier (see below) and risk-reduced modifica-
tions of the requested sub-table. The query may also simply be refused, although this alone
may be informative.

Query Space. Simplifying the notation from §, letT be aK -way count table, is the
“underlying table.” Let [vi1vi2. . .vi j ] denote the marginal sub-table defined by variables
vi1, vi2, . . . , vi j .

The query spaceQ for a table server based onT contains all 2K sub-tables of and is
partially ordered by set inclusion of variables in sub-tables. Denoting the partial order by
“Child” ≺ ”Parent,” then for example, in the demographic data set underlying the prototype
in Figure 1,[
Age, Education, Race

]
≺

[
Age, Education, EmployerType, Race, SalaryLevel

]
.

Released Set and Frontier. At any time t , the setR(t) of all sub-tables released
through timet contains both:direct releasesin response to queries andindirect releases
— previously unreleased children of direct releases. This set is specified completely by
thereleased frontierRF (t) consisting of the maximal elements ofR(t) — those with no
released parents. That is,T ∈ R(t) lies on the frontierRF (t) if and only if there is no
T ′

∈ R(t) such thatT ≺ T ′. In Figure 1, which shows a prototype table server for an
8-variable demographic database,R(t) lies in the lower left portion of the query space,
andRF (t) is its upper boundary.

Risk Criterion. Underlying release decisions is a risk criterionRC defined on sub-
sets ofQ. The conceptual basis of the system is that thecollectiverisk of the released
information cannot exceed a threshold: at all times the system must satisfy

RC(R(t)) ≤ α,

whereα is a risk threshold set by the operators. To emphasize the dynamic nature of table
servers, no requested sub-tableT can be released att that — together with previously
released information— would cause the threshold to be exceeded:

RC(R(t) ∪ T) > α. (2)

Note that this formulation assumes (conservatively but sensibly) that all users can commu-
nicate with one another.

Reflecting historical usage, a typical risk criterion is accuracy of bounds based onR(t)
for sensitive (small count) cells in the full table. Such bounds can be computed using
network methods [6, 30] and NISS-developed generalizations of the “shuttle algorithm”
[4]. There are also exact techniques for special cases, which are described in detail in §.

Unreleasable Set and Frontier.Whenever an answered query releases previously un-
released information, other queries become unanswerable as a result. Consequently, at time
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t there are anunreleasable setU(t) of sub-tablesT whose release is too risky, in the sense
that (2) would hold. The setUF (t) of minimal elements ofU(t) is known as theunre-
leasable frontier. In Figure 1, the unreleasable set lies to the upper right; the unreleasable
frontier is its lower boundary.

Release Rules.When a query requesting release of a sub-tableT is received at timet ,
the system must decide how to respond. IfT ∈ R(t), the response is clear: the requested
information has been released previously, so the query simply answered again. However,
when the request is for an unreleased sub-table, arelease rulemust be invoked to determine
whether it will be answered.

The simplest rule is themyopic ruleof releasing any requested sub-table that is not too
risky: T will be released att as long as

RC(R(t) ∪ T) ≤ α.

The myopic rule, however, allows the table server to take very large steps, by releasing
sub-tables containing many more variables than those that have been released previously.
To prevent this, the table server can allow only sub-tables adding but one variable to a
previously released sub-table — that is, those with a first generation child on the released
frontierRF (t) — to be eligible for release.

More subtle issues arise, though. Typically, it is necessary to prevent a single user (or a
set of colluding users) from driving the table server into a region ofQ that suits their needs
but not those of other users. One defense against this is to use release rules that are biased
against releases that cause many other sub-tables to become unreleasable. Thus, releasing
T at t would, all other things being equal, be deemed undesirable if it were to lead to a
large increase in the size ofU(t).

Another alternative is release rules that incorporate a suitably definedvalueof releasing
T [13, 23, 37]. One example of value is the accuracy with which the full tableT can
reconstructed fromR(t) ∪ T by means of iterative proportional fitting [1].

The decision whether to respond to a query need not be taken immediately. Instead, for
example, the system could accumulate requests for different sub-tables and employ user
interest as a measure of value.

While intriguing, table servers pose significant issues of scale, of user equity (to prevent
the system from being driven in a direction that serves only a small set of users), and of the
scientific, statistical and policy bases for release rules. These and other considerations led
to development of the optimal tabular release technology described next.

