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SUMMARY

Disclosure limitation involves the application of statistical tools to limit the identification of information
on individuals (and enterprises) included as part of statistical data bases such as censuses and sample
surveys. We outline the major issues involved in assessing disclosure risk and assuring the protection
of confidentiality for data bases, especially those in the form of multi-way contingency tables, and we
present a Bayesian framework for thinking about such problems both from the perspective of an intruder
and the agency trying to protect its data.

Keywords: CONTINGENCY TABLES; DATA UTILITY; DIRICHLET PRIOR; DISCLOSURE LIMITATION;

INTRUDER BEHAVIOR; LOG-LINEAR MODELS.

1. INTRODUCTION

Maintaining the confidentiality of statistical data is essential if government agencies are to collect
and publish high quality census and survey data. Typically agencies promise respondents that
their data will be kept confidential and used for statistical purposes only. For example, Title 13,
Section 9 of the United States Code prohibits the U.S. Census Bureau from publishing results in
which an individual’s or business’ data can be identified. How can an agency comply with such
legal strictures while at the same time provide public access to as much data as possible? This
paper addresses this issue in the context of categorical data in the form of a cross-classification
of counts.

Disclosure limitation is the process of protecting the confidentiality of statistical data. This
paper focuses on identity disclosure where an intruder uses published statistical information to
identify individual data provider. [For simplicity we set aside the issue of attribute disclosure,
where an intruder learns that everyone in an identifiable group has a particular attribute.] Since
virtually any form of data release contains some information about the individuals whose data
are included in it, disclosure is not an all-or-none concept but rather a probabilistic one seen
differently from the eyes of the agency protecting the data, the individuals providing the data,
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and an “intruder” attempting to gain access to identifiable individual information (c.f., Lambert,
1993). In this sense, disclosure risk and the development of methods to limit disclosure are
inherently Bayesian. For general introductions to some of the statistical aspects of confidentiality
and disclosure limitation see Doyle, et al. (2001), Fienberg (1994), and Willenborg and De Waal
(1996, 2001). Early Bayesian contributions to the literature on disclosure limitation include
Duncan and Lambert (1986, 1989), and Rubin (1993).

Disclosure limitation procedures alter or limit the data to be released, e.g., by modifying
or removing those characteristics that put confidential information at risk for disclosure. In
the case of sample categorical data, a count of “1” can generate confidentiality concerns if
that individual is also unique in the population. Much confidentiality research has focused on
measures of risk that attempt to infer the probability that an individual is unique in the population
given uniqueness in the sample (e.g., see Chen and Keller-McNulty, 1998, Fienberg and Makov,
1998, 2001, Skinner and Holmes, 1998, and Samuels, 1998). For simplicity, we focus on
population tables of counts here and thus set aside this issue of making inferences from sample
tables. But in either population or sample settings, small counts raise issues of disclosure risk.

In the next section we describe the identity disclosure problem in the context of a sequence
of releases of marginal tables from a multi-way cross-classification. Then, in Section 3 and 4,
we outline a Bayesian approach to the balancing of disclosure risk and data utility, apply it to the
case of tabular categorical data, and derive some commonly used risk measures for the release
of a sequence of marginal tables. In Section 5, we adopt the perspective of the intruder and
consider updating distributions over the space of possible tables subject to margin constraints.
We illustrate the methodology using a 2 × 3 × 3 contingency table drawn from the 1990 U.S.
decennial census. We conclude with a discussion of a number of unaddressed elements that
need to be part of a full Bayesian approach to the problem.

2. DISCLOSURE LIMITATION FOR CATEGORICAL DATA

We think of the confidentiality problem as one involving three parties: a “statistical agency”
that controls the data, “users” who wish to analyze all or perhaps subsets of the data, and an
“intruder” who is attempting to identify one or more individuals in the data for some purpose.

Clearly any release of data from a database increases the information available about indi-
viduals in the database and thus increases in some sense the probability that an individual in the
database will become identifiable. Harm to such an individual occurs when an intruder matches
the identifiable record to an existing database and learns information about the individual that
was not previously available. Following Fienberg, Makov, and Sanil (1997), we assume that
the intruder acts as Bayesian updating his probabilities of identification of individuals in the
database as more and more information becomes available. Further we assume that the agency
acts in a Bayesian fashion and makes a trade-off between the utility of the data were it to be
released to the users and the disclosure risk associated with that release.

Our goal here is to outline a statistical framework for the release of cross-classified cate-
gorical data in the form of a contingency table. We are thinking in terms of requests from users
for (marginal) sub-tables involving a subset of the variables. Potential responses include the
release of the requested sub-table, the release of an “altered” or “masked” sub-table, or perhaps
a refusal to release the sub-table. Note that there is statistical information for an intruder that
comes from a refusal, although we have yet to see a Bayesian analysis that takes such informa-
tion into account. We think in terms of a public system so that once a subtable is released it is
publicly available, and thus usable by an intruder. Clearly, the more subtables that are released,
the more information we have about the full joint distribution of the cross-classifying variables.

The notion of data masking, introduced in Duncan and Pearson (1991) involves a trans-
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formation to the data so that individual records are altered to make them less identifiable. For
categorical data, when releases consist of marginal tables, the types of masks suggested in the
literature include stochastic perturbations subject to the constraint that the transformed data are
consistent with the released marginals (e.g., see Duncan, et al., 2001, and Fienberg, Makov and
Steele, 1998).

How should the agency assess disclosure risk in this setting? What strategy should the
intruder use to update his information about the individuals whose data are included in the full
table? And, finally, given such choices, how should the agency respond to requests for specific
marginal tables, given the set of tables already released?

We are unaware of any systematic and coherent statistical approach to the confidentiality
problem as we have just outlined it, although Raghunathan and Rubin’s (2001) multiple imputa-
tion strategy may provide a sensible Bayesian solution to it. Statistical agencies do in fact release
subtables of very large contingency tables all of the time (e.g., the website for the U.S. Census
Bureau’s American Factfinder system releases selected three-way tables for various levels of
geography: http://factfinder.census.gov/) and otherwise make judgments about
the safety of releasing microdata files from sample surveys, the judgments about the “safety”
of such data releases is ad hoc at best. Recent efforts to study the release of margins of contin-
gency tables have focused on the role of bounds on cell entries that result (e.g., see Dobra and
Fienberg, 2000, 2001, and Dobra, et al., 2002), and on perturbations of data based on “exact”
distributions for contingency tables under log-linear models given marginals corresponding to
minimal sufficient statistics (e.g., see Diaconis and Sturmfels, 1998, and Fienberg, Makov, and
Steele, 1998). This work offers a starting point for the present paper in which we attempt to
outline some of the elements of a Bayesian approach.

