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Abstract. We discuss the implementation, development and performance of
methods of stochastic computation in Gaussian graphical models. We view
these methods from the perspective of high-dimensional model search, with
a particular interest in the scalability with dimension of Markov chain Monte
Carlo (MCMC) and other stochastic search methods. After reviewing the
structure and context of undirected Gaussian graphical models and model
uncertainty (covariance selection), we discuss prior specifications, includ-
ing new priors over models, and then explore a number of examples using
various methods of stochastic computation. Traditional MCMC methods are
the point of departure for this experimentation; we then develop alternative
stochastic search ideas and contrast this new approach with MCMC. Our ex-
amples range from low (12–20) to moderate (150) dimension, and combine
simple synthetic examples with data analysis from gene expression studies.
We conclude with comments about the need and potential for new computa-
tional methods in far higher dimensions, including constructive approaches
to Gaussian graphical modeling and computation.
Key words and phrases: Decomposable models, nondecomposable models,
Markov chain Monte Carlo, shotgun stochastic search, parallel implementa-
tion.
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1. INTRODUCTION

The last decade or so has witnessed a revolution
in the statistical sciences, based on developments in
stochastic simulation methods for scientific computa-
tion. The impact on applied Bayesian statistics has
been particularly notable, with the development of
Markov chain Monte Carlo (MCMC) methods that
enable the application of increasingly rich and more
relevant mathematical models. In tandem with model
complexity is the radically increasing capacity to gen-
erate data sets that involve many, many variables.
From high-frequency finance and enormous market-
ing data bases to gene expression studies in functional
genomics, we are now faced with applied problems
typified by very high-dimensional variables and/or pa-
rameter spaces. The use of stochastic computation
methods to search over increasingly high-dimensional
model spaces raises challenges of both statistical and
computational efficiency as well as basic feasibility.
We are interested in precisely these questions—

statistical and computational efficacy, and scalability
with dimension—of stochastic computational methods
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used to explore spaces of Gaussian graphical mod-
els. In a graphical model of a multivariate distribution,
nodes represent variables and edges represent pairwise
dependencies, with the edge set defining the global
conditional independence structure of the distribution.
Understanding the conditional independence structure
is a critical element in trying to “make sense” of prob-
lems in which the number of variables far exceeds the
number of observations. This is the case in analyzing
gene expression data, a key example and motivating
context for us. (Note that our objective is to infer the
conditional independence structure, rather than to ex-
ploit structures implied by biology, the approach taken
in Lauritzen and Sheenan, 2003.) Understanding con-
ditional independence relationships is complementary
to the approaches of Zhou, Kao and Wong (2002),
which use graphical structures that represent pairwise
correlations to elucidate genetic functions.
We focus on undirected graphical models, which

have benefited from a good deal of interest in the
computational statistics literature in recent years (e.g.,
Giudici and Green, 1999; Roverato, 2002; Atay-Kayis
and Massam, 2006; Dellaportas, Giudici and Roberts,
2003; Wong, Carter and Kohn, 2003). Despite this at-
tention and the need to develop methodology for in-
creasingly large high-dimensional problems, the recent
literature primarily focuses on relatively small prob-
lems (Wong, Carter and Kohn, 2003, is a notable
exception). The methodological issues faced as di-
mension grows include questions of appropriate pri-
ors for the graphical structure, as well as the very
challenging problem of searching over the space of
graphs to identify high posterior regions. A number
of computational methods (greedy search, simulated
annealing, MCMC) have been suggested for complex
variable/model selection problems such as this, but lit-
tle is known about their performance and scalability as
dimension increases.
We begin by reviewing some of the basic struc-

ture and recent advances for undirected graphical mod-
els, and then summarize our experiences trying to
utilize stocastic computation in problems with a mod-
erate (12–20) to large (150) number of variables. We
introduce new methodology motivated by these experi-
ences, including priors over graph space that encourage
parsimonious models and a parallelizable stochastic
search method for rapid traversal of spaces of the
graph. The examples combine simple synthetic exam-
ples with data analysis from gene expression studies.
We conclude the paper with a discussion of novel, al-

ternative constructive approaches that are able to move
to far higher dimensions, comments about the potential
for theoretical advances to improve stochastic compu-
tation for these models and also discussion of hybrid
approaches that combine “aggressive” moves in model
space with the “local move” approaches that underlie
current methods. We also comment on the need for
increased development of distributed computational
tools.

