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Abstract

Bayesian Modeling for Multivariate Mixed Outcomes
with Applications to Cognitive Testing Data

Jonathan Gruhl

Chair of the Supervisory Committee:
Associate Professor Elena A. Erosheva

Statistics And Social Work

This dissertation studies parametric and semiparametric approaches to latent variable mod-

els, multivariate regression and model-based clustering for mixed outcomes. We use the

term mixed outcomes to refer to binary, ordered categorical, count, continuous and other

ordered outcomes in combination. Such data structures are common in social, behavioral,

and medical sciences. We first review existing parametric approaches to mixed outcomes

in latent variable models before developing extensions to accommodate outcome types spe-

cific to cognitive testing data. We subsequently develop two new regression approaches for

mixed outcome data, the semiparametric Bayesian latent variable model and the semipara-

metric reduced rank multivariate regression model. In contrast to the existing parametric

approaches, these models allow us to avoid specification of distributions for each outcome

type. We apply the latent variable and multivariate regression models to investigate the as-

sociation between cognitive outcomes and MRI-measured regional brain volumes using data

from a study of dementia and compare results from the different models. Finally, we develop

a new semiparametric correlated partial membership model for model-based clustering of

mixed outcome data that also allows us to avoid specification of outcome distributions. We

demonstrate our semiparametric approach to model-based clustering on NBA player data

from the 2010-2011 season as well as on cognitive testing data from a study of dementia.
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Chapter 1

INTRODUCTION

Medicine, psychology, economics, education, marketing, sociology and political science

are examples of disciplines that employ latent variable modeling to analyze multivariate

data. However, the types of data and research questions in many studies do not conform

neatly with common latent variable analyses such as those using item response theory (IRT)

models from educational testing. Instead, the data are often of mixed type in the sense that

some of the observed responses may be binary, some may be ordered categorical, some may

be counts and others yet may be continuous. In this dissertation, we consider parametric

and semiparametric approaches to accommodating mixed outcomes in latent variable and

multivariate regression models. These models provide great flexibility in the types of data

that may be analyzed, represent multivariate data with a lower dimensional structure, and

enable statistical inference on the association between multivariate outcomes and covariates

of interest.

The dissertation work is motivated by medical studies of cognitive decline in the elderly.

Severe cognitive deficits such as those associated with Alzheimer’s disease are a substan-

tial health problem for the elderly and constitute both a significant societal and financial

burden. I will primarily use data from an ongoing study, the Subcortical Ischemic Vascular

Disease Program Progress Grant (SIVD) (Chui, Zarow, Mack, Ellis, Zheng, Jagust, Mungas,

Reed, Kramer, DeCarli, et al., 2006), to illustrate the proposed methods. More specifically,

we are interested in analyzing multivariate mixed data that attempt to measure cognitive

functioning in SIVD study participants. We would like to relate this multivariate set of

outcomes to covariates of interest, primarily MRI-measured brain volumes. Hierarchical

latent variable and multivariate regression models provide means of modeling the data in

a way that allows us to make inference on the associations between multivariate outcomes

and predictors.
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Within psychometrics and the social sciences, there have been many separate branches

of multivariate methods development, including latent variable models. Psychometricians

and social scientists have applied latent variable models since at least the early 1900s when

Spearman is generally credited with the origin of factor analysis and its application to

measure general intelligence. Bartholomew, Knott, and Moustaki (2011) note that the

ideas underlying factor analysis can be traced back as far as Galton (1888). Thurstone

(1947) and Holzinger and Swineford (1937) expanded upon Spearman’s work to include

multiple factors. In education, item response theory models were developed to model the

probability of correct responses to individual test questions or items with an underlying

latent variable assumed to represent a person’s ability.