3. A GENERAL FRAMEWORK FOR ASSESSING DISCLOSURE RISK
Let f represent the original data and D a set of candidate data masks or transformations of the
data, typically stochastic in nature. Here we outline a general Bayesian framework, based on
Trottini (2001) and Trottini and Fienberg (2002), to answer the question: “Which mask should
the agency select?” In Section 4, we apply the framework to tabular categorical data.

The evaluation of a generic data mask f̃ depends on the extent to which its release is
beneficial for the users, (data utility of f̃ ) and the extent to which its release can harm the
agency or the data providers (disclosure risk of f̃ ). For simplicity, we assume that there are
only two users of the data: an intruder (I) who wants to “undo” the candidate mask f̃ to
disclose confidential information about the data provider, and a scientist (S) who wants to use
the released data to infer some general feature of the population underlying f̃ . We denote the
intruder’s target by ΘI and the scientist’s target by ΘS . We assume that user h (h = I, S) incurs
a loss Lh(e,Φh), by using the estimate e for his target Θh, which depends on an unknown “state
of the world” Φh. In most cases of interest, Φh = Θh. We denote by πh(·), and πh(· | f̃) the
users prior and posterior distributions for Φh, h = I, S.

We assume that both S and I act in accord with the expected loss principle, i.e. they estimate
their target values by

θ̂h = argmina

∫
Lh(a;φh)πh(φh | f̃)dφh, h = I, S.

Following DeGroot (1962), we define user h’s uncertainty about the true value of the target
as the expected loss associated with the optimal estimate of the target,

Uh(f̃) =
∫

Lh(θ̂h;φh)πh(φh | f̃)dφh, h = I, S.
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We assume that the user stops trying to estimate Θh if his uncertainty is very large, in accord
with the following decision rule:

User h’s decision rule: For a fixed threshold th, if Uh(f̃) ≤ th then h takes action a1h and
estimates Θh by θ̂h. If Uh(f̃) > th then h takes action a0h and stops trying to estimate Θh.

We assume that the loss that the agency incurs when user h takes action Ah, (Ah ∈
{a1h, a0h}) depends on an unknown state of the world Φ(h)

A and is denoted byL
(h)
A (·, ·), h = S, I .

Thus, L(I)
A (AI, φ

(I)
A ) quantifies, from the agency’s perspective, the harm that the intruder’s ac-

tion AI produces to the agency and the data providers when Φ(I)
A = φ

(I)
A . In most of the cases

it will be Φ(I)
A = ΦI . Similarly, L(A)

S (AS, φ
(S)
A ) quantifies, from the agency’s perspective, the

loss that the agency and the scientist incur if scientist takes action AS and Φ(S)
A = φ

(S)
A . In most

of the cases this is just the loss that the scientist incurs by taking action AS when Φ(S)
A = φ

(S)
h ,

i.e., φ(S)
A = φS and L

(S)
A (a1S, φS) = LS(a1S, φS). We denote by π

(h)
A (·) and π

(h)
A (· | f̃) the

agency’s prior and posterior distribution for Φ(h)
A .

We assume that the agency treats Ah and the “states of the world” Φ(h)
A as random variables,

and we propose to measure disclosure risk, DR, and data utility, DU , averaging losses with
respect to the agency’s joint posterior distribution for Ah and Φ(h)

A given the original data f ,

DR(f̃) = E
AI,Φ

(I)
A
|f
{L(A)

I (AI, φ
(I)
A )}, DU(f̃) = −[E

AS,Φ(S)
A
|f
{L(A)

S (AS, φ
(S)
A )}].

We assume that the users’ targets as well as the users’ priors, πh(·), and the users’ loss
functions, Lh(·, ·), are known to the agency. This implies that the agency knows the users’
posterior distributions, users’ optimal estimate of Θh, θ̂h, and users’ uncertainty, Uh, h = S, I .
We make this assumption largely for convenience and extensions to classes of targets, priors,
and loss functions are possible.

We further assume that the users’ thresholds, th, are fixed but unknown to the agency,
which thus treats them as random variables independent of the state of the world Φ(h)

A . The
independence assumption is reasonable if user h fixes his threshold on the basis of what he
knows about Θh but never on the basis of the agency’s knowledge of Φ(h)

A . It follows that the
agency’s posterior distribution for Ah, {Pr(a0h |f),Pr(a1h |f)}, depends only on the agency’s
distributions, πTh

(·), for the users’ thresholds and we can rewrite the disclosure risk and data
utility as:

DR(f̃) =
∑

j∈{1,0}
Pr(ajI |f) · E

Φ(I)
A
|f
{L(I)

A (ajI , φ
(I)
A )}, (1)

DU(f̃) = −
∑

j∈{1,0}
Pr(a1S |f) · E

Φ(S)
A
|f
{L(S)

A (a1S, φ
(S)
A )}. (2)

In most of the cases the agency does not know the users’ target but can only identify classes
Zh of possible targets, i.e., Θh ∈ Zh = {Θh(1), . . . ,Θh(rh)}, and we can average (1) and (2)
with respect to the probability that Θh = Θh(j).
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3.1. The Utility-Risk Trade-off
The most common criterion for the choice of the best mask in D consists of selecting the mask
f̃ that maximizes data utility subject to an upper bound for disclosure risk (Willenborg and
de Waal, 2001, Duncan, Keller-McNulty, and Stokes, 2001, Trottini and Fienberg 2002). The
optimal mask is the solution of the optimization problem:

max{DU(f̃) : f̃ ∈ D, and DR(f̃) ≤ α}
where α is a threshold value for the maximum tolerable risk fixed by the statistical agency.
Defining an optimality criterion corresponds to specifying suitable measures of disclosure risk
and data utility. We believe that the framework outlined in section 3 is the natural tool to define
such measures. Once we have specified the users’ targets, the information available about
these targets prior to the release of the data, the estimation procedure used by the users, the
consequences for the agency of users’ actions, then (1) and (2) automatically provide measures
of disclosure risk and data utility coherent with these inputs.

One might argue that all these elements are mostly unknown to the agency and, as a result,
that our framework is difficult to implement, and that heuristic measures could do a better job. In
fact, the uncertainty about inputs is a major strength of our approach, since our framework allows
us to incorporate this uncertainty in a natural way. Heuristic measures are not assumptions free.
Rather the assumptions simply are not stated (and therefore not understood). We have been
able to use our framework to produce most of the measures of disclosure risk and data utility
proposed in the literature of statistical confidentiality for suitable choices of the input values.
This allows us to understand whether these measures are statistically sensible.