2. GAUSSIAN GRAPHICAL MODELS

Graphical models provide representations of the
conditional independence structure of a multivari-
ate distribution and access to efficient algorithms
for computation of conditional and marginal densi-
ties (Whittaker, 1990; Lauritzen, 1996, Andersson,
Madigan, Perlman and Richardson, 1999; Cowell,
Dawid, Lauritzen and Spiegelhalter, 1999). The com-
putational efficiencies arise through decompositions of
the sample space into subsets of variables (graph ver-
tices) based on their graphical relationships. The joint
distribution of the variables is Markov over its graph,
so likelihoods, priors and posteriors can be computed
separately on the subsets of vertices and then reassem-
bled into a likelihood or density that incorporates all
variables (Hammersley and Clifford, 1971; Dawid and
Lauritzen, 1993).

2.1 Graph Notation and Structure

The basic terminology and ideas for graphical mod-
els (Cowell et al., 1999), and the notation used here
begin with a graph G = {V,E}, where G is defined
over the set of vertices (the variables) V by the edge
set E. A graph is complete if E contains all possible
edges; otherwise it is incomplete. An incomplete graph
G decomposes into disjoint subgraphs A, B and C
(with A ∪ B ∪ C = G) if C is complete, and separates
A and B (any path from a vertex in A to a vertex in B
goes through C). The subgraph C is a separator. The
decomposition is proper if neither A nor B is empty.
If the separator C is always chosen to be minimal (so
that it does not contain a proper subgraph that separates
A and B), then iterative, proper decomposition of the
graph G ultimately results in its prime components: a
collection of subgraphs that cannot be further decom-
posed.
In a perfect ordering P1;S2,P2;S3,P3; . . . of prime

components (Pi’s) and separators (Si’s), Si is the inter-
section of Pi and all lower numbered components. We
call the prime component sequence Gi and the separa-
tor sequence Si . More than one perfect ordering may



390 JONES ET AL.

exist for any given graph. Efficient algorithms for pro-
ducing a perfect ordering of a given graph (including
graphs with some incomplete prime components) were
outlined by Dobra and Fienberg (2000).
If all the prime components of a graph are com-

plete, the graph is said to be decomposable. Max-
imal complete subgraphs are called cliques, so the
prime components of a decomposable graph are all
cliques. When we refer exclusively to prime compo-
nents that are cliques, we use C to denote the com-
ponent rather than P . Decomposable graphs have
distributional properties that make them particularly
tractable, as we shall see below.

2.2 Density Factorization and Likelihood

The factorization of joint distributions that satisfy
the conditional independencies implied by the edge
structure of a given graph is key to the development
of graphical model analyses. In general, a multivari-
ate distribution on the specified graphG factorizes into
terms that correspond to the prime components and
separators of any perfect ordering for G. In the spe-
cial case of a multivariate Gaussian distribution, Wer-
muth (1976) showed the edges of the graph correspond
to nonzero elements in the precision matrix ! = "−1.
Dempster (1972) extensively considered this problem,
referring to it as covariance selection. The density for
a random sample of size n, y = {y1, . . . , yn}, on the
graph G is a function of multivariate Gaussian densi-
ties on the prime components and separators, with co-
variance matrices "PP and "SS on prime components
and separators:

p(y|"G) =
∏

P∈Gi p(yP |"PP)∏
S∈Si p(yS |"SS)

.(1)

From a Bayesian perspective, we are interested in
posterior distributions p(G,"|y) = p("|G,y)p(G|y)
for specified priors p(G,") = p("|G)p(G). (We
should properly index " by G to indicate the con-
straints imposed by the graph, but we avoid that for
simplicity of notation; it should be understood through-
out.)

2.3 Priors and Posteriors for Covariance Matrices

Giudici (1996) discussed the major approaches to
prior specification for ", comparing the “local pri-
ors” described by Dawid and Lauritzen (1993), and the
“global priors” based on the conditional approach of
Dickey (1971). These priors have the desirable prop-
erty that p("|G) is consistent over graphs: the (i, j) el-
ement of! has the same prior whenever the graph does

not constrain the (i, j) element to be zero. Roverato
(2002) extended the local priors to general, nondecom-
posable models. Giudici (1996) suggested that the lo-
cal priors encourage sparser graphs; for that reason, we
use the local priors. The computational issues are sim-
ilar whichever class is chosen.
The local prior p("|G) is hyper-inverse Wishart,

HIW(G, δ,$), with $ a positive definite matrix and
δ > 0. Like the likelihood (1), this density factors over
the prime components and separators:

p("|G) =
∏

P∈Gi p("PP|G)
∏

S∈Si p("SS|G)
.(2)

