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Summary

We describe a divide-and-conquer technique for generating a Markov basis
that connects all tables of counts having a fixed set of marginal totals.
This procedure is based on decomposing the independence graph induced
by these marginals. We discuss the practical imports of using this method
in conjunction with other algorithms for determining Markov bases.
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1 Introduction

The focus of this paper are sets of k-way tables of counts that are induced
by fixing several lower dimensional marginals. These sets arise in a variety
of contexts such as disclosure limitation (Dobra 2002, Fienberg, Makov &



Steele 1998, Fienberg, Makov, Meyer & Steele 2001) and the calibration of
test statistics (Agresti 1992, Diaconis & Efron 1985, Mehta 1994). Although
there exist efficient algorithms for counting and enumerating two-way integer
tables with fixed row and column totals (Mount 1995, De Loera & Sturmfels
2001), the problem of describing sets of k-way tables, k > 2, remains open in
the literature. Diaconis and Sturmfels (1998) proposed a general algorithm
for generating random draws from a set of tables with given fixed marginals.
Their approach is extremely appealing because, in theory, it can be used for
arrays of any dimension. Despite its generality, the power of this sampling
procedure is limited because it requires access to a Markov basis—a finite set
of data swaps which allow any two tables with the same fixed marginals to be
connected. In addition to sampling, Markov bases can be employed to enu-
merate all the integer tables with a given set of marginals. As a consequence,
Markov bases allow one to create a “replacement” for a database consisting
of a k-way contingency table, when such a replacement is needed to protect
the individuals with rare characteristics whose identity might be disclosed by
the release of a number of marginals (Willenborg & de Waal 2000).

Diaconis and Sturmfels (1998) and Dinwoodie (1998) suggest computing a
Markov basis by finding a Grobner basis (Cox, Little & O’Shea 1992) of a
well-specified polynomial ideal, but their method is difficult to employ even
for tables with three dimensions because of the computational complexity of
computing Grobner bases. The statistical theory on graphical models (Madi-
gan & York 1995, Whittaker 1990, Lauritzen 1996) shows that the conditional
dependencies induced by a set of fixed marginals among the variables cross-
classified in a table of counts can be visualized by means of an independence
graph. In particular, a lot of attention has been given to decomposable graphs
(Lauritzen 1996), a special class of graphs that can be “broken” into com-
ponents such that (i) every component is associated with exactly one fixed
marginal; and (ii) no information is lost in the decomposition process, i.e.
no marginal is “split” between two components. Reducible graphs (Tarjan
1985, Leimer 1993) are generalizations of decomposable graphs. A reducible
graph is one that can be at least partially decomposed, though the resulting
components of the decomposition may correspond to more than one fixed
marginal.

In a companion paper, Dobra (2001) gave explicit formulas for dynamically
generating a Markov basis when the set of fixed marginals defines a decom-
posable independence graph. By following a similar line of reasoning, we
develop a divide-and-conquer algorithm for significantly reducing the time
needed to find a Markov basis when the underlying independence graph is
not decomposable, but is reducible. In this case, the problem of finding
a Markov basis can be reduced to finding Markov bases corresponding to
smaller components of the graph. The major advantage of using our algo-
rithm comes from the fact that the number of variables involved is one of



the main factors that leads to an exponential increase in the amount of com-
putations required for generating a Markov basis. We show that “breaking”
a set of k-way tables into several sets of tables of dimension strictly smaller
than k, and “assembling” the resulting Markov bases associated with these
lower-dimensional families of tables can be done at almost no computational
cost.

In the next section, we outline the basic theory of tables and Markov bases.
In Section 3 we introduce decomposable and reducible sets of marginals and
discuss some of their properties. In Section 4 we outline the divide-and-
conquer technique for generating Markov bases. In Section 5 we prove the
main theorem of the paper which constitutes the core of our dimension re-
duction algorithm. In the final section we summarize our results and draw
some conclusions.

2 Data Swapping and Markov Bases

A k-way table of counts nk is a k-dimensional array of non-negative integer
numbers. Each variable X;, j = 1,2,...,k, recorded in such a table can take
a finite number of values z; € Z; :={1,2,...,I;}. Let T =Ty x Iy x ... x Iy.
A cell entry nk(ik), ix € Ik, in table ng is a non-negative integer repre-
senting the number of units or individuals sharing the same attributes ix.

Let D = {i1,42,...,4;} denote an arbitrary subset of K. The D-marginal np
of ng is the contingency table with marginal cells ip € Ip :=1;, x ... x 1,
and entries given by

np(ip) = Z nk(ip, jr\D)-
Jx\D€ZK\D

Two k-way tables ng = {nj(ix)}, ., and nk = {nk(ix)}, ., - are
equal if nl (ix) = n% (ik) for all ix € Tk, and in this case we write n}, = n%.