In the next section we apply the framework to tabular categorical data and, because of space
limitations we focus only on measures of disclosure risk. Similar results hold for data utility.

4. DISCLOSURE RISK FOR TABULAR CATEGORICAL DATA
Suppose that a statistical agency records the value ofk categorical variables for each individual in
a given population and summarizes the result in a frequency table f with m cells (corresponding
to the possible cross-classifications of the k variables). Let I = {1, 2, . . . ,m}. We assume that
the table total (population size), n, is known a priori to the users, who view the original table as
a random variable, F . Before the generic masked data f̃ is released, users know that F takes
values in the set X of all non-negative integer m-vectors adding to n

F ∈ X = {(x1, . . . , xm) : xi is a non-negative integer and
m∑
i=1

xi = n}.

We let T be the set of tables inX that are compatible with the candidate release f̃ and by M(X )
and M(T ) the cardinality of X and T respectively.

We now use the framework of section 3 to define three measures of disclosure risk associated
with the release of a generic mask, f̃ , which correspond to well-known ones proposed on an
ad-hoc basis in the literature on statistical confidentiality. In all three examples, ΦI

A = F and,

since the agency knows the original table, π(I)
A (φ(I)

A |f) is degenerate at f . These examples
illustrate how our approach can be used to assess effectiveness of existing criteria. We think
of a measure of disclosure (data utility) as sensible if we can obtain it as a result of disclosure
scenarios characterized by “natural” choices of users targets, priors, loss functions, etc. At least
as important is the application of our framework to define new measures derived from equations
(1) and (2) for suitable choices of the input values but this goes beyond the goal of the present
paper.
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4.1. Example 1: Disclosure Risk as Tightness of Bounds for Small Cell Counts

Suppose that the intruder’s target is the original table, ΘI = F = (F (1), . . . , F (m)), and let
the intruder’s action space for the problem “estimate F ” be the m-fold product space (for the
purposes of the example we do not require intruder’s estimates to lie on the simplex, although
in general a rational intruder would include this constraint):

NI =
m-times︷ ︸︸ ︷

N × . . .×N , N = { [a, b] : a ≤ b, a, b non-negative reals}.

Suppose that when the intruder can define tight bounds for all cells in the table his loss
when estimatingF is small, whereas if he cannot accurately estimate at least one cell, his loss is
large. In particular for a generic e = (e(1), . . . , e(m)) ∈ NI and fj = (fj(1), . . . , fj(m)) ∈ T
assume:

LI(e, fj) =
{ ∑m

i=1 length e(i), if fj(i) ∈ e(i), i = 1, . . . ,m,
∞, otherwise.

Let L(i) and U(i) be the lower and upper bounds for the ith cell in the original table based on
the candidate release f̃ , i.e., L(i) = min{fj(i) : fj ∈ T } and U(i) = max{fj(i) : fj ∈ T }.
For this case, when πh(·) has support X , the intruder’s optimal action and uncertainty are,
respectively,

θ̂I = ([L(1), U(1)], . . . , [L(m), U(m)]), UI =
m∑
i=1

U(i)− L(i).

Suppose now that the loss that the agency incurs when the intruder takes action arI takes
its minimum when the intruder stops trying to identify the original table (r = 0) or when none
of the intruder’s set estimates of small cell counts in the true table contains the correct value
of the cell. Further suppose that the loss increases as the bounds for small cell counts become
tighter. This situation corresponds to:

L
(A)
I (arI , fj) =

{
−min

i∈Q
length θ̂I(i), if r = 1 and Q �= ∅ ,
−n, otherwise,

where θ̂I(i) is the intruder’s optimal (set) estimate of F (i) and

Q = {i ∈ {1, . . . ,m} : fj(i) ∈ θ̂I(i) and 0 < fj(i) < 3}.

If the agency believes that the intruder never stops trying to estimate his target (i.e. πTI
(·)

is degenerate at nm), then the disclosure risk in (1) becomes:

DR(f̃) = −min
i
{U(i)− L(i) : 0 < f(i) < 3}. (3)

Choosing this degenerate distribution for the intruder’s threshold does not necessarily imply that
the agency believes that the intruder always tries to estimate the original table, regardless of his
uncertainty, but rather may reflect a conservative attitude based on the worst-case scenario where
an intruder always tries to make inference about F . The measure in (3) has been discussed on
an ad-hoc basis by several authors (e.g., see Dobra, et al., 2002) and is a risk criterion used by
many statistical agencies.
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4.2. Example 2: Disclosure Risk as Conditional Probability of the True Table

Suppose that the intruder’s target is the distribution of the original table F and that he uses a
logarithmic utility function (Bernardo, 1979):

LI(P̂ , fj) = −log[P̂ (fj)], P̂ ∈ P, fj ∈ X , (4)

whereP denotes the class of all possible distributions with supportX . Thus the loss that intruder
pays for estimating the distribution of F by P̂ when F = fj (i.e., when the original table is fj)
is a decreasing function of the probability of fj under P̂ . Under the loss in (4), the intruder’s
optimal estimate of the distribution of F is his posterior distribution, and his uncertainty is the
entropy of the posterior distribution.

Suppose that the agency pays no loss if the intruder stops trying to estimate the distribution
of F , and it pays a loss equal to the probability of the true table under the intruder’s estimate
otherwise,

L
(A)
I (arI , fj) =

{
0, if r = 0,

θ̂I(fj) = πI(fj | f̃), if r = 1.

If the agency believes that intruder always tries to estimate the distribution of F no matter
what his uncertainty (i.e., if the agency’s distribution for the intruder’s threshold is degenerate
at log[M(T )]), then the disclosure risk in (1) is just the (intruder’s) posterior probability of
the true table f given f̃ . If the intruder’s prior for F is uniform on X , then from Bayes’
Theorem, his posterior given the released table f̃ is uniform on T and (1) becomes DR(f̃) =
πI(f | f̃) = 1/M(T ). Both measures of disclosure have been proposed on an ad-hoc basis
in the literature of statistical confidentiality (e.g., see Dobra, 2002). Since they correspond to
different assumptions about the intruder’s prior for F we can choose between them according
to which prior is appropriate for a given problem.

4.3. Example 3: Disclosure Risk as Fraction of Small Cells Values Correctly Identified

Suppose that the agency knows that the intruder’s target is to identify one cell of the original
table, but it does not know which one. If we assume that each cell is equally likely to be the
target, we have: ΘI ∈ {F (1), . . . F (m)}, and Pr(ΘI = F (i)) = 1/m for i = 1, . . . ,m.

Suppose further that the intruder uses a 0-1 loss function, i.e., LIi(e,f j) = 1 − Ifj(i)(e).