For each complete prime component P of G (and
each separator), the corresponding submatrix of the co-
variance, "PP, has an inverse Wishart(δ,$PP) prior
(as given by Giudici, 1996). Decomposable graphs
consist entirely of complete prime components, so
these inverse Wisharts fully define the density of
" when we restrict consideration to decomposable
graphs. The tractability of decomposable graphs is ex-
plained by the fact that while the graphical structure
determines which entries of the covariance matrix ap-
pear in the density, the entries that do appear are con-
strained only to define full rank multivariate normal
distributions on the cliques of the graph; the other en-
tries of " are functions of these free entries (Grone,
Johnson, de Sá and Wolkowicz, 1984).
Roverato (2002) generalized the inverse Wishart to

define a density suitable for a noncomplete prime com-
ponent P . This density for "PP is obtained from a
Wishart prior on !PP, conditioned on !PP consistent
with G, by a change of variables. While based on con-
ditioning, this prior differs from the global prior of
Giudici (1996) in that the conditioning is only used
within the prime components. In this density, some of
the nonfree elements of"PP will appear; consequently,
the integral that defines the normalizing constant must
be computed numerically. When we use the hyper-
inverse Wishart prior with an unrestricted graph space,
we constrain δ to be strictly greater than 2.0; it has not
been shown that the prior is proper for smaller δ.
The hyper-inverse Wishart prior is conjugate in ei-

ther the decomposable or unrestricted case; the pos-
terior is HIW(G, δ∗ = δ + n,$∗ = $ + Sy), where
Sy is the observed sum of products matrix,

∑n
i=1 yiy

′
i .

In subsequent examples, we use $ = τI for specified
constants τ (other choices for $, such as an intraclass
correlation structure, were considered by Giudici and
Green, 1999). Our choice is consistent with problems
in which variables represent measures of similarly de-
fined quantities on a common scale. Choice of τ is im-



STOCHASTIC COMPUTATION FOR GRAPHICAL MODELS 391

portant; simulations show increasing τ increases the
marginal likelihood of high edge count graphs (data
not shown). The marginal prior mode for each variance
term (σii) is τ (δ + 1); we use this quantity to set an
appropriate value for τ . For example, if the data have
been standardized so all the variances are 1.0, τ might
be set to 1/(δ + 1).
2.4 Priors and Likelihoods for Graphs

A uniform prior over all graphs or all decompos-
able graphs assigns most of its mass to graphs with a
“medium” number of edges. The mass function peaks
around |V |(|V |−1)/4 for general graphs (where |V | is
the number of vertices); we have used simulation from
the prior to estimate the distribution when we restrict to
decomposable graphs (data not shown). In both cases
the average number of edges explodes very quickly as
the number of nodes increases.
We would like to represent the conditional indepen-

dence structure parsimoniously and discourage the in-
clusion of spurious edges; in other words, we would
like to encourage sparse graphs, especially as dimen-
sion increases. To do this we use a Bernoulli prior
on each edge inclusion indicator variable with para-
meter β = 2/(|V | − 1). Thus a graph with |E| edges
has prior probability β |E|(1 − β)(

|V |
2 )−|E|. For an un-

restricted graph, this distribution has its peak at |V |
edges; the mode is somewhat lower when we restrict
to decomposable graphs. Our approach to prior speci-
fication penalizes the number of edges; one could, of
course, penalize other measures of complexity such as
the maximum or average prime component size. Wong,
Carter and Kohn (2003) developed an approach that
equalizes the prior probability of graphs with differ-
ent numbers of edges; for decomposable graphs, this
requires estimating the fraction of the total number of
decomposable graphs with each number of edges.
The marginal likelihood of any graph G is a simple

function of the HIW prior and posterior normalizing
constants, h(G, δ,$) and h(G, δ∗,$∗):

p(y|G) = (2π)−n|V |/2 h(G, δ,$)

h(G, δ∗,$∗)
.(3)

For a decomposable graph, the HIW normalizing con-
stants can be computed from the normalizing constants
for the inverse Wishart clique and separator densi-
ties. For nondecomposable graphs, the analogous terms
from incomplete prime components do not have closed
form. Monte Carlo methods for estimating these terms
are discussed in Section 3.

3. COMPUTING LIKELIHOODS FOR
NONDECOMPOSABLE MODELS

For nondecomposable models, the contribution to (3)
from an incomplete prime component P does not
have a closed form expression. (To simplify notation
throughout this section, we assume that P constitutes
the whole graph, so subscripting by P can be omitted.)
The term is the normalizing constant of a constrained
inverse Wishart distribution and can be expressed as an
integral over the space of !E , the nonzero elements
of ! as dictated by the edge set E. To estimate this
integral, we use the method presented by Atay-Kayis
and Massam (2006). They exploit two changes of vari-
ables: from !E to φE , the free elements of the upper
triangular matrix produced by the Cholesky decompo-
sition of !, and from φE to ψE , where ψ = φT −1

and T ′T is the Cholesky decomposition of $. After
this second change, the free elements ofψ are indepen-
dent normals and square roots of χ2 random variables,
and thus are easily generated; the nonfree elements can
be straightforwardly computed from the free elements.
The relevant integral is then

h(P, δ,$) = CEψE(fT (ψE)),(4)

where C is a constant further discussed in Section 7.1,
EψE denotes expectation with respect to the distribu-
tion of ψE and

fT (ψE) = exp
{

−1
2

∑

(i,j)/∈E,i<j

ψ2ij

}

.(5)