Whereas the original factor analysis model assumed continuous data, item response the-

ory models were developed for binary data with later extensions for ordered categorical

data. Lord, Novick, and Birnbaum (1968) are often credited with producing the seminal

work on item response theory. Bock (1997) pointed out that the origins of these mod-

els can be traced back to Thurstone who was expanding upon the work of Spearman in

factor analysis. Takane and de Leeuw (1987) established the close relationship between

factor analysis and item response theory. Although primarily used for the development

of large-scale tests administered by organizations such as the Educational Testing Service,

item response theory has recently also been applied in medicine (Ehlenbach, Hough, Crane,

Haneuse, Carson, Curtis, and Larson, 2010), sociology (Osgood, McMorris, and Potenza,

2002), marketing (De Jong, Steenkamp, Fox, and Baumgartner, 2008) and economics (Pitt,

Khandker, and Cartwright, 2006). Item response theory models will be our point of depar-

ture for analyzing the cognitive functioning outcomes in the SIVD study. Van der Linden

and Hambleton (1997) provides a comprehensive reference for item response theory models

and methods.

Separate from factor analysis and item response theory, Lazarsfeld developed latent

class models for sociological research and Lazarsfeld and Neil (1968) compiles much of

this early work. Applied to categorical data, latent class models replace the continuous

latent variables present in factor analysis and item response theory models with categorical

latent variables. In social science research, latent class models are often used to describe
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heterogeneous populations with unidentified groups. Heinen (1996) and Bartholomew et al.

(2011) discussed the relationship between latent class models and models with continuous

latent variable models. Grade of membership models (Woodbury, Clive, and Garson Jr,

1978) relax the assumptions of latent class analysis to allow for partial membership in

multiple groups or subpopulations. Heller, Williamson, and Ghahramani (2008) provide a

different type of partial membership model that relaxes the assumptions of a different but

equivalent formulation of the latent class model.

Despite the disparate origins of these developments in multivariate analysis and latent

variable modeling, statistics has taken an increasing role in the theoretical and method-

ological development of these models, sometimes directly and other times unknowingly in

parallel. Bartholomew et al. (2011) provide a unifying treatment of latent variable mod-

els from a statistical modeling perspective. Furthermore, as noted by Bartholomew et al.

(2011), “latent variables have a long history in statistics, but their ubiquity has been ob-

scured by variations in terminology.” Bartholomew et al. (2011) cite random effects, missing

data, and potential outcomes as a few examples of the use of latent variables in statistics by

another name. Skrondal and Rabe-Hesketh (2004) also discuss a wide variety of statistical

models that may also be considered latent variable models.

While the interest of psychometricians and social scientists may focus on the models’

ability to estimate latent constructs or identify hidden groups, statisticians have focused

on the models as methods for multivariate analysis and dimensionality reduction. Latent

class models, for example, can be thought of as a subset of finite mixture models whose

statistical origins can be traced back to Pearson (1894). Statisticians and researchers in

other fields have long used mixture models to model multimodal and skewed distributions

and to perform model-based cluster analysis.

Early statistical involvement in latent variable modeling focused on the development of

theory and estimation for inference. Lawley (1940) and Anderson and Rubin (1956) were

among the first to provide more statistical treatments of factor analysis. Anderson (1954)

was early to address statistical inference issues in latent class analysis. Jöreskog (1969),

Jöreskog (1970) and Jöreskog and Goldberger (1975) developed methods of estimation for

confirmatory factor analysis and structural equation models. More recently, statistics re-
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search on latent variable modeling has included developments relating to models for mixed

data (Sammel, Ryan, and Legler, 1997; Moustaki and Knott, 2000; Dunson, 2003), methods

for the analysis of high-dimensional data (Carvalho, Chang, Lucas, Nevins, Wang, and West,

2008), and hierarchical models (Fox and Glas, 2001; Dunson, 2003). Recent developments

in estimation have focused on semiparametric methods (Fahrmeir and Raach, 2007) and

Bayesian estimation (Shi and Lee, 1998; Fox, 2010). Moreover, latent variable models are

one of the many areas that lie at the intersection of statistical and computer science research

(Erosheva and Fienberg, 2005; Blei, Ng, and Jordan, 2003; Knowles and Ghahramani, 2011).

These recent areas of research inform and motivate many of the proposed methods in this

dissertation. We develop new parametric and semiparametric approaches to handle mixed

outcomes in latent variable models and extend these models hierarchically to relate latent

variables to covariates. We also consider a multivariate regression model as an alternative

to the hierarchical latent variable models.