3.2. Optimal Tabular Releases

Optimization Formulation. An optimal tabular release (OTR) is constructed by solv-
ing an optimization problem of the form

maxR⊆Q DU(R)

s.t. RC(R) ≤ α,
(3)

whereDU is a measure of the utility of the released data,RC is a risk criterion (examples of
both appear below) andα is a risk threshold. That is, the utility of the released information
— the setR of sub-tables — is maximized, subject to an upper bound on the disclosure
risk. This risk–utility approach builds on other risk–utility formulations [13, 23, 38, 39]
being investigated under the NISS DG project.

Risk Criteria and Thresholds. A typical risk criterion is tightness of bounds based on
R for small count cells in the full table; a specific example is

RC(R) = − min
{
UB(C, R) − LB(C, R) : 0 < #{C} ≤ 3

}
, (4)
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Figure 1: Java table server prototype. Levels in the visualization of the query space cor-
respond to sub-table dimension, with the full tableT at the top and the 0-dimensional
sub-table ar the bottom. Also shown is the effect of releasing the 5–way sub-table indi-
cated by the cursor onR(t) andU(t), as well as on the associated frontiersRF (t) and
UF (t).

whereC is a generic cell in the full table and #{C} is its count value. In (4), UB(C, R)
and LB(C, R) are upper and lower bounds on #{C} determined fromR. Techniques to
compute such bounds are noted in §. Other methods are available for special cases: see §.

Data Utility. An illustrative measure of data utility is

DU(R) = #{R}, (5)

the number of sub-tables contained inR. Alternatives include the number of cells in these
sub-tables and the number of degrees of freedom represented by them.

As noted in §, another measure of utility is a global measure of the accuracy — mea-
sured, for example, by the average per cell mean squared error — with which the full table
T can be reconstructed fromR by means of iterative proportional fitting [1].

4. Table Servers: System Design and Prototypes

A prototype table server, implemented as a Java application, is shown in Figure 1. This
prototype is valuable for its engaging, but non-scalable, visualization of the query space. It
operates on an 8–dimensional full table of data from the 1993 Current Population Survey
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(CPS) [2, 3]. The underlying data come from a sample survey carried out by the US Census
Bureau, which monthly gathers data on approximately 50,000 households across the US.

As seen in the figure, the critical sub-tables at any given time as well as consequences
of releasing particular sub-tables can be readily discerned.

Figure 2 shows the architecture of a more powerful table server implemented using
server-side Java [33]. This prototype operates on a 14-dimensional full table derived from
the 1994 and 1995 CPSs. The full table has approximately 435,000,000 cells, and is ex-
tremely (but realistically!) sparse, principally as a result of the small sample size.

Figure 3 shows the user-input screen. If the requested sub-table lies on or belowRF (t),
it is provided immediately (via a screen display if the sub-table is “small,” and otherwise
via XML download). Releases are governed by the myopic rules that consider only those
sub-tables that are “at most one step” away fromR(t) as candidates for release. Requests
for sub-tables that lie one step or higher thanR(t) are immediately denied. Disclosure
risk for viable sub-tables is evaluated in real time, and the sub-table is released if it is not
considered too risky. The query history database, with tables for users, queries and the
time trajectories ofRF (t) andUF (t), is maintained in aMySQL database server [44]. A
frontier display facility, shown in Figure 4, monitors evolution ofRF (t).

As shown in Figure 2, the HTML-based user-query processing as well as overall pro-
gram logic is implemented by Java Servlets [34]; we use Apache’sTomcat [36] as the
servlet engine. Beyond straightforward tasks such as interaction with the database and
output generation, the most significant work performed is the real-time computation of
disclosure risk.

For maximum efficiency, the computations are done by a nativeC-program. Because
standard implementations of risk computation procedures based on cell-bounds do not scale
to tables with over 400 million cells, we do the risk calculation in real time using a gen-
eralized version of the heuristic “Shuttle Algorithm” [4] along with specially crafted data
structures. The risk computation procedure employs data structures and algorithms that ex-
ploit sparsity of the full table and the fact thatR(t) andU(t) are characterized completely
by RF (t) andUF (t). The data structures represent the full table as a hash table in such
a way that the iterations involved in the algorithm can be organized so as to minimize the
inner-loop computations. This results in a speedup significant enough to permit us to do
the calculation in real time!