If all the counts in table nl. are zero, i.e. nl (ix) =0, for all ix € Tk, we

write nk = 0. The sum of two k-way tables nk. and n% is another k-way

table n3, := nk. +n% with entries n3 (ix) = nk(ix) +nk(ix), for ix € Ik.

Similarly, the difference between n} and n% is an array n} := nk — n%
with entries n% (ix) = nk(ix) — n%(ix). The set of k-way tables indexed
by Zk is also closed under multiplication with scalars. If a is a real/integer
number, the array n% := a - nk has entries n% (ix) = a - nk(ix).

Data swapping (Dalenius & Reiss 1982) is a disclosure limitation technique
that involves moving table entries from one cell to the other. Since some of the
cell entries could be increased and other cell entries could be decreased, a data

swap associated with a k-way table nk is a k-way array fx = {fx (ix)}ix ezx



containing integer entries, i.e.
fr(ix)€eq{...,—2,-1,0,1,2,.. .},

for all ixg € Tk. Intuitively, a data swap can be viewed as the difference
between the post-swapped and the pre-swapped tables. The table created by
repeatedly applying data swaps to the original table is sometimes required to
be consistent with the marginals that were previously made public (Willen-
borg & de Waal 2000). Consequently, we are interested in data swaps that
leave a number of marginals unchanged.

Definition 2.1. Let Dy, D, ..., D, be subsets of K. A move fx for
Dy,...,D, is a data swap that preserves the marginal tables specified by the
index sets Dy, Ds, ..., D,. In other words, fp, =0, for all j =1,2,...,r.

Let eix = {eix ( K)}jK —_ be a k-way table that has all cell entries equal to
zero except the ig-th, where it contains a count of “1”, i.e.

_ 1, if jx =ik
1K — ’ ’
e (k) = { 0, otherwise.

With this notation, a move fx = {fx (ix)}ix ez is given by:

fKZ Z fK(iK)-eiK.

ix €Ik

Let I := {ix € Ik : fx(ix) > 0} and ™ := {ix € Ix : fx(ix) < 0}
be the set of indices corresponding with the positive and the negative cell
entries in fx. Then we can write

fo= D falin) e+ 3 frlin)-e'™.

iK EIiK iK EIiK

We can define the multiset P(fx) to consist of all the indices ix in Ii",
but where ix occurs fx(ix) times. Similarly, define the multiset N(fx) to
consist of all indices ix in Z™ with ix occurring —fi (ix) times. Now we
can write fx as

fx = Z el — Z elx,
ZKEP(fK) ’LKEN(fK)

By definition, a move fx should preserve at least one marginal total, hence
the sum of all entries of fx has to be zero. Therefore we need to have:

> frlin)=— Y, fxlix).

ix €T ix €T



This implies that the multisets P(fx) and N(fx) have the same cardinality,
ie. P(fic) = {i1,.--rim} and N(fx) = {ir',...,im'} with i € T i)' € T
for I =1,...,m. We represent moves more compactly as:

fe = [P(fx)|IN(fx)];
[{its .- sim}I{it's - im' 3

Example 2.2. Let K ={1,2,3,4} and 7, =75 =73 = I, = {1,2}. A move
fr = {fr(iK)}ix ez, can be represented as a nested 2-dimensional array:

K (£(,5,2,1)) (£(i,5,2,2)) )

For example, the move

N

|

— =
OO OO

preserves the {1,2}, {2,3} and {3, 4}- marginals of a four-way table because
the corresponding two-way marginals of fx are zero. In our notation, we
write fx as:

fK = [{(27 1727 1)7 (17 17 172)}”{(27 17 17 )7 (17 1727 1)}]'

This notation can also be used for arbitrary non-negative integral tables. One
advantage of using our notation is that, given D C K and a table ng, it is
easy to compute the D-marginal of ng.

Lemma 2.3. Let ng be a k-way table with non-negative entries. Suppose
that D = {1,2,...,a} and K\ D ={a+1,...,k}. We write ng as

ng = [P(nxk)||0],
= [{(slatl)a'"a(sm;tm)}”@]-

All the s; index Tp and the t; index Tx\p. Then np is given by

np = [P(np)|0],
= [s1,---,sm}10).

Proof. The D-marginal of e(®1) is e*. The lemma then follows by linearity
of computing D-marginals. |



Denote by T(np,,...,np,) the set of all tables ng that have their Dy, D,
..., Dy-marginals equal to the corresponding marginals of ng. A move fx
is admissible for ngk if ng + fx belongs to T(np,,...,np,). In particular,
we must have (nx + fk)(ix) > 0 for all indices ix, which is equivalent to
N(fK) C P(IIK).