Under these assumptions the intruder’s optimal estimate of F (i) is the permissible value θ̂Ii
with highest posterior probability and the intruder’s uncertainty is one minus this maximum
(posterior) probability.

If the agency’s distribution is degenerate at some value t∗I then, from the agency perspective,
the intruder’s action is a degenerate random variable that takes values a0Ii or a1Ii depending on
whether or not Pr(F (i) = θ̂Ii | f̃) < 1 − t∗I . Let δ be a threshold value and let nδ(f j) be the
number of cells in f j such that f j(i) < δ. Suppose that, when the intruder correctly estimates
a small cell value F (i), the agency incurs a loss that is a decreasing function of the number of
“small” cell values in the true table and there is no loss if either F (i) is “big” or the intruder’s
estimate is incorrect. This corresponds to:

L
(A)
Ii (arIi,f j) =

{
m/nδ(f j), if r = 1, θ̂Ii = fj(i) and fj(i) < δ,

0, otherwise.

Then, conditionally on ΘI = F (i), the disclosure risk is:

DRi(f̃) =
{

m/nδ(f), if θ̂Ii = f(i), f(i) < δ and Pr(F (i) = θ̂Ii | f̃) > 1− t∗I ,
0, otherwise.
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and from the mixture version of (1) the (unconditional) disclosure risk is:

DR(f̃) =
m∑
i=1

Pr(ΘI = F (i)) ·DRi(f̃) =
# (f(i) < δ correctly identified)

nδ(f)
. (5)

where in (5) a cell is correctly identified if θ̂Ii = f(i) and Pr(F (i) = θ̂Ii | f̃) > 1− t∗I .
This measure of disclosure has been discussed on an ad-hoc basis by Dobra (2002) and

Dobra, et al. (2002). A similar version for microdata is also discussed in Lambert (1993) with
t∗I = 1. We next illustrate the implementation of (5) in an example where the released data
consists of a set of marginal tables of the original table f .

5. UPDATING POSTERIOR DISTRIBUTIONS OVER POSSIBLE TABLES

Now that we have criteria for assessing disclosure risk we can consider the problem posed
originally in Section 2, deciding how the agency should respond to requests for specific marginal
tables, given the set of tables already released. We do so by looking at the inferences made
by the intruder about the possible tables that are consistent with the marginals released to date
and we highlight the computational problems that characterize the evaluation of measures of
disclosure risk from Section 4.

If the agency has released the l marginalsR = {f1,f2, . . . ,f l}, and no other information
is available about f , an intruder knows only that the table f belongs to the set of tables T .
[Here R is equivalent to the masked table f̃ in Section 4.] We treat the population table
observation f = {f(i)}i∈I as having been generated from a super-population specified by
the random variable F = {F (i)}i∈I . Evaluating the disclosure risk associated with releasing
f1, . . ., f l by counting the number of tables in T could create a false sense of security if the
probability Pr(F = f |R) is high, while M(T ) is very large. In this situation, there may be a
reasonably substantial probability that the intruder could actually correctly identify the original
table f . Moreover, we can assess the level of protection for an individual cell count f(i), i ∈ I,
by examining the feasibility interval [L(i), U(i)], where L(i) = min{F (i) : F ∈ T }, and
U(i) = max{F (i) : F ∈ T }. In many situations we can calculate these bounds directly or
using relatively simple algorithms (e.g., see Dobra, 2002, for a general algorithm and Dobra
and Fienberg, 2000, 2001 for special cases).

The marginal distribution induced by Pr(F = f |R) on the possible values q ∈ [L(i), L(i)
+ 1, . . . , U(i)− 1, U(i)], of a cell i ∈ I is given by:

Pr(F (i) = q |R) =
∑

{f :f∈T ,f(i)=q}

Pr(F = f |R). (6)

The intruder could infer that the “true” value of cell i ∈ I is the value q with the highest
conditional probability Pr(F (i) = q |R). One could be misled by the fact that the feasibility
interval [L(i), U(i)] seems to be wide enough to guarantee the protection of cell count f(i)
because the probability of the “true” value f(i) for cell i in (6) might be, in fact, very large and
hence f(i) might not be adequately protected.

5.1. Conditional Distribution of a Table of Counts Under a Log-linear Model
Suppose the distribution of the cell counts f is multinomial with a fixed total n:

Pr(F = f |θ) =
n!∏

i∈I
f(i)!

exp

[∑
i∈I

f(i) log θ(i)

]
,
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where θ(i) is the probability that an individual cross-classified in table belongs to cell i ∈ I.
The cell probabilities θ = {θ(i)}i∈I are constrained to lie within the simplex

Θ =

{
θ : θ(i) > 0 for all i ∈ I and

∑
i∈I

θ(i) = 1

}
. (7)

We are more accustomed to working with parameters associated with specific models. We
therefore assume that the cell probabilities θ lie in a space ΘA associated with a hierarchical
log-linear model A, given by

ΘA = Θ ∩ {θ : log θ = A ·ψ for some ψ = {ψ(i)}i∈I with ψ(i) > 0} ,

whereA is the design matrix ofA. The introduction of log-linear models for the cell probabilities
here is a device and, at the end of this section, we suggest how the results for separate models
should be combined.

If A is the saturated log-linear model, ΘA becomes Θ–see equation (7). The conditional
distribution of F = f given the released marginalsR under model A is

Pr (F = f |R,A) =
∫

ΘA

Pr (F = f |θ) · π(θ |R,A) dθ, (8)

where π(θ |R,A) is the posterior distribution of cell probabilities given the released margins
R under model A.

Estimating Pr (F = f |R,A) is difficult because the minimal sufficient statistics of the
log-linear modelAmight be unknown if we are only provided with the set of marginalsR. We
need to “augment” the observed data R to form a complete table F ∈ T in order to obtain the
minimal sufficient statistics of A. This suggests a data augmentation approach for sampling
from the joint density

Pr(F ,θ |R,A) ∝ Pr(F |θ)π(θ |R,A).

Start with θ0 ∈ ΘA. At the s-th step of the algorithm, do

1. Simulate F (s+1) ∝ Pr(F |R,A,θ(s)).
2. Simulate θ(s+1) ∝ Pr(θ |R,A,F (s+1)).

If we are given the complete table with cell probabilities θ(s), it no longer makes sense to
condition on the log-linear model A. Similarly, given the complete table F (s+1), conditioning
on the observed dataR becomes obsolete. Thus

Pr(F |R,A,θ(s)) = Pr(F |R,θ(s)),

Pr(θ |R,A,F (s+1)) = Pr(θ | A,F (s+1)).