5. Optimal Tabular Releases

There are severe scalability issues for the basic OTR formulation in (3) with respect to
the number dimensions of the full table. If the full table containsnC attributes, then there
are on the order of 22

nC choices ofR in (3), which for even moderate values ofnC (e.g,
20) is simply too many, especially if eitherDU(·) or RC(·) requires intensive computation.

Here we discuss two examples of ways to circumvent this difficulty. The first restricts
the released information to correspond a decomposable statistical model (§), which has
the effect of both decreasing the family of allowable releasesR in (3) and simplifying
dramatically computation of the risk. Even so, computational demands are formidable:
because sets of marginal totals correspond to the minimal sufficient statistics of log-linear
models fitted to the full table [1], searching for OTRs has many of the same characteristics
of searching through all possible log-linear models or the subclass of all decomposable
models [14, 27, 40].

The second way (§) “solves” (3) heuristically, by ordering the marginal sub-tables of
T according to a particular notion of risk, and then constructing the heuristically optimal
releaseR∗ by greedy method adding increasingly risky sub-tables until no more can be
added without violating a global risk threshold of the form (4).

5.1. Decomposable Releases

By restrictingR in (3) to have the “right” special structure, we can overcome both
scalability and other computational challenges. We exploit, in this context, the statistical
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Figure 2: Table server prototype: System architecture. The system can handle 14-
dimensional (and higher!) tables. User interaction occurs through a standard Web browser.
Output formats include screen display and XML. See § for details.

theory on graphical models [24, 28, 41], which shows that the conditional dependencies
induced by the sub-tables inRF among the variables cross-classified in a table of counts
consistent withRF can be visualized by means of an independence graph. Each vertex
in this graph represents a variable in the underlying table. We draw an edge between two
vertices if and only if the two-dimensional array defined by the variables associated with
these vertices belongs toR.

Decomposable graphs [24] are the special class of graphs that can be “broken” into
components such that (i) every component is associated with exactly one fixed sub-table in
the frontier; and (ii) no released sub-table is “split” between two components. Reducible
graphs [35, 26] are generalizations of decomposable graphs. A reducible graph is one that
can be at least partially decomposed, although the resulting components of the decomposi-
tion may correspond to more than one fixed sub-table.

If the independence graph of a graphical model is decomposable (reducible), then the
model is said to be decomposable (reducible). In a similar way, if every sub-table in
RF defines a component of the independence graph, the set of released sub-tablesR is
calleddecomposable– see Figure 5. In this case [9], UB(C, R) and LB(C, R) in (4) can
be expressed as explicit functions of the cell counts in sub-tables inR.
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Figure 3: Table server prototype: User input screen. Queries are posed by selecting the
variables in the desired sub-table.
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Figure 4: Table server prototype: Released frontier display. The display lists the sub-tables
comprisingRF (t).

Problem Formulation. Specifically, if we require that the sub-tables inR constitute
the minimal sufficient statistics of a decomposable graphical model [1, 14, 24] (see Figure
5), then first of all the number of candidate releases decreases dramatically. But, more
important, in this case, both UB(C, R) and LB(C, R) in (4) can be expressed asexplicit
functions ofR [9].

For simplicity we adopt the data utility measure of (5) — the number of sub-tables
released. Therefore, in this case (3) becomes

maxR⊆Q #{R}

s.t.
min

{
UB(C, R) − LB(C, R) : 0 < #{C} ≤ 3

}
≥ β

R is decomposable.

(6)

The choice of 3 as bound width in (6) is illustrative. By “R is decomposable” we mean
that the associated released frontier comprises the minimal sufficient statistics of a decom-
posable model.

More generally, when the released marginals are associated with areduciblegraphical
model [24], the computational effort associated with (6) can be decreased significantly by
“divide-and-conquer” techniques [9].