Definition 2.4. A Markov basis M is a finite collection of moves that pre-

serve the Dy, ..., D,-marginals and connects any two k-way tables that have
the same Dy, ..., D,-marginals. In other words, for any two tables xg, ng
such that xx € T(np,,...,np,), there exists a sequence of moves f}, £z,

..., f% in M such that

XK — g = Zf;(, (2'1)
j=1
and
s' '
nK+Zf}( € T(nD17""nD7‘)7 (22)
Jj=1

for 1 < s’ <s. Eq. 2.1 and Eq. 2.2 say that the table ng is transformed
into xx by employing moves in M. Since a Markov basis M depends only
on the index sets Zp,, ..., Zp,, we will say that M is a Markov basis for
T(Dy,...,D,), where

T(Dy,...,D,;) ={T(np,,-..,np,) : nk is a table of counts}.

Theorem 2.5. (Diaconis & Sturmfels 1998) There exists a Markov basis M
for T(Dyq,...,D,).

In the algebraic setting, a Markov basis for a set of tables corresponds to a
generating set for a corresponding toric ideal. For detailed explanations, see
Diaconis and Sturmfels (1998).

3 Special Configurations of Marginals

In this section we closely follow the notation and definitions relating to graph
theory introduced in Lauritzen (1996) and Dobra and Fienberg (2000). A
brief introduction with the basic graph terminology needed to understand
the results that follow is given in Appendix A.

Consider a set of marginals np,, np,, ..., np, such that their index sets
cover K,ie. K =Dy UDyU...UD,. We always assume that there are no
redundant configurations in this sequence, that is there are no ry, ro such
that D,, C D,,.



We visualize the dependency patterns induced by Dy, Da, ..., D, by cons-
tructing an independence graph. Each vertex in this graph represents a
variable X, j € K. We draw an edge between two vertices if and only if the
two-dimensional array defined by the variables associated with these vertices
is a marginal of some np,.

Definition 3.1. The independence graph G = G(D1, D, ..., D,) associated
with np,, np,, ..., np, is a graph with vertex set K = D1 U Dy U...UD,
and edge set E given by E := {(u,v) : {u,v} C D;, for some j € {1,...,7r}}.

Log-linear models are the usual way of representing and studying contingency
tables with fixed marginals (Bishop 1975). If the minimal sufficient statistics
of a log-linear model define a decomposable independence graph, the model
is said to be decomposable. By analogy with log-linear models theory, we
introduce decomposable sets of marginals.

Definition 3.2. The set of marginals np,, np,, ..., np, is called decom-
posable if its corresponding independence graph G = G(D1,D,, ..., D,;) is
decomposable and the cliques C(G) of G are the index sets associated with
np,, Np,, ..., 0p_, i.e. C(g) = {Dl,DQ, - ;-Dr}-

Therefore a decomposable set of marginals could represent the minimal suf-
ficient statistics of a decomposable log-linear model.

Example 3.3. Let ng be a table of counts cross-classifying variables X,
Xs,..., X¢. With every variable X; we associate a vertex j € K = {1,...,6}.
The index sets D1 = {2,6}, D3 = {1,2,3,5}, D3 = {1,4, 5} define a two-way,
a four-way and a three-way marginal of ng, respectively. The independence
graph G induced by np,, np, and np, is represented in Fig. 1. If we
“break” this graph in the vertex “2” and along the edge “(1,5)”, we end up
with three components corresponding to the marginals np,, np, and np,.
Any of these components cannot be further “broken”. As a consequence, G is
a decomposable graph with cliques C(G) = {D1, D2, D3}, while np,, np, and
np, form a decomposable set of marginals. The separators of G are S; = {2}
and Ss = {1, 5}. u

Definition 3.4. The marginals np,, np,, ..., np, are consistent if, for any
r1, 2, the (Dy, N D,,)-marginal of np,  is equal to the (D, N D,,)-marginal
of IIDT2 .

The consistency of a set of marginals does not necessarily imply the existence
of a table having this particular set of marginal totals—see, for example, Vlach
(1986). To be more precise, T(np,,...,np,.) could be empty even if np,,
np,, ..., np, are consistent. In the special case of consistent and decompo-
sable marginals, however, T(np,,-..,np,) is never empty (Dobra 2002).
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Figure 1: An example of a decomposable independence graph induced by a
two-way, a four-way and a three-way marginal of a six-way contingency table.

Decomposable log-linear models have many other exceptional properties that
have been well documented in the literature. For example, the corresponding
maximum likelihood estimates can be expressed in closed form (Lauritzen
1996, Whittaker 1990). Additionally, Dobra and Fienberg (2000) obtain for-
mulas for calculating sharp upper and lower bounds for cell entries of tables in
T(np,,...,np,) given that the marginals are consistent and decomposable.