We make use of the Markov chain Monte Carlo approach suggested by Diaconis and Sturm-
fels (1998) for generating draws from the posterior distribution Pr(F = f |R,θ(s)). This
sampling technique relies on the existence of a Markov basis–a finite set of moves or data swaps
connecting any two tables with the same marginals.

We need to specify a prior distribution for the cell probabilities that is consistent with the
constraints induced by the log-linear model. We take the prior density for θ to be a constrained
Dirichlet prior with hyper-parameters α = {α(i)}i∈I (Schafer, 1997):
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πΘA(θ) ∝
∏
i∈I

θ(i)α(i)−1,

for θ ∈ ΘA. It follows that the complete-data posterior density for θ is

Pr(θ | A,F (s+1)) ∝
∏
i∈I

exp {[F (s+1)(i) + α(i)− 1] · log θ(i)},

for θ ∈ ΘA and zero otherwise. This is equivalent to the likelihood function for θ given
the table with cell entries F (s+1)(i) + α(i) − 1, for i ∈ I. The constrained Dirichlet prior
forms a conjugate class for the multinomial likelihood and hence the posterior of θ is another
constrained Dirichlet prior with hyper-parameters F (s+1) + α. We use Bayesian iterative
proportional fitting (Gelman, et al., 1995; Schafer, 1997) for simulating random draws from the
constrained Dirichlet posterior Pr(θ | A,F (s+1)).

By employing this data augmentation procedure, we can generate a sample θ1, θ2, . . ., θt

from the posterior distribution π(θ |R,A) and estimate the conditional density ofF = f given
dataR under model A from (8) as

Pr(F = f |R,A) ≈ 1
t

t∑
j=1

Pr(F = f |R,θj).

We are only looking at tables that are consistent with the marginalsR; hence we give zero
probability to tables that are outside T by “normalizing” the posterior probabilities in (8) so
that they add up to “1”:

Pr(F = f |R,A)←− Pr(f |R,A)∑
f ′∈T

Pr(f ′ | R,A)
. (9)

5.2. Example
Table 1 gives a 2× 3× 3 table drawn from the 1990 U.S. decennial census public use sample
for a local tract, and analyzed previously in Fienberg, Makov, and Steele (1998). Consistent
with the discussion in Sections 1 and 4, we act as if Table 1 contains population counts. We
focus on the four cells containing counts of “1” and “2.”

Suppose that the agency releases a pair of 2-way marginals: Race× Income and Income×
Gender. Table 1 also includes in square brackets the bounds on the cell values resulting from the
release of these marginals ( Dobra and Fienberg, 2000). Because these marginals are the minimal
sufficient statistics of a decomposable log-linear model, there exists a Markov basis that links all
2×3×3 tables with these marginals (see Dobra, 2002). Table 2 reports the conditional marginal
probabilities for the four cells containing small counts induced by conditioning on the saturated
log-linear modelA1. We assume a non-informative prior distribution with θ(i) = 0.5 for every
cell i ∈ I. We marked by “–” the values outside the feasibility intervals. By employing the
data augmentation algorithm outlined above, we generated a sample of size 500 from T ×ΘA1 .
The burn-in time for the Markov chain was 1, 000, 000. To reduce the correlation between two
consecutive draws, we discarded 1, 000 pairs (F ,θ) before selecting a new pair in the resulting
sample. If the intruder were to “guess” that the true values of the entries for these cells are
the values with the highest posterior probability, then his guess would be either incorrect or
indecisive for each of the four cells.
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Table 1. Three-way cross-classification of Gender, Race, and Income for a selected U.S. census tract.
(Source: Fienberg, Makov, and Steele, 1998). The bounds given in square brackets result from the
release of a pair of 2-way marginals: Race× Income and Income× Gender.

Income Level
Gender Race ≤ $10, 000 > $10, 000 and ≤ $25, 000 > $25, 000

White 96 [85, 107] 72 [64, 80] 161 [158, 169]
Male Black 10 [0, 21] 7 [0, 14] 6 [0, 9]

Chinese 1 [0, 1] 1 [0, 2] 2 [0, 2]

White 186 [175, 197] 127 [119, 135] 51 [43, 54]
Female Black 11 [0, 21] 7 [0, 14] 3 [0, 9]

Chinese 0 [0, 1] 1 [0, 2] 0 [0, 2]

Tables 2–4. Marginal conditional probabilities under the log-linear modelsA1 (Table 2),A2 (Table 3)
andA3 (Table 4) for the cells containing small counts in Table 1 induced by releasing the Race× Income
and Income× Gender marginals.

Table 2 Table 3 Table 4
Cell 0 1 2 0 1 2 0 1 2

(1, 3, 1) 0.50 0.50 — 0.64 0.36 — 0.65 0.35 —
(1, 3, 2) 0.43 0.26 0.31 0.44 0.36 0.20 0.39 0.47 0.14
(2, 3, 2) 0.31 0.26 0.43 0.20 0.36 0.44 0.14 0.47 0.39
(1, 3, 3) 0.39 0.25 0.36 0.14 0.34 0.52 0.06 0.37 0.57

5.3. Updating the Intruder’s Posterior Distribution Over Permissible Tables

In Section 5.1, we calculated the intruder’s posterior distribution given a specific log-linear
model and noted that we were introducing models as a device. To get rid of this conditioning,
we now need to average over the model space, H = {A1,A2, . . . ,AL}. The conditional
distribution of F = f given the released marginals R under the family of models H is (Kass
and Raftery, 1995; Madigan and Raftery, 1994):

Pr(F = f |R,H) =
L∑

l=1

Pr(F = f |R,Al) · Pr(Al |R), (10)

This is an average of the conditional probabilities ofF = f under each of the models, weighted
by their posterior model probabilities. As we update R as a result of the release of additional
margins, some of the terms in the sum on the r.h.s. of (10) are zero since we need to include
only those log-linear models whose minimal sufficient statistics are the same as or include the
released margins, R. We note that the posterior probabilities Pr(F = f |R,Al) in (10) are
not “normalized” as in (9). After calculating Pr(F = f ′ | R,H), f ′ ∈ T , however, we need to
“normalize” them to give probability “0” to tables that are inconsistent withR.

The probability of the dataR given the model Al is

Pr(R|Al) =
∑
f ′∈T

Pr(F = f ′ | R,Al),
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and thus the posterior probability of model Al given dataR is

Pr(Al |R) =
Pr(R|Al) · Pr(Al)

L∑
l′=1

Pr(R|Al′) · Pr(Al′)
.

5.4. Example Revisted

We return to the data in Table 1. There are three log-linear models compatible with the agency
release of the two 2-way marginals, Race × Income and Income × Gender: (i) the saturated
log-linear model A1, (ii) the log-linear model A2 of no 2nd order interaction, and (iii) the
decomposable log-linear modelA3 for the conditional independence of Race and Gender given
Income.