Computational Implementation. Even (6) cannot be solved by enumeration: the
number of decomposable models grows exponentially with the number of variables inT.
One way to cope with this problem is to employ simulated annealing — an iterative Monte
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Carlo approach for computing a local maximum of #{·} by generating a random sample
from the distribution

π(R) ∝ exp

(
#{R}

T

)
, (7)

whereT is a scale parameter interpretable astemperature, which is decreased toward 0
as the algorithm progresses. Given a current stateR j , a new decomposable modelR j +1
is selected from a uniform distribution on a neighborhoodN(R j ) of R j . If #{R j +1} ≥

#{R j } (i.e., data utility increases), thenR j +1 becomes the current state with probability 1.
Otherwise, if #{R j +1} < #{R j }, R j +1 is accepted with probability

min

{
exp

(
#{R j +1} − #{R j }

T

)
, 1

}
. (8)

At higher temperatures, the Markov chain(R j ) can “escape” local optima of (6), while
asT approaches 0, its movements will concentrate in a smaller and smaller region around
(what is hoped to be) the global maximum.

In our implementation, the neighborhoodN(R) is taken to consist of all releases de-
fined by decomposable independence graphs obtained by deleting or adding one edge from
the graph associated withR. Very efficient algorithms [8] exist for findingN(R). Because
any two decomposable graphs can be linked by a sequence of decomposable graphs that
differ by exactly one edge [24], the resulting Markov chain is irreducible, as required for
simulated annealing to work.

Example. The simulated annealing algorithm used to solve (6) was run on a 13-
dimensional data set extracted from the 1994 and 1995 CPSs, which contains 299,285
microdata records. (These data were derived from the 14-dimensional data set underlying
the table server prototype of §.) The use of CPS data is illustrative: because the data are
a sample, there may be no disclosure risk at all. Moreover, the records are constructed by
collapsing across monthly data, but some of these may correspond to the same people. Nev-
ertheless, for the purposes of the example, we act as if the data correspond to individuals
forming a population, so that small count cells must be protected.

The variables have 5, 2, 3, 3, 5, 8, 2, 2, 3, 5, 2, 3 and 2 categories, respectively. The full
table is quite sparse: only 41,672 of the 2,592,000 cells contain non-zero entries. Of these,
22,996 cells contain a count of “1”, 6,435 cells contain a count of “2”, and 3,032 have a
count of “3.” Therefore, almost 80% of the non-zero cells in the full table are subject to
disclosure risk [43].

The simulated annealing algorithm was started withR0 containing the thirteen one-
way sub-tables, which is “safe.” The algorithm converged to a set of releasable sub-tables
R∗(β = 3) whose frontier is

RF ∗(β = 3) =

{
[1, 7, 8, 11, 12, 13], [7, 8, 11, 12, 13], [2, 3, 7, 8, 11, 12, 13],

[2, 3, 4, 7, 8, 11, 13], [2, 5, 7, 8, 11, 13], [5, 6, 7, 8, 11, 13],

[2, 4, 7, 9, 11, 13], [2, 7, 8, 10, 11, 13]
}
,

and which contains five 6-way and two 7-way sub-tables. The release contains a total of
351 sub-tables, representing 4.25% of the 8,191 sub-tables of the full 13-way table. See
Table 1 for details.

It is interesting to contrastR∗(β = 3) with the set of released sub-tables whose frontier
consists ofall 3-way sub-tables. (Such releases are common practice in the statistical
agencies [16].) This set contains 26 sub-tables more thanR∗(β = 3), but arguablyR∗(β =

3) provides users with more information because 186 (or 52%) sub-tables inR∗(β = 3)
have dimension four or greater. In addition, because the model whose frontier consist
of all 3-dimensional sub-tables is not decomposable, determining whether it is releasable
constitutes a formidable computational burden.
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Figure 5: Independence graph associated with three marginal sub-tables [BF], [ABCE] and
[ADE] of a six-way table [ABCDEF], visualizing the dependency patterns induced by the
released marginals. The graphical model with minimal sufficient statistics [BF], [ABCE]
and [ADE] is decomposable [24].

Dimension Number of Released Sub-tablesTotal Number of Sub-tables Percent
1 13 13 100%
2 52 78 66.67%
3 100 286 34.97%
4 105 715 14.69%
5 61 1,287 4.74%
6 18 1,716 1.05%
7 2 1,716 0.12%

Table 1: Breakdown of the released set of sub-tablesR(β = 3). The columns show the
dimension of sub-tables, how many sub-tables of that dimension are inR(β = 3), the total
number of sub-tables and the percentage of released sub-tables.