We use Bayesian methods for model formulation and estimation. Bayesian methods allow

for ready extension of models hierarchically and easily computable estimates of uncertainty

for parameters and latent variables using posterior distributions. They also facilitate one-

stage estimation of hierarchical models and thus avoid the biased estimates and failure

to propagate uncertainty that plague two-stage estimation procedures (Lu, Thomas, and

Zumbo, 2005; Moustaki, Jöreskog, and Mavridis, 2004).

This dissertation is organized as follows. In Chapter 2, we provide a brief review of the

Hybrid (Hamiltonian) Monte Carlo method and introduce the posterior predictive model

checking methods that will be used extensively throughout this dissertation. In Chap-

ter 3, we present the motivating data example, the Subcortical Ischemic Vascular Dementia

(SIVD) study. We briefly describe the study and the construction of the analytic sample

and provide selected results from exploratory data analysis.

In Chapter 4, we focus on extending and applying existing parametric approaches for

mixed data in latent variable models in the context of item response theory models. We

extend the mixed data methods for latent variable models to handle new types of outcomes

specifically encountered in cognitive testing situations like the SIVD study. We employ

a hierarchical model formulation to incorporate covariates, discuss Bayesian estimation of
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the model and demonstrate these methods on simulated data before applying them to our

motivating data example from the SIVD study.

In Chapter 5, we adopt a semiparametric approach for accommodating mixed outcomes

in latent variable models. Hoff (2007) proposed the semiparametric approach to estimate a

Gaussian copula model for modeling the dependence among mixed outcomes. We no longer

restrict ourselves to the item response theory framework and apply the method of Hoff

(2007) in a more general latent variable modeling framework. As in Chapter 4, we present

a hierarchical version of the model to include covariates. We explore the use of a parameter

expansion approach to estimation to aid in more efficient sampling and to overcome high

autocorrelations among Markov chain Monte Carlo draws. We demonstrate the model on

simulated data and compare different estimation approaches. In applying the model to the

SIVD data, we use the posterior predictive model checking methods to determine whether a

proposed latent structure is sufficient to adequately model the dependence structure among

the outcomes.

In Chapter 6, we introduce a reduced rank regresssion model that is able to employ

the semiparametric approach of Hoff (2007) but forego the latent variable model in favor

of a multivariate regression approach. This approach allows for the direct estimation of

the correlations among the outcomes while retaining the same mean structure as the semi-

parametric latent variable for the mixed outcomes. While such an approach sacrifices some

of the dimension reduction benefits of the latent variable model in modeling the depen-

dence structure among the outcomes, there is no longer a need to identify an appropriate

latent structure in order to approximate the dependence structure. We discuss the different

identifiability constraints necessary for employing a reduced rank formulation and sampling

correlation matrices during estimation. We demonstrate the reduced rank regression model

proposed on simulated data and on the SIVD study data.

Given the utility of the semiparametric approach for latent variable and multivariate re-

gression models for mixed outcomes, we consider in Chapter 7 its application with another

method for the analysis of multivariate data, model-based clustering. The Bayesian partial

membership model originally proposed by Heller et al. (2008) provides a means for soft

clustering of a variety of types of outcomes. As a member of the family of individual-level



6

mixture models, the model is related to the mixed membership model (Erosheva and Fien-

berg, 2005) and we compare and contrast the two models. Deriving the model formulation

for data generated by any exponential family distribution, Heller et al. (2008) demonstrated

the model on binary data. We show how the model may be applied to normally distributed

data. We then extend the model to allow for more flexible correlations among class mem-

berships and once again leverage the semiparametric approach of Hoff (2007) to allow for

mixed outcomes. We demonstrate the model on executive functioning data from the SIVD

study and on NBA player data from the 2010-11 season. In the latter example, we compare

and contrast our results with those of a cluster analysis on the same data (Lutz, 2012).