Decomposable sets of marginals also have extremely simple Markov bases.
Dobra (2001) constructs a Markov basis F(Dy,...,D,) for T(D,,...,D,)
if np,, np,, ..., np, is a decomposable set of marginals. All the moves in
these Markov bases are primitive, i.e. they have two entries equal to “1”, two
entries equal to “—1”, while the remaining cells are zero. For related efforts
for determining a Markov basis in the decomposable case see Takken (1999).

If a configuration of marginals is not decomposable, it seems natural to
ask whether we could reduce the computational effort needed to generate
a Markov basis by employing the same strategy used in the decomposable
case: decompositions of graphs by means of separators. We explore the more
general situation when the independence graph G is not decomposable, but
is reducible.

Definition 3.5. The set of tables isnp,, np,, ..., np, called reducible if its
corresponding independence graph G = G(Dy, Da,...,D,) has a decomposi-
tion (A1, S, Ay) with S C D; for some [.

For example, any decomposable set of marginals is also reducible but the con-
verse is not necessarily true. Additionally, it may happen that the underlying
independence graph is reducible although the set of marginals is not.

Example 3.6. Let K = {1,2,3,4,5} and nk be a five-way table. Consider
the index sets D1 = {1,2,3}, Dy = {1,3,4}, D3 = {2,3,4}, Dy = {1,4,5},
D5 = {2,4,5}, and Dg = {1,2,5}. Notice that D; UD,U...UDg = K.
The independence graph G defined by these index sets is pictured in Fig. 2.
The cliques of G are V; := {1,2,3,4} and V; := {1,2,4,5}. Because Dy, D>,



..., D¢ are not cliques in G, the set of marginals np,, np,, ..., np, is not
decomposable.
1
3 4 5
2

Figure 2: The independence graph induced by six three-way marginals of a
five-way table. Although the graph is decomposable, this set of marginals is
neither decomposable nor reducible.

Take S := ViNVz = {1, 2,4}. Since (V1\S, S, V2\S) is a proper decomposition
of G, this graph is decomposable hence reducible. However, the set np,, np,,
..., np, is not reducible because there is no Dy, I € {1,2,...,6}, such that
S C Dy. |

4 Divide-and-Conquer

The special decomposability properties of independence graphs can be ex-
ploited to significantly reduce the computational effort required to generate a
Markov basis T(Dy, - .., D,) associated with a reducible set of marginals np, ,
np,, ..., np_ . Leimer (1993) shows that there exists a sequence of vertex sets
Vi, Va, ..., V; of the independence graph G = G(D1,Ds,...,D,) = (K, E)
such that K = V;UV,U...UV,, and, for j = 2,...,q, (Hj—1\S;, 55, V; \'S;),
is a decomposition of the subgraph G(H;) of G. We denoted H; = V,U...UV;

and S; = H;_1NV;. Wecall S, ..., S, the sequence of separators associated
with V1, Va, ..., V4. With every vertex set Vj, we associate
L(V;) :=={D;: D; C V;}. (4.1)

Let H; be a Markov basis for the class of tables T({D; : D; € L(V;)}),
for j = 1,2,...,q. Starting from Hi, Ha, ..., H,, we give a procedure
for recursively generating a Markov basis for T(Dy,...,D,). Using direct
algebraic calculations, a set of Markov bases {#;} ; 1s easier to generate
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than a Markov basis for T(D;,..., D,) since generating every #; involves
computations on a smaller set of variables (X; : i € V}).

We assume that the set of tables
{np, : D; € L) U...UL(V;)}, (4.2)

is reducible, i.e. for every separator S; of G, there exists some Dy, | =
1,2,...,r, such that S; C D;. In the next section we describe a procedure
for combining a Markov basis for the class of tables T(L(V1)U... UL(V;_1))
with a Markov basis H; for T(L(V;)) into a Markov basis for T(L(V1)U...U
L(V;_1) U L(V;)). Given that such a procedure exists, we outline below an
algorithm for determining a Markov basis for T(D;,...,D,).

Algorithm 4.1 (Markov basis for a reducible set of marginals).

o Obtain a Markov basis H'2 for T(L(V1)UL(Vz)) from the Markov bases
Hi and Hs.

e for j=3,...,qdo

— Obtain a Markov basis HY*>7 for T(L(V1) U ... U L(V})) from
the Markov bases HY?I=1 and H,;.

end for
[ ]

The resulting set of moves H!+%~? will be a Markov basis for T(Dy, ..., D,).