One of the minimal sufficient statistics ofA2, namely Race×Gender, is not determined by
fixing the other two 2-way marginals of Table 1. Table 3 displays the posterior distribution for
the possible values of the four cells containing small counts of “1” or “2” given the marginals
Race× Income and Income×Gender under modelA2. The count of “2” from cell (1, 3, 3) has
the largest posterior probability. Hence an intruder using the maximum posterior probability
rule would correctly infer one out four values associated with the small counts cells in Table 1.

The minimal sufficient statistics for model A3 are just the released 2-way marginals. We
present the posterior probabilities of the four small count cells under A3 in Table 4. Here, the
intruder would infer the correct value of cells (1, 3, 2), (2, 3, 2) and (1, 3, 3).

The structure of the parameter space clearly makes a difference here since an intruder would
not be able to correctly infer with any degree of accuracy the value of any of the four small count
cells based on working with the saturated log-linear model A1. But under the no-2nd-order
interaction model,A2, he could correctly guess one of the four counts and under the conditional
independence model, A3, three of four counts.

Suppose we had assigned these three log-linear models a priori probabilities of 0.22, 0.67,
and 0.11, respectively. Combining the results using the model averaging approach of (10), yields
posterior probabilities of 0.18, 0.72, and 0.10, respectively. The released marginals (i.e., our
data) tend to give more probability to the modelA2 of no-2nd-order interaction–not surprising,
since this model fits the data reasonably well whereas the simpler model does not. Table 5
displays the posterior probabilities for the four cells and they are close to those for model A2.
Thus the intruder would not correctly identify the counts in the small cells except for the “2” in
the (1, 3, 3) cell.

Table 5. Posterior conditional probabilities under the family of models H = {A1,A2,A3} for the
possible values of the cells containing small counts in Table 1 induced by releasing the Race× Income
and Income× Gender marginals.

Cell 0 1 2

(1, 3, 1) 0.62 0.38 —
(1, 3, 2) 0.44 0.36 0.20
(2, 3, 2) 0.20 0.36 0.44
(1, 3, 3) 0.15 0.33 0.52
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6. SUMMARY AND OPEN PROBLEMS

In this paper we have attempted what we believe to be the first systematic Bayesian treatment of
the problem of disclosure limitation for tables of counts, beginning with the trade-off between
disclosure risk and data utility, and focusing on intruder efforts to identify small cell counts.
The treatment is far from complete, however.

In Section 4, our discussion of data utility was restricted to a single user other than the
intruder. But multiple users with differing analytical goals raise new issues. For example,
releasing a high-dimensional margin requested by one user might well be “safe,” but this action
might preclude the release of many other lower-dimensional margins that would be of value to
several other users.

Missing from Section 5 is an effort to address the information to the intruder when an agency
chooses not to release a requested margin. If the agency is otherwise attempting to maximize
the utility of the data for other users, the intruder should understand that the only reason not to
release a margin is that when the information in it is combined with the other released margins,
the intruder would be able to make “strong” inferences about small cell counts in the full table.

We have also not addressed the alternative strategy to not releasing a requested margin, i.e.,
perturbing the table (subject of course to the constraints imposed by the already released margins)
and releasing the margin from the perturbed table. This is a form of data transformation or mask
in the spirit of Section 3. Clearly to do such perturbation in an efficient manner, the agency
would do well to compute its posterior distribution over the parameters of the super-population
space, and then draw tables from that distribution. This would be akin to the approach suggested
in Fienberg, Makov, and Steele (1998) or the multiple imputation approach of Raghunathan and
Rubin (2001). But then the intruder needs to update his distribution over the space of possible
tables in a somewhat different fashion than that in Section 5.

As we noted in Section 1, small counts in a sample table may not necessarily correspond to
small counts in a population table. Thus we need to adapt the strategies for assessing disclosure
risk from Section 5 to deal with sample tables. Intuitively, as the sampling fraction gets smaller
we expect disclosure risk to go down. But this may not be sufficient protection.

The U.S. decennial census files from which that 3-way table was extracted contain 53
categorical variables, cross-classified at multiple levels of geography. The kinds of computations
we were able to implement on the 3-way table in Section 5 do not necessarily scale well for such
large class-classifications. Many of the calculations in Section 5 have a remarkable similarity to
those involved in Bayesian model search with hierarchical log-linear models and especially the
subclasses of decomposable and graphical models, just as the work on bounds for contingency
tables in Dobra and Fienberg (2000, 2001) had intimate links to decomposable and graphical
models. Thus tools such as those associated with the hyper-Markov laws in Dawid and Lauritzen
(1993), and the suite of expert system tools in Cowell, et al. (1999) may prove useful as we
develop scalable approaches to disclosure limitation in large tables of counts.
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DISCUSSION

CHRISTOPHER MEEK (Microsoft Research, USA)

Congratulations to the authors for an interesting and thought-provoking paper. Methods for
managing and assessing disclosure risks for information is an area of growing importance due
to increasing amount of confidential information available electronically. It is useful to note
that while the authors have used examples from census surveys for illustration, they could have
chosen from a variety of alternative scenarios including disclosure of information from records
and surveys on medical procedures, product purchases, internet usage, and subscriptions.

The paper provides a general decision-theoretic framework for assessing and managing
disclosure risk. In addition, the authors describe techniques that begin to address the problem
of inference about a joint table given released sub-tables; a problem that is central to using
their framework. The goal of the general decision-theoretic framework is to allow an agency
to balance the risks and benefits of disclosing information. The authors capture the benefit and
risk with data-utility and data-risk functions, respectively, and evaluate the alternative potential
releases by combining the data-utility and data-risk functions. The authors suggest combining
these function with a thresholded decision rule. This suggestion seems odd; whereas this rule
does utilize both the data utility and the data risk it doesn’t balance them. If two sub-tables have
the same data utility why not choose the one with the lower data risk?

It is most natural to consider the problem faced by such an agency as a multi-step decision
problem or game-theoretic problem but, to simplify, the authors consider a myopic one-shot
decision problem: should the agency release a sub-table T given previously released tables
R. The basic tactic employed by the authors in defining the benefits and risks is to equate the
benefit (data utility) with the negative expected loss of the scientist and the data risk with the
expected loss of the intruder. In their analysis, they ignore the game-theoretic aspects of the
loss function; in actuality we would expect that the actions of the intruders and scientists are
informed by their understanding of the system and their beliefs about the other participants,
future requests and so on. The authors rather consider simplified loss functions that allow one
to decompose the larger problem into more tractable sub-problems. Unfortunately it is unclear
whether this approach will allow one to create reasonable data utility and data risk functions.
A fundamental question that the authors do not discuss is how one should go about improving
the data utility and data risk functions. Should one interview intruders and scientists? Perhaps
more importantly, how does one combine the loss functions of multiple intruders and scientists?
One cannot simply add loss functions.