Finally, we conclude with a summary of contributions and results as well as a discussion

of future directions in Chapter 8.
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Chapter 2

BAYESIAN METHODS BACKGROUND

2.1 Introduction

In this dissertation, we rely exclusively on the Bayesian approach to statistical inference.

Here we briefly review and, in the case of some of the posterior predictive checks, introduce

a few of the methods that will be extensively used throughout this dissertation. We do

assume general familiarity with Bayesian methods and do not intend to provide an overview.

For a review of Bayesian methods, see Hoff (2009) and Gelman, Carlin, Stern, and Rubin

(2004). This chapter is organized as follows. In Section 2.2, we review Hybrid Monte Carlo

(HMC), an alternative to the more commonly applied Gibbs and Metropolis Hastings (MH)

sampling algorithms for approximating posterior distributions. Section 2.3 briefly discusses

the validating procedures for the software programs implementing the proposed models.

Finally, in Section 2.4, we introduce the posterior predictive model checking methods for

evaluating fit of multivariate models with mixed outcomes.

2.2 Hybrid Monte Carlo

One of the disadvantages of the most common MCMC algorithms, the Gibbs and MH sam-

plers, is their random walk nature. One means of overcoming the random walk behavior

is to use gradient information to enable proposals far away from the current state that

still have a high probability of being accepted. Hybrid (Hamiltonian) Monte Carlo (HMC),

applicable to continuous state spaces only, achieves this improvement by borrowing from

molecular dynamics and incorporating gradient information through the addition of a mo-

mentum variable p. We provide a brief description of the algorithm here. Duane, Kennedy,

Pendleton, and Roweth (1987) were the first to integrate the molecular dynamics approach

with MCMC. Neal (2010) provides a thorough review, MacKay (2003) provides a more suc-

cinct description, and Ishwaran (1999) and Chen, Qin, and Liu (2001) are examples of its
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application to common statistics problems.

Let θ be a D-length vector of parameters, let Y be the observed data and let p(θ,Y|ψ)

be the joint density of the data and parameters. If we specify an auxiliary “momentum”

variable, pj , for each parameter θj , j = 1, . . . , D, then we define the Hamiltonian as

H(θ,p) = U(θ) +K(p), (2.1)

where the kinetic energy, U(θ), and the potential energy, K(p) are,

U(θ) = − log p(θ,Y|ψ), (2.2)

K(p) =
1

2
pTM−1p. (2.3)

M is the “mass” matrix and is symmetric and positive definite. Thus K(p) is proportional

to a negative log Gaussian distribution with zero mean and covariance matrix M. M is

commonly assumed to be diagonal.

In Hamiltonian dynamics, the variables θ and p evolve according to the Hamiltonian

equations for j = 1, . . . , D:

dθj
dt

=
(
M−1p

)
j
, (2.4)

dpj
dt

= −dU
dθj

.

These “forces” push the parameters to regions of higher probability. The HMC algorithm

then proceeds in two main steps. First, the momentum variables are drawn according to

a N(0,M) distribution. Second, we update the parameters θ and the auxiliary variables

p using the Hamiltonian equations (2.4). The dynamics described by the Hamiltonian

equations (2.4) must be approximated in discrete steps. For HMC, the leapfrog method is

typically used for this approximation. The Hamiltonian dynamics are simulated by running

leapfrog for L steps with each individual step as follows

pj (t+ ε/2) = pj(t)−
ε

2

dU

dθj
(θj(t)) , (2.5)

θj(t+ ε) = θj(t) + ε
pj (t+ ε/2)

mj
, (2.6)

pj (t+ ε) = pj (t+ ε/2)− ε

2

dU

dθj
(θj(t+ ε)) , (2.7)
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under the assumption M is diagonal and mj is the j-element on the diagonal of M. At the

end of L steps, we have a new proposal (θ∗,p∗) for the parameters and auxiliary variables.

Here, ε is a step-size parameter that is set by the user. Moreover, the number of leapfrog

steps L is also set by the user. Note that HMC performance can be sensitive to these

parameters so they must be tuned.