Example 4.2. Let K = {1,2,...,11} and nx be an eleven-way table. The
index sets corresponding to the fixed marginals of ng are the set of edges of
the graph G in Fig. 3 from which we take out {3,4}, {3,11}, {4,11}, and
then add {3,4,11}. G is a reducible graph and take V; := {2,3,9,10}, V5 :=
{4,5,6,7}, V3 := {1,3,4,11} and V4 := {3,4,7,8,9,11}. The separators
corresponding with Vi, ..., V4 are Sy := {3,9}, S5 := {4, 7}, Ss := {3,4,11}.
Because every separator identifies a fixed marginal, the set of tables ny; 1),
ngy11) N1,4}), N{3,4,11}> 13,0}, {811}, N{4,7}, N{8,9}, N{7.8}, {23}, I1{2 10},
n{g,lo}, n{4,5}, n{576}, n{6,7} is reducible.

Assume we somehow managed to compute the Markov bases Hy, Ha, Hs, Ha
associated with the classes of tables

T
T
T
T

{1,3},{1,11},{1,4},{3,4,11}),
{3,4,11},{3,9},{8,11},{4,7},{8,9}, {7, 8}),
{2,3},{3,9},{9,10}, {2,10}),
{4,5},{5,6},{6,7},{4,7}).

PRy
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10 9 7 6

8

Figure 3: A reducible independence graph with four components (atoms)
defined by the separators {3,9}, {4,7} and {3,4,11}.

Then Algorithm 4.1 goes as follows:

e Make use of H; and Hs to obtain a Markov basis H!2 for

T({1,3},{1,11}, {1,4}, {3, 4,11}, {3,9}, {8, 11}, {4, 7}, {8, 9}, {7, 8}).
e Use H'2 and Hs to determine a Markov basis 23 for

T({1,3},{1,11},{1,4},{3,4,11},{3,9}, {8,11},{4,7},{8,9},{7, 8},
{2,3},{2,10}, {9, 10}).

e Finally, combine H'?® and H4 into a Markov basis H2:3* for

T({1,3},{1,11},{1,4},{3,4,11},{3,9}, {8,11},{4,7},{8,9},{7, 8},
{2,3},{2,10},{9,10}, {4,5}, {5,6}, {6,7}).

5 A Decomposition Theorem

Consider a reducible set of marginals np,, np,, ..., np, with independence
graph G = (K, E). The graph G has a decomposition (Aj,S, A3) such that
S C Dy, for some lg € {1,...,r}. Without loss of generality, we can assume
that Ay = {1,...,a}, S = {a+1,...,b}, and Ay = {b+1,...,k}. Let
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Vi:=A;US and V5 := SU As. Denote by £(V1) and £(V>) the set of all Dy,
[ =1,...,r, belonging to V; and V3, respectively—see Eq. 4.1. Since S is a
minimal separator of A; and A, in G, the graph G’ having cliques V; and V3
is decomposable. Dobra (2001) constructs a set of moves F(V;, V3) for the
class of tables T(V1,V2). This set is defined as follows:

Definition 5.1. F(V1,V5) is the union of all moves fx and —fx, where fx
is given by

[P(£x)|IN (fx )],
= [{(Slitﬂul): (82,t,U2)}||{($1,t,U2), (SZ:taul)}]' (5'1)

In Eq. 5.1 s1 # so range over Z4,, t ranges over Zg, and u; # us range over
La,.

fr

If fx is as in Eq. 5.1, then P(fy,) = {(s1,%), (s2,t)} = N(fy;), which implies
that fy, = 0. Similarly, fy, = 0, and consequently F(V1,V>) is indeed a set
of moves for T(V1, V).

Lemma 5.2. (Dobra 2003) F (V1,Va) is a Markov basis for the class of tables
T(V1, V2).

Suppose we constructed a Markov basis H; for T(£(V1)) and a Markov basis
Ho for T(L(V:)). The goal of this section is to show how to generate a
Markov basis H for T(D;,...,D,) from H; and H,. The first step is to

“extend” the moves in H; to a set of moves H} for T(D, ..., D,). Similarly,
the moves in Hz are extended to a set of moves H} for T(D;,...,D,). In
Theorem 5.6 we prove that

HUH, UF(,Va), (5.2)

is a Markov basis for T(D4,...,D,).
Let fy, = [P(fy,)||N(f;)] be a move for T(L(V1)), where

P(fvl) = {(Slatl)a"'a(sTnﬂtm)}’

N(fv,) {(s1',827),- -, (5wt ")},
with the s; and s;’ indexing A; and the ¢; and ¢;’ indexing S. Since S C Dy,
we must have fg = 0, but this implies that P(fp) = N(fp) as multisets. Then
there is a permutation and relabeling of the {(s;',#;')}7L; so that
[P(fV1)||N(fV1)]7
= [{(s1,t1)s-- 5 (Sm,tm) HI{(51,t1), -« s (8w, tm) }]. (5.3)

(
Similarly, a move fj, in T(L(V2)) can be written as
)

v, = [PER)IN(E,)],
= [ty w1)se s (b um) Mty 1),y (B um”) Y-

fy,
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Definition 5.3. Let fi; € H; as in Eq. 5.3. Let u = {uy,...,un} be any
set of m index sets from Z4,. Consider a map ¥ that assigns to fy, and u a
move g = Y(fy,,u) defined by

[P(gx)IIN(gk)],
= [{(81)t17u1)7 RN (Smatmaum)}||{(sll7tl7u1)7 RN (sml7tﬂ’“um)}]'

We define Ext(H1 — T(D1,...,D,)) as the union of all ¢(fy,,u) as fy,
ranges over all moves in H; and u ranges over all possible sequences of indices
in Z4,.