Values of ψE can be easily sampled, so it is straightfor-
ward to estimate the expectation of (5) byMonte Carlo.
Note that when P is a clique, (5) evaluates to 1 and (4)
simplifies to an inverse Wishart normalizing constant.
Roverato (2002) and Dellaportas, Giudici and

Roberts (2003) presented alternative methods for es-
timating this normalizing constant based on generating
! from approximations to its actual distributions; the
relevant integral is then estimated by importance sam-
pling. We prefer (and use throughout our examples) the
method of Atay-Kayis and Massam (2006) because it
avoids worries about the efficiency of the importance
sampler, that is, how far the sampling distribution of
the !’s differs from the desired distribution.

4. LOCAL UPDATES FOR
DECOMPOSABLE MODELS

In addition to having analytical expressions for their
normalizing constants, decomposable graphs have
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computationally efficient “local updates” in model
search based on comparing decomposable graphs
G and G′ that differ by one edge only. Computing
the likelihood ratio p(Y |G)/p(Y |G′) requires far less
effort than computating either likelihood. This prop-
erty was exploited by Giudici and Green (1999), and
more fully explained by Armstrong, Carter, Wong and
Kohn (2005). SupposeG is produced fromG′ by delet-
ing edge {a, b}. The fact that both are decomposable
implies that in G′, {a, b} lies in a single clique, Cq .
At most one of a and b lies in the separator Sq . Arm-
strong, Carter, Wong and Kohn (2005) showed that if
a /∈ Sq, the perfect ordering of G is identical to that
of G′ except Cq is replaced with consecutive cliques,
Cq1 = Cq/a and Cq2 = Cq/b, with separator Sq2 =
Cq/{a, b}. Consequently the likelihood ratio simpli-
fies to an expression that involves only Cq,Cq1,Cq2
and Sq2 .
In contrast, when we do not restrict ourselves to de-

composable graphs, there is no guarantee of significant
cancellations in the likelihood ratio between graphs
that differ by one edge. Imagine starting with a graph
where all the nodes are connected in a chain and then
adding the edge that completes the full cycle. The sin-
gle edge change moves us from a situation with p − 1
prime components to a single prime component; there
is no cancellation in the likelihood ratio.

5. MARKOV CHAIN MONTE CARLO ALGORITHMS

The MCMC is a much used tool for exploring
the space of graphical structures (e.g., Madigan and
York, 1995; Dellaportas and Forster, 1999; Giudici and
Castelo, 2003). In the context of Gaussian graphical
models, Armstrong, Carter, Wong and Kohn (2005)
used their results to construct a fixed scan Gibbs sam-
pler for decomposable graphs; their results are also
easily exploited in a Metropolis–Hastings sampler. We
constructed three samplers to traverse the space of
decomposable graphs: fixed scan Gibbs, Metropolis–
Hastings where the edge to be updated was picked at
random, and Metropolis–Hastings where the choice to
add or delete an edge was made and then an edge was
selected at random from those appropriate for that type
of move. There was no noticeable difference in per-
formance between these closely related MCMC algo-
rithms; the results presented are from the add–delete
Metropolis–Hastings sampler.
We also implemented the add–delete Metropolis–

Hastings sampler for an unrestricted search of graph
space. When evaluating a proposal that involves a non-
decomposable graph, the algorithm described in Sec-

TABLE 1
Comparison between algorithms of run time and quality of best

graph found for the 12 node example

Run time Max log Graphs to first Time to first
Methoda (sec) posterior top graph visit top graph visit

MH-d 36 −2591.18 912 1
SSS-d 183 −2591.18 792 2
MH-u 15,220 −2590.94 415 2
SSS-u 2773 −2590.94 13,266 5

aMH-d (-u) refers to the Metropolis–Hastings algorithm on de-
composable (unrestricted) models, while SSS-d (-u) refers to the
shotgun stochastic search method on decomposable (unrestricted)
models.

tion 3 is used to evaluate the marginal likelihood. This
adds considerable computational burden; see Tables
1 and 2. In addition, because the local computation
properties described in Section 4 no longer hold, we re-
compute the perfect ordering and entire likelihood for
each proposed graph.
For problems with even a moderate number of

variables (either in the decomposable or unrestricted
space), the space to be explored is so large that a
graph’s frequency in the sample of graphs produced
cannot be viewed as reflecting its posterior probability.
Indeed, many graphs are not revisited after the chain
leaves them. Posterior graph probability estimates must
be based on normalizing the posterior mass function
using the visited graphs, and these quantities will re-
flect the true posterior mass only to the extent that the
majority of the mass has been visited. However, the
frequencies of other quantities, such as the marginal
probabilities of edge inclusion, can be viewed as pos-
terior probabilities.