To adjust for bias introduced by the discretization, the proposal (θ∗,p∗) put forth by

the simulated Hamiltonian dynamics is accepted with probability

min [1, exp (−H (θ∗,p∗) +H (θ,p))] (2.8)

= min [1, exp (−U (θ∗) + U (θ)−K (p∗) +K (p))] . (2.9)

If the proposal is rejected, then the new draw is set to the same values as the previous draw.

The momentum variables are discarded. This full algorithm is presented in Algorithm 1.

Note that step 5(d) in iteration l can be combined with step 5(a) in l+ 1 for l 6= L as they

are the same.

As Neal (2010) notes, it may be preferable in some cases to combine HMC with other

types of sampling such as Gibbs sampling. Combining HMC with other types of sampling

may be desirable when some parameters are discrete or it is not possible (or computationally

difficult) to calculate the derivatives of the log probability. In these cases, HMC is used

to sample a subset of the parameters while the remaining parameters are drawn using

alternative sampling methods. In Chapters 6 and 7, we combine HMC with Gibbs sampling

steps.

Again, the performance of the HMC algorithm is heavily influenced by the values of

L, ε, and M. The values of L and ε are commonly tuned so that proposals are accepted

at a targeted rate. Neal (2010) concludes that an optimal acceptance rate is around 65%.

Some options for tuning the HMC parameters including varying the number of steps L,

using multiple stepsizes, and using adaptive values for M that depend on θ as proposed by

Girolami and Calderhead (2011). Neal (2010) discusses a number of alternatives for tuning

and discusses variations on HMC that may further improve performance.
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Algorithm 1 Hybrid Monte Carlo algorithm

For each iteration:

1. Sample p ∼ N (0,M).

2. Calculate current value for H (θ,p).

3. Set p∗ = p, θ∗ = θ.

4. Calculate gradient for current value of θ∗, dU
dθ (θ∗).

5. For l in 1 : L

(a) Update momentum, p∗ = p∗ − ε
2
dU
dθ (θ∗).

(b) Update parameters, θ∗ = θ∗ + εM−1p∗.

(c) Calculate gradient for current value of θ∗, dU
dθ (θ∗).

(d) Update momentum, p∗ = p∗ − ε
2
dU
dθ (θ∗).

6. For proposed values (θ∗,p∗), calculate H (θ∗,p∗).

7. Draw u ∼ Uniform(0, 1).

8. If u < min [1, exp (−H (θ∗,p∗) +H (θ,p))], set θnew = θ∗. Else set θnew = θ.
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2.3 Software Validation

We rely on Markov chain Monte Carlo (MCMC) methods for Bayesian estimation of our

models. We implement these methods through custom-developed code. As a result, there

is naturally a need to test the custom-developed code implementing the models. We follow

the common strategy of simulating datasets from the model we wish to fit. As we know

the data-generating parameter values, we may compare these values to model estimates

after having fit the model to a simulated dataset. More specifically, we compare posterior

means and medians to the corresponding true parameters to see how well they match up. In

addition, we check the frequency with which posterior intervals contain the data-generating

parameters with the expectation that, for example, 95% posterior credible intervals will

contain the data-generating values approximately 95% of the time.

Cook, Gelman, and Rubin (2006) propose a more systematic approach to testing code

implementing Bayesian methods but it is potentially computationally intensive. Their ap-

proach calculates posterior quantiles and compares them to a Uniform(0,1) distribution.

If the posterior quantiles deviate from a Uniform(0,1) distribution, then the software may

have been incorrectly implemented. Interestingly enough, Monahan and Boos (1992) use

a closely related procedure to determine whether a likelihood is proper in the sense that

the posterior distribution based on the likelihood is valid by coverage. Monahan and Boos

(1992) developed this method in order to evaluate the quality of approximations by alternate

likelihoods such as those based on ranks (Pettitt, 1982).