The authors demonstrate that they can use their framework to obtain data risk functions that
have been used in the literature and thus ascribe a loss function to the putative intruder. This
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work demonstrates how extreme and unreasonable loss functions must be to reproduce the data
risk functions, and points to the need to identify more realistic loss functions.

The development of more realistic loss functions in combination with the framework has
other potentially useful applications. For instance, there are a number of alternative actions that
the agency might take to protect data confidentiality when given a request for data. The authors
focus on the case in which the agency simply must decide which table, if any, to release. Other
methods for releasing data such as alteration, masking, or releasing ranges of values could be
compared and evaluated using the framework when coupled with realistic loss functions.

Throughout the paper the authors equate small counts with high data risk. At an intuitive
level this seems reasonable because counts of one or two might be identifiable and lead to the
release of identifiable confidential information either directly through information released by
the agency or indirectly through the linking of information release by the agency and other
information sources. The following examples illustrate potential problems of equating small
counts with high data risk.

First, consider a sub-table with attributes hair color, height and town. Let us suppose that
there is one small town in which there is one person who has red hair and who is 7 feet tall.
Clearly this person is identifiable (just go to the town and you can probably find the person!),
however, this information alone is not confidential.

Second, consider a sub-table with attributes corresponding to a person’s favorite movie,
favorite book, and favorite color. In this situation, there are certainly going to be some entries
that will have small counts. Unlike the previous case, these attributes do not lead to identifiability
because we do not wear our preferences on our shirt sleeves.

Finally, consider the sub-table given in Table 1 of Income (I) and Hair Color (H) for town
X. In this table, none of the entries is small in the sense discussed by the authors. Nonetheless,
a release of such a table does seem to provide a release of information—that is, all blondes have
high income in town X—and the blondes in town X are identifiable (again, just go to the town).
If income is deemed to be confidential, then the release of this sub-table would be a release of
identifiable confidential information. This example illustrates that the release of confidential
information is not limited to the case of small counts.

Table 1. Example of disclosure without small counts.

Town = X

I = High I = Low

Black 4 4
Red 4 4

Blond 4 0

The last section of the paper is devoted to a specific technical problem central to the
application of the general framework: the problem of computing a posterior over the joint table
given a set of released sub-tables R. This problem is not novel to the analysis of disclosure
risk; it also arises in sociology, political science, spatial epidemiology and ecology where it
is know as the ecological inference problem. The authors choose to attack the problem by
considering the joint table to be a sample from an infinite super-population. In the simple case,
the authors then consider a fixed log-linear model and utilize a two-step Gibbs sampler with
one step requiring MCMC and the other a “Bayesian iterative proportional fitting” procedure.
In the more complicated case, the author combines the Gibbs sampling approach with model
averaging over a set of alternative log linear models.
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For the MCMC step, the authors are to be congratulated on what is probably the first
Bayesian use of the Markov basis results of Diaconis and Sturmfels (1998). They construct
a Markov chain to sample tables from the posterior of tables that satisfy the released sub-
tables. Unfortunately, the computation of the Markov basis is very expensive, and precious
little is known about mixing times of Markov chains constructed from them. An alternative
approach to sampling a table from the posterior of tables that satisfy the released sub-tables
is based on sequential cell sampling (Dobra, Tebaldi and West 2002). In this approach, one
sequentially samples every cell and updates the upper and lower bounds. Clearly, this method
can also be extremely expensive computationally (potentially exponential in cost). Given these
computational difficulties, which of these methods do you think will be able to scale to large
problems? Do we need to develop some new class of approaches?

The specific approach advocated by the authors is not completely specified. When perform-
ing model averaging, neither how one should go about selecting the set of alternative models,
nor how one ought to compute the model posteriors for these alternatives is clear. What is the
precise recipe? For some classes of models, for instance, non-decomposable and non-graphical
models, the computation of the marginal likelihood is non-trivial even in the case of complete
data. The situation in which one is computing the marginal likelihood of released sub-tables
Pr(R|Al) is certainly more challenging. If one wishes to include such alternative models, it
may be useful to combine the model averaging with the Gibbs sampling by using a reversible
jump MCMC approach.

In addition, given the focus on the small counts, it would seem sensible to carefully consider
the sensitivity of the results.

Finally, the authors consider the problem of computing a posterior on the joint table given a
set of released sub-tables when, in fact, there is more information to consider. Perhaps the most
important information that is not accounted for is the refusal to release. Consider an agency that
uses the rule that it will release no sub-table that makes a cell unique. In this case, if a request
for a two-by-two table with a grand total of four is refused after both of the margins have been
released, then there is only one table that is possible. Because the rule used by the agency is
a function of the actual joint table, the tactic used by the authors of using a super-population
to make inferences about the joint table complicates the inferential process of conditioning on
the information provided by the refusal to release a sub-table. Whereas assumptions such as
the super-population assumption allows one to use many standard statistical tools, perhaps it is
worthwhile considering alternative approaches to this problem.

REPLY TO THE DISCUSSION

We thank Chris Meek for insightful comments and questions and for his clear appreciation of the
complexity of the problem we are attempting to address. As he notes, issues of confidentiality
and disclosure limitation arise in many different contexts. Most recently we have begun to
consider them as part of a research effort in computer security. We organize our response
according to the three components of the paper: understanding disclosure risk for categorical
data, aspects of our decision-theoretic approach, and the computing the posterior distribution
over feasible tables given data releases.

Understanding Disclosure Risk. Meek asks why we equate small counts with high data
risk. As we noted in our introduction, we distinguish, as does the confidentiality literature,
between identity disclosure (through uniqueness in the population) and attribute disclosure (see
also Duncan, et al., 1993). His example of identity disclosure involves a small town with only
one person with red hair and who is seven feet tall and he notes that this information alone may
well not be confidential. This is true as far as he goes. But if the two variables are only a subset
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of those involved in our multi-way table, then all of the values on the other variables in the data
base on this individual are disclosable and this may indeed be a serious problem. It is largely
for this reason that statistical agencies and others who gather data promise those that supply it
that the data will not be released in a form that allows individuals to be identified. Protecting
identities then becomes by definition a primary confidentiality issue.