TABLE 2
Comparison between algorithms of run time and quality of best

graph found for the 15 node example

Run time Max log Graphs to first Time to first
Methoda (sec) posterior top graph visit top graph visit

MH-d 93 15633.76 349,484 36
SSS-d 234 15633.76 33,495 9
MH-u 513,077 15633.83 666,425 309,222
SSS-u 5930 15636.38 82,845 112

aMH-d (-u) refers to the Metropolis–Hastings algorithm on de-
composable (unrestricted) models, while SSS-d (-u) refers to the
shotgun stochastic search method on decomposable (unrestricted)
models.
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6. SHOTGUN STOCHASTIC SEARCH
ALGORITHMS

If Markov chain Monte Carlo is viewed merely as
a tool for visiting high probability regions of graph
space, there are certainly competing algorithms. The
following algorithm is attractive because step 2 (which
contains most of the computational burden) can be eas-
ily parallelized.

1. Start with a graph G.
2. Select at random X1 graphs that differ by one edge
(neighbors), compute their unnormalized posterior
mass and retain the top X2 ≤ X1.

3. From among the X2 top neighbors, propose the ith
graph Gi as a new starting graph with probability
proportional to pα

i , where pi is the unnormalized
posterior probability of graph i and α is an anneal-
ing parameter.

4. Return to step 2 and iterate. Maintain a list of the
overall best X3 graphs visited.

In experimenting with this approach, we have typ-
ically used X1 = X2 = (|V |

2
)
, so all the neighbors are

examined at each stage. We refer to this as a shotgun
stochastic search (SSS) method; at each step we gener-
ate a large number of candidate models, “shooting out”
candidates in all directions and then following one (or,
in a variant of the above, more than one) plausible can-
didate. Algorithms of this type can accommodate either
unrestricted or decomposable graphs. When restricted
to decomposable graphs, step 2 contains a check for
decomposability; nondecomposable graphs are consid-
ered to have zero posterior probability.
Posterior probabilities can be normalized only within

the list of the top X3 graphs; this reflects their true pos-
terior probability to the extent that they contain most
of the posterior mass. Similarly, estimated edge proba-
bilities can be viewed as posterior probabilities only to
the extent that the whole posterior mass is captured in
the top X3 graphs.

7. SIMULATED EXAMPLES

We first consider two simulated examples where the
true underlying graph is known. The first graph, pic-
tured in Figure 1, has 15 nodes and is decomposable.
The second graph, pictured in Figure 2 consists of 12
nodes in a single noncomplete prime component. Each
data set consists of 250 observations. The first simu-
lated data set was inspired by patterns of daily currency
exchange fluctuations against the U.S. dollar. Conse-
quently, the data range approximately between ±2%.

FIG. 1. The true underlying decomposable graph on p = 15
nodes—the first simulated example.

We assume this range is about 2 standard deviations,
so σii ≈ 0.0001. We choose δ = 3 and τ = 0.0004. For
the second data set, " is actually a random draw from
the inverseWishart(I,3) constrained to obey the graph;
thus we use τ = 1 and δ = 3. In both cases the prior

FIG. 2. The true underlying nondecomposable graph on p = 12
nodes—the second simulated example.
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over graphs is the sparsity-encouraging prior suggested
in Section 4. For the shotgun stochastic search, the an-
nealing parameter was set at 1.0 for simplicity. Per-
formance of the algorithm in larger examples is very
sensitive to the annealing parameter; see Section 8 for
details.