Although results by Hartigan (1966) established the frequentist coverage validity to

O(n−1) of two-sided equal-tailed posterior credible intervals for a single parameter under

regularity conditions for any prior and Nicolaou (1993) and Datta (1996) among others have

provided results for intervals in the presence of nuisance or additional parameters, these

results were developed for the case where the likelihood function is the density function

of the data. In the semiparametric methods we apply in Chapters 5-7, the likelihood is

not the density function but rather an alternative function based on the orderings of the

data. Therefore, the results of Hartigan (1966) and others may not necessarily hold for

the semiparametric methods we apply in Chapters 5 - 7. As a result, in evaluating the
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correctness of our code, we may not be able to use posterior intervals in a strict sense to

evaluate the validity of our program.

2.4 Posterior Predictive Model Checking

Posterior predictive model checking is a diagnostic method for Bayesian models in which

the observed data are compared to the posterior predictive distribution under the proposed

model. If the model is able to approximate the data-generating process reasonably well,

then the observed data should appear consistent with the posterior predictive distribution.

Posterior predictive model checks can be implemented by drawing simulated values from

the posterior distribution of replicated data. One can then compare these simulated values

to the observed data directly or use test quantities that describe important data features.

Differences between the observed and replicated data indicate potential model misspecifi-

cation.

Let yobs denote the observed data and let ψ denote the set of parameters in the model.

Let yrep denote replicated data values drawn from the posterior predictive distribution,

p(yrep|yobs) =

∫
p(yrep|yobs,ψ)p(ψ|yobs) dψ. (2.10)

The test quantity or discrepancy measure T (y,ψ) is typically a scalar summary of data

(observed or replicated) and parameters. When restricted to a summary of data only, T (y)

is often referred to as a statistic. The summary T (·) is chosen to highlight features of the

data that we would like to approximate well in our model.

The test quantity can be employed to provide graphical or numerical evidence regarding

model misfit. Graphically, one might compare T (yobs,ψ) and T (yrep,ψ) using scatterplots

or histograms as described in Gelman et al. (2004). Lack of fit can be detected numerically

using posterior predictive p-values. This p-value is defined as the probability that the test

quantity for the replicated data is more extreme than the corresponding quantity for the

observed data,

p = Pr(T (yrep,ψ) ≥ T (yobs,ψ)|yobs). (2.11)

When we sample from the posterior using Monte Carlo methods, posterior predictive model

checking methods are straightforward to implement. We draw M sets of parameter values
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ψ1, . . . ,ψM from the posterior p(ψ|yobs); that is, we may just use the values drawn in

estimating the model. We then draw replicated data yrep,m from p(yrep,m|ψm) for each

m = 1, . . . ,M . Finally, we can compute T (yrep,m, ψm) for each m, and then estimate

equation (2.11) by comparing T (yrep,m, ψm) to T (yobs, ψm).

Robins, van der Vaart, and Ventura (2000) and Bayarri and Berger (2000) point out

that the posterior predictive p-value is not uniformly distributed on the interval [0, 1] under

the null. Although some have proposed adjustments to these posterior predictive p-values

so that their behavior mimics more closely that of traditional p-values, many treat these

p-values as a diagnostic tool for model fit rather than a strict hypothesis test. Moreover,

Gelman (2007) and Crespi and Boscardin (2009) argue that graphical displays have more

utility. We will take this point of view in evaluating the fit of our proposed models. See

Gelman et al. (2004) for more discussion of posterior predictive model checking methods.

Application of posterior predictive model checking methods to latent variable, specifically

item response theory (IRT), models includes work by Glas and Meijer (2003), Sinharay

(2005), Sinharay and Johnson (2003), Sinharay, Johnson, and Stern (2006), Levy, Mislevy,

and Sinharay (2009), and Curtis (2010). The proposed methods focus on different aspects of

IRT models, examining the assumption of local independence, person fit and item fit among

others. Suggested discrepancy measures include observed score distribution, item pair odds

ratio, and biserial correlation coefficients. Different graphical methods are highlighted as

well. Sinharay and Johnson (2003) provide an extensive set of simulation studies comparing

different discrepancy measures. Fox (2010) provides an overview of posterior predictive

model checking applications to IRT models. Curtis (2010) uses rank correlations to compare

the observed data to the replicated data on an item by item basis and we adopted this

approach as one means of checking our models.