Meek’s second example, of a small town where all blonds have high income, is an example
of attribute disclosure–we don’t learn the identity of any specific blond but we learn that they all
have high income. We explicitly set such an issue aside in our paper, although it turns out that we
could easily adapt the discussion of both decision-theoretic criteria and intruder identification
to deal with this situation. For example, by looking at bounds on all cells and then focusing on
small cells for identity disclosure and on cells whose values almost equal one or more of the
released marginal values to which it sums for attribute disclosure.

Aspects of Our Decision-theoretic Approach. Meek asks about our use of the threshold rule
which is widely used in the current literature on statistical confidentiality. Our simplified version
implicitly assumes that for a fixed threshold α there is a unique data mask that maximizes data
utility among all the available masks with disclosure risk below α (this is the most common
case in applications). Clearly this simplification does not perform well when there are two or
more masks that maximize data utility (the example raised by Meek). We implicitly assume in
this case, however, that the mask with minimum risk should be selected. Thus, the rule actually
balances disclosure risk and data utility. A general threshold rule, that solves the incoherence
highlighted by Meek, could be stated as follows: Let D be the class of all available masks and
let Dα be the subclass of D containing all masks with disclosure risk below α. Finally, let
DOPT

α be the class of masks in Dα that maximize data utility. If DOPT
α is empty, release no

data. Otherwise release the mask in DOPT
α with minimum disclosure risk.

The suggestion that we formalize the disclosure limitation problem as a multi-step decision
problem or game-theoretic problem is appealing at a first glance and it seemed to us the most
natural choice when we first approached the problem. In the end, we preferred the one-shot
decision problem formalization because: (i) the real-world disclosure limitation problem is
actually a one shot problem: the agency release the data, the users make their move (estimate
of their targets); (ii) there is a strong asymmetry of information between the agency and the
users. The agency knows the original data, the alternative masks available, the mask that has
been used, the users’ targets and loss functions, and it fixes the threshold value for the maximum
tolerable disclosure risk. On the other hand, users only know that the released data have been
obtained using a particular masking technique and sometimes they ignore the same threshold
rule. Users understanding of the system is quite limited and their beliefs about other participants
(the agency in particular) are so vague that they are of little inferential value. Thus, the one-
shot decision approach is not a myopic simplification of the problem but rather a very good
approximation of how things works in reality. The key point is that in order to fill its mission
of data dissemination, the agency does not need to reveal its strategy to the users but simply
provide the data in a form that is useful for the scientist and safe from the attack of an intruder.

Meek questions how we should approach defining suitable loss functions for the intruder
and the researcher. Many statistical agencies either ignore the uses of the data they release or
claim that taking into account all users’ targets is impossible. Instead they use heuristic ad-hoc
measures that try to preserve basic features of the original data while preserving confidentiality.
Our framework clearly shows that defining measures in such a way does not avoid the problem
of defining targets and loss functions. Rather ad-hoc measures turn out to correspond to very
specific (and often unrealistic) choices of them. While defining users’ targets and loss functions
is not easy, it is necessary and unavoidable if we want suitable measures of disclosure risk and
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data utility. The idea of interviewing the users is appealing but difficult to implement for the
intruders that matter the most. For scientists the job is easier, however, since, most statistical
agencies already keep track of requests from users and design forms of data release that can meet
these requests. Thus, if an agency knows that that the principal use of the data is the estimation
a set of statistical models, then it can design suitable releases to preserve the statistical features
of the parameters of these models. To define intruders’ targets and loss functions the agency
needs to reflect on what information in the original data needs to be protect and then consider a
range of possible attacks an intruder might attempt to disclose this information.

Combining the loss functions of multiple users is also relevant. For disclosure risk, a
reasonable solution is to use a worse case strategy and adopt the maximum disclosure risk
measured for different targets on a comparable scale. The data utility case is more complex. We
could consider linear combinations of users’ loss, with different weights for different users and
we are currently working on this problem. The current version of the framework nonetheless
allows us to identify situations where there exists a suitable data mask that can meet the needs
of several users of the data while preserving confidentiality and situations where the targets of
the multiple scientists are not compatible (i.e., masks suitable for one user are almost useless
for another).

Computing the Posterior Distribution over Feasible Tables. As Meek notes this problem
also arises in other contexts such as ecological inference (e.g., see King, 1997) as well as
tomography image reconstruction (e.g., see Gelman, 1989), although in these other settings
we are typically interested in some form of model whereas in the disclosure case we are not
necessarily.

Meek asks which of the methods we explore holds the promise to scale to large problems
and whether we should consider developing some new classes of approaches. The approach
proposed by Diaconis and Sturmfels is not likely to scale because of the huge complexity of
the computations required to compute a Markov basis. Although there exists a formula for
dynamically generating a Markov basis in the decomposable case (Dobra, 2001) and ways
to significantly speed up the computations in some other special cases (see, for example, the
divide-and-conquer algorithm of Dobra and Sullivant (2002)), there is little chance that a Markov
basis associated with a higher dimensional table and an arbitrary set of marginals will be easily
computable in the near future. The sequential cell sampling approach of Dobra, Tebaldi and West
(2002) offers a possible answer to this general problem, but this method relies on the computation
of bounds, which is itself a hard problem for large tables. Therefore neither approach seems
to scale to large tables and we need to explore new avenues as well as approximations that use
reasonable amounts of computation.

Meek argues that we did not completely specify our approach in computing the posterior
distribution over the space of feasible tables. Our example was small enough that, at least for
it, we believe that there was no ambiguity, and we tried to make clear how one can compute
or at least approximate the posterior distribution for each model. Nonetheless, there is clearly
a major issue here for high-dimensional tables. Ideally we need to average over the space
of all possible hierarchical log-linear models “consistent” with the released marginals, but, as
Meek notes, the computations appear daunting without the added complexity of simultaneously
using a reversible-jump MCMC approach. We are currently exploring approximations based
on decomposable models but we also need to be able to compute the posterior distribution for
the model whose minimal sufficient statistics correspond to the released margins, so we do not
as yet have any recipe.

We agree with Meek’s suggestion that it would be sensible to consider the sensitivity of our
results to the specification of the model priors. We agree, and expect to explore alternatives
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such as the compatible priors associated with hyper-Markov laws.
Finally, we recognize the need to take into account the information supplied to an intruder

through the refusal to release tables. Meek presents an extreme example, and the more likely
scenario is that an agency is willing to release most lower-order margins and its refusals will
occur as the dimensionality grows. Our bounds work (e.g., see Dobra, et al. 2002) is clearly
consistent with this scenario, as is the U.S. Census Bureau’s American FactFinder system which
has been constructed to release at most 3-way tables. But this is one of the reasons why the
option of perturbing a table before releasing a new “masked” margin is an option worthy of
exploration.
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