8K

Lemma 5.4. If H1 is a set of moves for T(L(V1)), Ext(#1 — T(D1,...,D,))
is a set of moves for T(D1,...,D,).

Proof. Let gk = ¢¥(fy,,u) € Ext(H; — T(D1,...,D,)). We must show that
gp, = 0, for all I € {1,...,7}. First, note that N(gy,) = P(gy,) hence
gp, = 0 for any D; C Vo. On the other hand, gy, = fy, € #H; is a move for
T(L(V1)). This implies that gp, = 0 whenever D; C V5. Since any D; is
either a subset of V; or V5, this proves the result. [ |

Any move in H» can be extended in an analogous way to moves for the class
of tables T(Dy,...,D,), and the resulting set of moves will be denoted by
Ext(He2 — T(D1,...,D,)).

Example 5.5. Let K = {1,2,3} and ng be a 2 x 2 x 2 table with fixed
one-way marginals nygy, nysy, and ngsy. The corresponding independence
graph G = G({1},{2}, {3}) has three vertices and no edges. This graph is
reducible with decomposition (44, S, A2) = ({1,2},0,{3}). We have V; =
A1 US ={1,2} and V5 = SU A, = {3}. In addition, £(V1) = {{1},{2}} and
L(Va) = {{3}}. A Markov basis H; for T({1},{2}) consists of the move fy,
and its negative —fy,, where fy, is given by

fVl = [P(fV1)||N(fV1)]7
[{(1,1),(2,2)}I{(1,2), (2, 1)}].

The set Ext(H; — T({1},{2},{3})) consists of the four moves of the form
tgg = :|:’lp(fv1,{ul,U2}), with Uy, Uz € {1,2} and

gx = [P(gx)lIN(gx)],
= [{(17 17u1)7 (2,2,U2)}||{(1,2,U1), (27 17u2)}]

We are now ready to prove the main theorem of the paper.
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Theorem 5.6. Let H1 and Ha be Markov bases for T(L(V1)) and T(L(V2)),
respectively. Then the set of moves

H = Ext(H1 — T(Ds,...,D,;)) UExt(Hs — T(Dy,...,D,)) UF(V1,Vs)
is a Markov basis for T(Dy,...,D,).

Proof. Let x!, and x% be two k-way tables that belong to
T(np,,...,np,) € T(D1,...,D,;).

We want to show that there exists a sequence of moves in H that connects
x}l and x%.. We can write

xx = [P(xk)0],
= [{(Slatlaul)a'"J(STIHtﬂuum)}“@]:

and

[P(x%)|10],
{(s1',t1,ur’), oo (8m] s toms wm') H| 0]

»
E4N)
|

Both xj, and x3, belong to T({np, : D; € £(V1)}), hence there exists a
sequence of moves i, , ..., f{, in 7 that transforms x{, into x3,. After a
permutation and relabeling of the elements in P(xk ) we may suppose that

f{, can be written as

1
fV1

[P(£5,)[IN (£7,)];
{(s1”t0), s (8575 ) HI{(s1, 1), - o (55, 5) 1]

We “lift” this move to ¢(fy,,u) € Ext(#y — T(Dy,...,D,)) with u =

{ui,...,u;}, where the {us,...,u;} come from P(x}). Note that ¢(f{, ,u)
is an admissible move for xj since N(¢(fy,,u)) C P(x)). Repeating this
process with all fy, € {f‘l,17 .. .,f{’,l}, we arrive at a sequence of moves in

Ext(H1 = T(Ds,...,D,)) that connects xk to a table x3, with the property
1

that x}, = x}, and x}, =xj,.
Now, both x}, and x3, belong to T({np, : D; € L(V2)}). Then there
exists a sequence of moves in Hs which connects x%,2 to x%,2. By a procedure
analogous to the one in the preceding paragraph, this sequence of moves can
be “lifted” to a sequence of moves in Ext(Hs — T(D1,...,D,)) that will
transform x3, into a table x} with the property that xj, belongs to the class
of tables T(x}, ,x},). Lemma 5.2 says that there is a sequence of moves

in F(Vi,Va) connecting x} and x%. Putting together the three sequences

of moves thus far described gives a sequence of moves connecting xj, and

2
X5 |
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The next result is a straightforward consequence of Theorem 5.6.