Posterior predictive model checking methods have also been applied to models for mixed

outcomes, such as by Miglioretti (2003) and by Daniels and Normand (2006). Common

methods include graphical displays comparing the observed distributions and the predicted

distributions for the different outcomes as well as comparing the correlations between out-

comes. Following along these lines, we compare the observed marginal distribution of each

item or outcome to those of the replicated data in order to assess how well we are modeling
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this aspect of the data. We subsequently consider methods for evaluating the fit of the

model to measures of the dependence structure in the data.

2.4.1 Marginal Distributions

Figure 2.1 presents sample model checks for the marginal distributions of two hypothetical

outcomes. The histograms show the observed data for these items. For each of the replicated

datasets, we tabulated the counts of scores in each histogram bin. The black point indicates

the posterior predictive mean of the counts and the vertical segment spans the 2.5% to

97.5% posterior predictive quantiles of these counts. Figure 2.1(a) displays a case where

the model appears to fit the data reasonably well with each of the black vertical segments

covering the observed values represented by the top of each histogram bar. Figure 2.1(b)

exhibits a case where the model is less successful with many of the black vertical segments

failing to cover the observed values.

(a) Good Fit (b) Poor Fit

Figure 2.1: Histograms of the observed item scores in the simulated dataset. The black

points indicate the mean count across replicated datasets for each response. The black

vertical segment indicates the interval from the 2.5% to 97.5% quantiles across replicated

datasets.
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2.4.2 Item-by-Item Correlations

To examine how well our model captures the dependence structure among outcomes, we

compute a rank correlation using Kendall’s τ matrix for the observed data and for each of

the replicated datasets. Rank correlations such as Kendall’s τ are useful for mixed outcomes

where the data are ordinal but the true association between variables may not be linear.

Curtis (2010) used Kendall’s τ to assess the fit of an item response theory model on an

item-by-item basis. We compare the observed values of Kendall’s τ to the replicated values.

Figure 2.2 presents two sample plots of pairwise rank correlations1 between an outcome and

the other remaining outcomes in their respective multivariate sets. Each plot displays the

mean predicted value and 95% posterior predictive intervals for the rank correlations from

the replicated data in grey and the rank correlations from the observed data with the black

“X”. In Figure 2.2(a), the model fits the observed pairwise rank correlations well with the

blue segments covering the observed values. Figure 2.2(b) presents an example in which the

model is less successful.

2.4.3 Correlation Matrices

While this item-by-item comparison of correlations between observed and replicated data

can be useful, we also need a way to carry out a global comparison of the correlation ma-

trices. To compare the matrices, we employ a dissimilarity measure between two matrices,

similar in spirit to the approach of Crespi and Boscardin (2009). For multivariate outcome

data, Crespi and Boscardin (2009) describe a discrepancy measure that relies on distance

metrics such as Euclidean or Manhattan distances to compare the vectors of outcomes in

the replicated data and the observed data. Let yobs1 , . . . ,yobsI represent the observed re-

sponses for I participants. Further assume that we have drawn M sets of parameters from

their posterior distribution. For each set of parameters, ψm,m = 1, . . . ,M , we simulate

data according to the parameters ψm to generate yrep,m1 , . . . ,yrep,mI . Crespi and Boscardin

(2009) then compute pairwise distances for all replicated data d(yrep,mi ,yrep,m
′

i ) for each

participant i across draws m,m′ = 1, . . . ,M as well as the distance between the replicated

1For the remainder of the document, we use rank correlation to mean Kendall’s tau.
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(a) Good Fit (b) Poor Fit

Figure 2.2: Sample Pairwise correlation plots for a single outcome against the remaining

outcomes depicting the mean posterior prediction (grey point) and 95% posterior predic-

tion intervals (grey line segment) for Kendall’s τ values calculated using replicated data.