7.1 Difficulties Evaluating Nondecomposable
Models

To search the unrestricted model space, we must
specify the number of random draws that will be
used to estimate the normalizing constants for non-
decomposable prime components. Initial runs with
1000 draws, regardless of prime component size, re-
vealed an important and, we believe, both generic and
limiting problem: high variance estimates of the mar-
ginal likelihood (standard deviation on the order of 2
units of log likelihood) created artificial local modes,
greatly inhibiting the algorithms’ movement.
To explore the behavior of the normalizing constant

estimates, we examined noncomplete prime compo-
nents with different numbers of nodes. Two examples
for each size were selected from those that occurred
during the Metropolis–Hastings model search for the
15 variable data set. Because our search strategies
depend on likelihood ratios, it is the variances of
the log normalizing constants that are relevant. Fig-
ure 3A and 3B shows the variances of the estimated log
of the prior and posterior normalizing constants (where
the estimate is based on 100 random draws). The plot-
ted variances are of course estimates themselves, each
based on 1000 separate normalizing constant estima-
tions.
The estimates of the log prior normalizing constants

have systematically smaller variances than the corre-
sponding estimates for the posterior; there is also a
tendency for variance to increase with component size.
This can be partially explained by examining the form
of ψ , the sampled matrix from which the estimate is
computed. The variance of diagonal entries increases
as one moves down the diagonal, so larger components
are more variable; similarly, the parameters of the HIW
posterior dictate that the diagonal entries have larger
variance in the posterior.
We also note that the ordering of the variables used

when setting up ψ affects the variance of the log nor-
malizing constant. Each prime component considered
in Figure 3C is a cycle; in the “optimal” configura-
tion, each variable, except the first and the last, has ex-
actly one neighbor preceding it in the rows of ψ . The
“worst” configuration has the first |P |/2 variables each

with both neighbors occurring further down in the ma-
trix.
The cause of this phenomenon can be seen by fac-

toring equation (4) into the constant C and the part es-
timated by Monte Carlo, E(M), where

C =
( |P |∏

i=1
2(δ+νi )/2(2π)νi /2

(6)

· .
(
δ + νi

2

)
T

(δ+bi−1)/2
ii

)

,

E(M) = EψE(fT (ψE)).(7)

Recall that Tii are the entries of the Cholesky de-
composition of the HIW parameter $ ($∗ for the
posterior), νi is the number of neighbors of node i sub-
sequent to it in the ordering of vertices and bi is the
total number of neighbors of node i, plus 1. We list the
variables of a prime component in an arbitrary order,
but the relative sizes of C and E(M) clearly depend
on the ordering of the variables (although their product
is constant, the expression is valid for any ordering).
In our experiments the variance of M̄ was (roughly)
unaffected by ordering; however, we are interested in
the variance of log(M̄) ≈ Var(M̄)/M̄2. Thus, order-
ings that increase C and decrease E(M) increase the
variance of log(M̄). The “optimal” ordering for cy-
cles discussed above minimizes C for the HIW prior;
the “worst” ordering maximizes it. Similar multiplica-
tive differences due to different orderings were ob-
served in estimates of the log posterior normalizing
constant; however, because of the appearance of the
data (through the Tii) in the expression for C, the opti-
mal ordering depends on the data as well as the graph
structure. We will not try to optimize the ordering of
variables, but rather develop a scheme that will pro-
duce adequate estimates for any ordering.
The highest variance samples in Figure 3B represent

very low likelihood graphs, which have small E(M)—
and high variance of log(E(M))—regardless of order-
ing. Figure 3D, a plot of variances of log posterior
normalizing constants for prime components in graphs
accepted during the Metropolis–Hastings search, is
more consistent with the variance trends in the log
prior normalizing constants. The variance of the “worst
case” for each component size seems to be a function
of the size of the component considered, |P |. Based
on this, we used 1.5|P |3 samples for the posterior
normalizing constants and 0.5|P |3 for the prior nor-
malizing constants. This scheme solved the problem
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FIG. 3. Relationship between the variance of the estimated normalizing constants, based on 100 samples, and the size of the prime com-
ponent. Four cases are considered: A, the prior normalizing constant for components proposed during the unrestricted Metropolis–Hastings
search for the 15 node data set; B, the posterior normalizing constants for these components; C, prior normalizing constants for cycles,
using different variable orderings; D, posterior normalizing constants for components considered during the unrestricted model search and
subsequently accepted by the Metropolis–Hastings algorithm.
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with chain mobility discussed at the beginning of this
section. At the end of our run, all graphs with a log
posterior within 2.0 of the top log posterior were re-
examined with enough Monte Carlo runs to ensure the
graph listed as “best” did indeed have the highest log
posterior.