Corollary 5.7. Use the same notations as in Theorem 5.6. If Vo = Dy is a
cligue in the independence graph G = G(D1,...,D,) then

Ext(H1 — T(D,...,D;)) UF(V1,V3),

is a Markov basis for T(Dy,...,D,).

Proof. In this case, Hs is the empty set and so Ext(Hs — T(Dy,...,D,)) is
empty also. The result then follows from Theorem 5.6. |

Corollary 5.8. Use the same notations as in Theorem 5.6. The one norm
of any element of the Markov basis constructed in Theorem 5.6 is less than
or equal to the mazimum of the one norms of the elements of the component
Markov bases, H1 and Ha, and 4.

Proof. The £§U operation does not change the one norm of any of the moves
in H; or Hs and all the moves in F(V;, V») have one norm equal to 4. [ ]

Example 5.9. Let K = {1,2,3,4} and ng be a 2 x 2 x 2 x 2 table with
fixed marginals nyy oy, Ny 3}, N{2,3}, N{2,4}, and nyz 4. Although the cor-
responding independence graph is decomposable, this set of marginals is not
decomposable because the cliques of this graph are {1,2,3} and {2,3,4}.
Nevertheless, this set of marginals is reducible because the independence
graph has a decomposition ({1}, {2,3},{4}).

We can replace the problem of finding a Markov basis for this set of four-way
tables with the problem of finding the Markov basis for two three-way tables.
Take Vi = {1,2,3} and Vo = {2,3,4}. A brute-force algebraic computation
shows that a Markov basis H; for T({1,2}, {1, 3}, {2, 3}) consists of the moves
+fy, with fy, = [P(fV1)||N(fV1)]7 where

P(fvl) = {(171’1)7(15272)3(271)2)7(2)271)}7 and
N(fVl) = {(27 17 1)7 (27 27 2)7 (17 ]-7 2)7 (17 27 1)}
The set of moves Ext(#; — T(Dy,...,D,)) consists of the sixteen moves of
the form
gk = ¢(fvl,{u1,u2,u3,u4}),

[P(egx)|IN(gx)],

with all the u; € {1,2},

P(gK) = {(1,1,1,U1),(1,2,2,u2),(2,1,2,“3),(2,2,1,U4)},
Ngrx) = {(2,1,1,41),(2,2,2,u2),(1,1,2,u3),(1,2,1,u4)},
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and the negatives of these moves. By symmetry, a Markov basis Hy for
T({2,3},{2,4},{3,4}) consists of the move fy, = [P(fy,)||N(fy;)], where

P(fVZ) = {(17171)7(17272)7(27172)7(2727 1)}7
N(fVZ) = {(27171)7(27272)7(17172)7(1727 1)}7

and its negative. The set of moves Ext(Hs — T(D1,...,D,)) consists of the
sixteen moves gx = ¢ (fy, {u1,u2, u3, us}) with all u; € {1,2},

P(gK) = {(Ul,l,l,l),(U2,1,2,2),(U3,2,1,2),(U4,2,2,1)},
N(gK) = {(u3727171)7(u4727272)7(u1717172)7(u1717271)}7

and the negatives of these moves. The set F({1,2,3},{2,3,4}) consists of
the four moves of the form fx = [P(fx)||N(fx)], where

P(fx) = {(1,u1,u2,1),(2,u1,u2,2)},
N(fx) = {(1,u1,u2,2),(2,u1,u2,1)},

with all u; € {1,2}, and their negatives. Theorem 5.6 says that a Markov
basis for the class of tables T({1,2},{1,3},{2,3},{2,4},{3,4}) is given by
the union of these three sets of moves. |

For the purpose of increasing the efficiency of computation, it is desirable to
have a Markov basis that is as small as possible. Sullivant (2002) shows how
to construct a Markov basis smaller than the one described in Theorem 5.6.
The main idea behind his construction is to note that the moves in F(V;, V3)
can be used to manipulate moves as well as tables. It then turns out that
some of the moves in Ext(#; — T(D;,...,D;))UExt(Hs — T(D1,...,D,))
could be eliminated from #H such that the remaining moves are still a Markov
basis for T(Dy,...,D,).