Larger values of the risk thresholdβ decrease the information that can be released. For
β = 4, the optimal released frontier is

RF ∗(β = 4) =

{
[1, 2, 8, 11, 13], [2, 3, 4, 7, 8, 11, 13], [2, 3, 7, 8, 11, 12, 13],

[3, 4, 5, 7, 8, 13], [3, 7, 8, 9, 11, 13], [2, 7, 8, 10, 11, 13], [3, 6, 8, 12, 13]
}
,

and 319 sub-tables (3.89%) are released. Forβ = 5, the algorithm produced

RF ∗(β = 5) =

{
[1, 2, 7, 9, 13], [2, 7, 8, 9, 11, 13], [2, 3, 7, 8, 11, 13],

[2, 3, 4, 7, 11, 13], [5, 7, 8, 11, 12, 13], [3, 6, 8, 11, 13], [7, 8, 10, 11, 12]
}
,

releasing 239 sub-tables.

5.2. Heuristically Ordered Marginals

Two potential objections to the approach in § are that even with the restriction to decom-
posable models the computational demands are formidable, and that the decomposability
restriction itself is not justifiable. We recognize these, but are not in complete sympathy
with either. In any case, however, it does make sense to consider other approaches to the
OTR problem. As in §, we again act as if the example data represent a population of
individuals.
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Approach. The heuristic method discussed here is straightforward: we order the el-
ementsT of the query spaceQ in terms of a particular measure of risk, and add them to
the release in order of increasing risk until no more can be added without exceeding a risk
threshold. The details of this greedy procedure are somewhat complex, however, and we
lay them out step-by-step.

First, we term a cellC in the full tableT at risk if 0 < #{C} ≤ 2 (i.e., if its count is 1
or 2). These are the cells that must be protected.

Second, by analogy to (4), given abound widthw, we term a releaseR bad at widthw
if

min
{
UB(C, R) − LB(C, R) : C is at risk

}
≤ w. (9)

That is,R is bad atw if at least one at risk cell can be bounded withinw on the basis of
the sub-tables contained inR.

Third, themost parsimoniousrelease MPR(T) associated with a sub-tableT ∈ Q is
obtained by releasingT together with the one-dimensional sub-tables corresponding to all
variables that do not appear inT . For example, ifT = [1, 2, 3] for a six-dimensional table
then MPR(T) = {[1, 2, 3], [4], [5], [6]}.

In order to assess how “dangerous” a sub-tableT would be if it were released, it suf-
fices to consider MPR(T), since it is embedded in any other possible release containing
T . Moreover, because it is most parsimonious, MPR(T) has the loosest bounds of all
such releases. Finally, MPR(T) is decomposable, so that these bounds can be computed
explicitly.

Next, a sub-tableT is then termedbad at widthw if MPR(T) is bad atw in the sense
of (9).

Fourth, on the basis of the computations outlined, we can define for eachT ∈ Q a
critical width

w∗(T) = max{w : T is bad atw}. (10)

The higherw∗(T), the safer it is to releaseT . Consequently, a sub-tableT1 is said to be
more dangerousthan another sub-tableT2 if w∗(T1) < w∗(T2).

To construct a release, we place the sub-tables in a listL in decreasing order with
respect to their critical widths, that is, from least to most dangerous. Tables with the same
critical width are put in decreasing order with respect to their dimension, since to maximize
the amount of released information, we would prefer to release a higher-dimensional sub-
table.

Let T1, T2, . . ., TL be the sub-tables in the order in which they appear inL. We want
to identify the unique rankl0 ∈ {1, 2, . . . , L} such thatR∗

= {T1, . . . , Tl0} is releasable
but R′

= {T1, . . . , Tl0, Tl0+1} is not. Instead of sequentially adding new sub-tables start-
ing from the top of listL, we employ a much more efficient bisection search strategy, as
described below:

Step 0. Initialize l1 := 1 andl2 := L.

Step 1. Putl3 := b(l1 + l2)/2c.

Step 2. Check whether the set of sub-tables{T1, . . . , Tl3} is releasable. If so, setl1 := l3.
Otherwise, setl2 := l3.

Step 4. If l2 = l1 + 1, setl0 := l1 and stop. Otherwise, go toStep 1.