7.2 Results

For each example, the add–delete Metropolis was
run for 10,000× (|V |

2
)
steps [where

(|V |
2

)
is the number

of possible one edge moves in the unrestricted case].
The shotgun stochastic search algorithm was run with
10,000 iterations; at each iteration it considers all pos-
sible (unrestricted) one edge moves, so it performs the
same number of graph comparisons as the Metropolis–
Hastings algorithm. The searches were each started at
the empty graph; both unrestricted and decomposable-
only spaces were considered.
The algorithms clearly use a similar amount of

computing resources, as they evaluate the same num-
ber of comparisons between current and proposed
graphs. However, the stochastic search algorithm is
parallelizable. The run times for both types of algo-
rithm are given in Tables 1 and 2, demonstrating the
advantage of being able to exploit multiple proces-
sors. The Metropolis–Hastings was run on a Dell PC
with a 1.8 MHz Xeon processor in a Linux environ-
ment, and the shotgun stochastic search was run on
a Beowulf cluster with 26 dual processor, 1.4 MHz
nodes. The C++ implementations used are available at
www.isds.duke.edu under the software link.
The “top” decomposable graphs—those identified

with highest posterior probability—are pictured in Fig-
ures 4 and 5; the top graphs from the unrestricted
search appear in Figures 6 and 7. Likelihood compar-
ison with true graphs show that each of these graphs
has greater likelihood (and posterior) support than the
true graph. For the maximum posterior probability
graphs, the edges included generally have higher es-
timated posterior probability than those not included.
The 15 node decomposable graph includes the only
observed exception to this: the lowest probability in-
cluded edge has probability 0.58, while the highest
probability excluded edge has probability 0.60. Thus
aggregating high probability edges into a graph does
not result in dramatically different graphs than taking
the best graph found. The most probable graph found
in the 12 node case and the decomposable cases was
insensitive to the starting point: the same graph was
found starting at the complete graph. The unrestricted
search for the 15 node case starting at the complete

FIG. 4. Highest log posterior graph for the 12 node example
when the search is restricted to decomposable models.

graph did not attain the likelihood for the top graph
shown in the table.

FIG. 5. Highest log posterior graph for the 15 node example
when the search is restricted to decomposable models.
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FIG. 6. Highest log posterior graph for the 12 node example
when the search is unrestricted.

8. 150 NODE EXAMPLE: GENE EXPRESSION DATA

A more challenging problem is analysis of expres-
sion data from p = 150 genes associated with the
estrogen receptor pathway, taken from n = 49 indi-
viduals; the data come from the study of West et al.
(2001). The data were standardized and the prior was
specified with δ = 3, τ = 4. In this context our sparsity-
encouraging prior can be interpreted as a belief that, on
average, each gene has major interactions with a rela-
tively small number of other genes. In this large exam-
ple, we add to the prior over graphs the restriction that
the prime component/clique size not exceed n − 1, so
as to maintain identifiability of the model.
The results from three algorithms are shown in

Table 3. Times are now given in hours. Because the

TABLE 3
Comparison between algorithms of run time and quality of best

graph found for the gene expression example

Run time Max log Graphs to first Time to first
Methoda (hrs) posterior top graph visit top graph visit

MH-d 18.02 −9417.97 100,466,818 6.51
SSS-d 0.03 −9260.84 1,698,600 0.03
SSS-u 6.29b −9227.68 44,700 3.39

aMH-d refers to the Metropolis–Hastings algorithm on decom-
posable models, while SSS-d (-u) refers to the shotgun stochastic
search method on decomposable (unrestricted) models.
bStarting from the best decomposable graph found.

FIG. 7. Highest log posterior graph for the 15 node example
when the search is unrestricted.

unrestricted search Metropolis–Hastings showed such
poor performance, it was not used. The best results
for the shotgun search algorithm were obtained with
an annealing parameter of 50: essentially deterministic
hill climbing. In this large example we see that even in
the decomposable case, the shotgun stochastic search
algorithm finds much more probable graphs.
A large annealing parameter was also used for the

shotgun stochastic search in the unrestricted case.
However, in this case the annealing does not eliminate
the stochasticity of the search, as the marginal likeli-
hoods are estimated with substantial error. Increasing
the number of iterations enough to get a sharp evalua-
tion of the likelihood was infeasible; settling for a stan-
dard deviation of the log likelihood of 1.0 resulted in
one cycle of neighbors evaluations (a single step in our
stochastic search procedure) taking up to 40 computer
days (1 day on a 40 node cluster). Using this procedure,
starting from the empty graph and running until the es-
timated log posterior stopped improving, the best graph
found had log posterior −9364.67, worse than the best
decomposable graph. This graph may represent a local
mode not present in the decomposable framework or
may be the result of suboptimal moves that result from
the imprecise likelihood evaluation. The table shows
the best graph found by starting at the best decom-
posable graph (the final estimate of the log posterior
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for this graph was run with enough iterations to put
the standard deviation below 0.1). A total of 10 cycles
of evaluating all neighbors was done. Because these
graphs were “close” to decomposable graphs, the eval-
uation time was reduced versus graphs with similar
numbers of edges produced by the search starting at
the empty graph.