6 Conclusions

Direct algebraic computations that work well for low-dimensional examples
prove to be impractical for the high-dimensional problems that arise in prac-
tice. The results presented in this paper demonstrate that using the underly-
ing graphical structure of the class of tables being studied can greatly reduce
the amount of computations necessary for generating a Markov basis. We
have shown how Markov bases for classes of tables T(Dy, Ds, ..., D,) whose
marginals have a reducible structure can be built from the Markov bases for
the component structures in a relatively simple way. We exploit, in this con-
text, the theory of reducible graphs as they were introduced by Tarjan (1985)
and Leimer (1993). This idea is not entirely new and was used, among others,
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by Dobra and Fienberg (2000) to calculate the maximum and the minimum
values of a cell entry in a table in T(np,,np,,...,np,).

Theorem 5.6 is the main theorem of this paper. It gives the basic construction
from which the divide-and-conquer procedure we propose is built. Besides
structurally characterizing a Markov basis for reducible sets of tables, this
result has practical applications. Indeed, it is easier to compute the Markov
basis for a class of tables using a smaller number of variables (using algebraic
methods or otherwise), so our procedure reduces one long computation in a
large number of variables to a few much shorter computations, each in a rela-
tively smaller number of variables. Hogten and Sullivant (2002) subsequently
proved that a similar procedure can be used to construct Grobner bases for
reducible sets of tables.

One should note that given a particular reducible structure, there are possibly
many different Markov bases that could be constructed by the procedure
outlined in this paper. Further research is needed to understand whether
stochastic sampling from T(np,,np,,...,np,) based on different Markov
bases will lead to the same inferences.
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A  Decomposable and Reducible Graphs

A graph G is a pair (K, E), where K = {1,2,...,k} is a finite set of vertices
and E C K x K is a set of edges linking the vertices. For any vertex set
A C K, we define the edge set associated with it as

E(A) :={(u,v) € Elu,v € A}.

Let G(A) = (A, E(A)) denote the subgraph of G induced by A. Two vertices
u,v € K are adjacent if (u,v) € E. A set of vertices of G is independent if no
two of its elements are adjacent. An induced subgraph G(A) is complete if
the vertices in A are pairwise adjacent in G. We also say that A is complete
in G. A complete vertex set A in G that is maximal is a clique.

Let u,v € K. A path (or chain) from u to v is a sequence u = vg, ..., 0, = v
of distinct vertices such that (v;—y,v;) € E for all i = 1,2,...,n. The path
is a cycle if the end points are allowed to be the same, v = v. If there is a
path from u to v we say that v and v are connected. The sets A, B C K are
disconnected if u and v are not connected for allu € A, v € B. The connected
component of a vertex u € K is the set of all vertices connected with u. A
graph is connected if all the pairs of vertices are connected.
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The set C' C K is an wv-separator if all paths from u to v intersect C. The
set C C K separates A from B if it is an uv-separator for every u € A, v € B.
C is a separator of G if two vertices in the same connected component of G
are in two distinct connected components of G \ C or, equivalently, if G\ C is
disconnected. In addition, C' is a minimal separator of G if C is a separator
and no proper subset of C separates the graph. Unless otherwise stated, the
separators we work with will be complete.

Decomposable graphs possess the special property that allows us to “decom-
pose” them into components or subgraphs and work directly with these com-
ponents. The idea is to decompose the graph G in two possibly overlapping
subgraphs G’ and G” so that no information of the graph is lost when trans-
forming G into G' and G"”. Furthermore, by “correctly” decomposing G' and
G", and so on, one ends up with a set of subgraphs of G which allow for
no further decompositions. A set of subgraphs of G generated in this way
is called a derived system of G, while its elements are called atoms (Tarjan
1985). We define what we mean by “correct” decomposition.

Definition A.1. The partition (A1, S, A3) of K is said to form a decompo-
sition of G if S is a minimal separator of A; and As.

In this case (A1,S, A2) decomposes G into the components G(A; U S) and
G(S U Ay). The decomposition is proper if A; and As are not empty.

Definition A.2. The graph G is decomposable if it is complete or if there
exists a proper decomposition (4;, S, As) into decomposable graphs G(A; US)
and G(S'U A,).

Graphs that are not decomposable, but can still be decomposed in sequences
of atoms are described in Tarjan (1985) and Leimer (1993). In this case, the
resulting atoms are not necessarily complete.

Definition A.3. A graph G is reducible if G admits a proper decomposition,
otherwise G is a prime graph.

Given that every reducible graph G might have several derived systems (Tar-
jan 1985), we would like to be able to isolate one of them which could fully
characterize the input graph G.

Definition A.4. A subgraph G(A) is a mazimal prime (mp-) subgraph of G,
if G(A) is prime and G(B) is reducible for all B with A C B C K.

The set of mp-subgraphs of G is contained in every derived system of G.
Moreover, the set of mp-subgraphs of G is always a derived system of G
(Leimer 1993), and consequently it is the unique minimal derived system. If
G is decomposable, the mp-subgraphs of G are complete, hence the unique
minimal derived system of a decomposable graph contains only its cliques
(Leimer 1993).