Example. We illustrate this approach using the cross-classification of 1841 Czechoslo-
vakian car factory workers, who took part in a prospective epidemiological study to in-
vestigate the potential risks factors for coronary thrombosis [15]. The data we examine
here form the six-way table given in Table 2 where the six variables are defined as follows:
A indicates whether the worker “smokes,” B corresponds to “strenuous mental work,” C
corresponds to “strenuous physical work,” D corresponds to “systolic blood pressure,” E
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B no yes
F E D C A no yes no yes

neg < 3 < 140 no 44 40 112 67
yes 129 145 12 23

≥ 140 no 35 12 80 33
yes 109 67 7 9

≥ 3 < 140 no 23 32 70 66
yes 50 80 7 13

≥ 140 no 24 25 73 57
yes 51 63 7 16

pos < 3 < 140 no 5 7 21 9

yes 9 17 1 4
≥ 140 no 4 3 11 8

yes 14 17 5 2
≥ 3 < 140 no 7 3 14 14

yes 9 16 2 3
≥ 140 no 4 0 13 11

yes 5 14 4 4

Table 2: Czech auto worker data from [15].

corresponds to “ratio ofβ andα lipoproteins,” and F represents “family anamnesis of coro-
nary heart disease.”

There are three dangerous cells — one with count 1 and two with count 2. The resultant
optimal releaseR∗ consists of all sub-tables ofT = [ABCDEF] other than [ACDEF] (the
sub-table with the smallest critical width), [ABCDE] and [ABDEF]. ThereforeR∗ contains
a total of 60 sub-tables. By contrast, the maximum number of sub-tables contained in a
decomposable release is 48.

More detailed examination of the critical widths, the smallest 35 of which — corre-
sponding to the 35 most dangerous sub-tables, are shown in Table 3), reveals intriguing
structure. In particular, the sub-tables of each dimension with the smallest critical widths
— [ACDEF] for dimension 5, [ACDE] for dimension 4, [ADE] for dimension 3 and [DE]
for dimension 2 — form a chain with respect to the partial order≺. The same was true
in other examples, but whether this property holds generally — if it did, it would reveal
which combinations of variables are most threatening to disclosure risk — is uncertain. A
complete visualization of the critical widths appears in Figure 6.

6. Summary

The two classes of software systems we have described operate in different contexts
and take quite different approaches to disclosure limitation for tabular data. Table servers
are “live,” responding dynamically to incoming user queries for sub-tables of the full table
and assessing disclosure risk in light of previously answered queries. Table servers can be
built at realistic scales, but many questions remain, especially those associated with release
rules and operating policies that the user community would view as equitable.

Optimal tabular releases, by contrast, are static releases of sets of sub-tables that ac-
count explicitly for both disclosure risk (as constraint) and the utility (as objective func-
tion) of the information released. Two approaches, one restricting the released frontier
to correspond to a decomposable statistical model and the other a greedy algorithm that
adds sub-tables in order of increasing individual risk until no more can be added without
violating a global risk constraint, were described and illustrated.

Despite differences, the two classes of systems also have many similarities. As de-
scribed in §, they depend on many of the same underlying abstractions, especially released
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[ACDEF] 3 [ABCF] 30
[ABCDE] 5 [ABCD] 30
[ABDEF] 6 [DEF] 45
[BCDEF] 9 [ADF] 49
[ACDE] 10 [BCEF] 52
[ABCEF] 10 [CDE] 54
[ABCDF] 10 [AEF] 55
[ADEF] 12 [BDE] 56
[ABDE] 12 [ABD] 57
[BDEF] 20 [ACE] 58
[ABDF] 20 [ABF] 58
[ACDF] 21 [ACF] 59
[CDEF] 22 [ACD] 61
[BCDE] 23 [ABE] 61
[ABEF] 23 [ABC] 64
[ADE] 25 [BCDF] 68
[ACEF] 25 [DE] 119
[ABCE] 26

Table 3: Critical widths for the most dangerous sub-tables in the example of §.

Figure 6: Visualization of the critical widths for all sub-tables in the example of §. The
color scale at the lower left shows values ranging from 0 (the most risky) to 255 (the least
risky). The chain comprising the most dangerous table of each dimension is highlighted.
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and unreleasable frontiers. Implementation in either case raises difficult issues of scalabil-
ity that affect all details of algorithms from data structures to computational techniques.
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