9. DISCUSSION AND RECENT DEVELOPMENTS

Fitting decomposable Gaussian graphical models us-
ing local move methods is feasible for large numbers of
variables, certainly up to a few hundred. Exploration of
model space to find high posterior probability graphs
can be successfully carried out using direct search
such as with our shotgun stochastic search method;
traditional MCMC is competitive for relatively small
graphs. Unrestricted (nondecomposable and/or decom-
posable) model search is much more problematic; it
is easily accomplished for 15 variables, but becomes
very challenging quickly thereafter. Large prime com-
ponents induce a major computational burden via the
Monte Carlo estimation of the needed normalizing
constants. Other methods are needed to deal with this
computational problem. Local search of unrestricted
graphs around “good” decomposable graphs or other
candidate graphs is possible for 150 variables and rep-
resents a promising strategy. For unrestricted mod-
els the method of choice is never a Markov chain
Monte Carlo algorithm, but rather the shotgun sto-
chastic search that rapidly traverses graph model space
around sequences of “promising” models. The specific
stochastic search algorithm we have introduced and
exemplified here is easily parallelizable and, indeed,
designed for distributed implementation. More exper-
imentation with the annealing schedules is needed to
find optimal strategies for different situations. For the
150 node decomposable model search presented as an
example here, deterministic hill climbing produced the
best results in terms of rapid identification of high
probability graphs.
In the case of unrestricted search, new theoreti-

cal insights and methods are needed to improve the
capacity to estimate the normalizing constants as-
sociated with noncomplete prime components. One
potential direction for research that would have imme-
diate payoff involves a characterization of the changes
in prime component structure when one edge moves
are made from a current graph. Flores, Gámez and
Olesen (2003) addressed this problem in the context
of directed graphs; their results could be applied to

provide characterization of prime component changes
analogous to the results for clique changes in decom-
posable graphs used in Giudici and Green (1999). Cor-
relating the marginal likelihood estimates of graphs
that are to be compared by using the same random
number draws to estimate the normalizing constants
involved may also improve computational efficiency.
A rather different view—developed since this work

was completed—was described by Dobra et al. (2004)
and Dobra and West (2004). In these methods, the
full joint distribution is derived using a triangular set
of regressions that represent the relationships between
variables. This methodology is related to both the
dependency network framework of Heckerman et al.
(2000) and approaches that model structure in the
Cholesky decomposition of variance matrices; it is in-
novative in the creation of an approach that scales with
dimension, encourages graph sparsity, utilizes priors
consistent across graphs and generates many candidate
graphs via MCMC methods for variable selection in
the composing regressions. These methods can handle
large sets of variables, partly by using a prescreening
procedure that limits which variables will be consid-
ered possible predictors of others.
This type of constructive method generates graphs

that are potentially far more widely separated than
by one edge moves. An appealing concept is to inte-
grate methods of this sort with the local-move meth-
ods described in this paper. Research to understand
the theoretical differences, in terms of prior and model
specifications, between such constructive approaches
and the undirected Gaussian graphical models con-
sidered in our framework is necessary: our attempts
to use the method of Dobra et al. (2004) to gener-
ate conditional independence structures that had high
posterior probability under our model or were good
search starting points for our algorithms were not suc-
cessful. The constructive approaches based on regres-
sions yield models that correspond to directed acyclic
graphs, which clearly impact the regions of model
space visited. However, our experiments with “local-
move” methods lead us to conclude that a constructive
approach of some form is needed to scale beyond mod-
erate dimensions. While questions of search adequacy
still exist, the constructive approaches are at least im-
plementable for very large sets of variables: the exam-
ple in Dobra andWest (2004) concerns gene expression
data on over 12,000 genes. Their example also seems
to identify graphs that are interpretable and consonant
with known biology.
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Modeling of discrete (or discretized) data is an im-
portant alternative to the Gaussian formulation; these
models can (at the expense of additional parameters)
approximate nonlinear relationships between variables.
Examples in the context of microarray data include Yu
et al. (2004) and Friedman, Linial, Nachman and Pe’er
(2000); feasible methods have not yet been demon-
strated for a full chip’s worth of gene expression mea-
surements (several thousand). While the mechanics
of evaluating a conditional independence structure for
discrete data differ, the general lessons about search
strategies over model space apply, and some of our cur-
rent work is focused on large-scale discrete problems.
It is apparent that radical, near-term progress in

model and variable selection/search in the face of in-
creasing dimension is unlikely if computations are re-
stricted to serial, single processors. Our experiments
have heavily utilized a Beowulf cluster, and distrib-
uted computation is essential to the development of
search and constructive methods beyond moderate di-
mensions. With increasing access to larger clusters
for distributed computing, the computational statistics
research community has come to an opportune time
to substantially advance our ability to explore com-
plex, high-dimensional model spaces by embracing
this technology and integrating it into day-to-day re-
search.
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