Kendall’s τ values computed from the observed data are denoted by a black “X”.

data and the observed data d(yrep,mi ,yobsi ). By their logic, if the model for the multivariate

outcomes is consistent with the data, then the set of distances of {d(yrep,mi ,yobsi )} should be

largely consistent with {d(yrep,mi ,yrep,m
′

i )}. If the model fits poorly, then {d(yrep,mi ,yobsi )}

should be stochastically greater than {d(yrep,mi ,yrep,m
′

i )}. Crespi and Boscardin (2009)

present histograms of the sets of distances as a graphical means of comparison. To numeri-

cally evaluate the consistency between these sets for each participant, Crespi and Boscardin

(2009) suggest the use of a Mann-Whitney-Wilcoxon procedure.

Rather than compare the distance between two vectors, we are interested in compar-

ing the distance between rank correlation matrices of observed and replicated data, Cobs

and Crep. As in Crespi and Boscardin (2009), we will have two sets of discrepancies,

{d(Cobs,Crep,m)} and {d(Crep,m,Crep,m′)} where m 6= m′. We compare these two sets by

plotting them in the following manner. For each replicated draw m, we have one value

d(Cobs,Crep,m) and an M − 1-length vector of values d(Cm,Cm′). We plot d(Cobs,Crep,m)

on the vertical axis and d(Crep,m,Crep,m′) on the horizontal axis, leaving us with a hori-
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zontal set of points at d(Cobs,Crep,m) for each m. If the model is consistent with the data,

then we expect d(Cobs,Crep.m) to be consistent with d(Crep,m,Crep,m′). That is, we expect

the points in the plot to concentrate in the neighborhood of a 45 degree line on the plot.

We are particularly concerned about the misfit of our model when all points lie to the left of

the 45 degree line, indicating that the distances among replicated rank correlation matrices

are smaller than those between the observed and replicated correlation matrices.

This global method of comparing rank correlation matrices requires the specification of a

dissimilarity measure/distance metric. An obvious choice is the generalization of Euclidean

distance to matrices. The Euclidean (or Frobenius) distance, dE , between two correlation

matrices C1 and C2 is

dE(C1,C2) =

√∑
i<j

(C1(i,j) −C2(i,j))2 (2.12)

where C1(i,j) and C2(i,j) denote the i, jth element of the matrices C1 and C2.

As Davis (2008) observed, this is a localized means of comparing matrices and corre-

lation or covariance matrices often possess more structure that methods such as principal

components analysis try to exploit. Davis (2008) relies on the log determinant (LogDet)

divergence to compare correlation matrices. The LogDet divergence, dld, is defined as

dld(C1,C2) = tr(C1C
−1
2 )− log |C1C

−1
2 | − p (2.13)

where p is the dimension of C1 and C2, |X| denotes the determinant of X and tr(X) the

trace of X. Unlike the Euclidean distance, the LogDet divergence is not a distance metric

and is not symmetric meaning that dld(C1,C2) 6= dld(C2,C1). The LogDet divergence is

also known as the Wishart dissimilarity or distance measure. The LogDet divergence can

be formulated as a component of the Kullback-Leibler divergence between two multivariate

Gaussians or as a constrained maximum likelihood using the Wishart distribution (Davis,

2008). One means of creating a symmetric LogDet divergence, dsld, is setting

dsld(C1,C2) = dld(C1,C2) + dld(C2,C1). (2.14)

One additional possibility for a distance measure between correlation matrices is the

correlation matrix distance (CMD) employed by Herdin, Czink, Ozcelik, and Bonek (2005)
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to evaluate the stationarity of multiple input multiple output channels in mobile radio.

They define the distance between two correlation matrices, C1 and C2, as

dCMD(C1,C2) = 1− tr(C1C2)

||C1||f ||C2||f
∈ [0, 1] (2.15)

where || · ||f is the Frobenius norm. They note this metric can be reformulated as 1 minus

the inner product of the vectorized correlation matrices

dCMD(C1,C2) = 1− 〈vec(C1), vec(C2)〉
||vec(C1)||2||vec(C2)||2

∈ [0, 1]. (2.16)

The authors note that “it becomes zero if the correlation matrices are equal up to a scaling

factor and one if they differ to a maximum extent”(Herdin et al., 2005, pg. 137).

After an informal and heuristic comparison of the measures detailed in Appendix B,

we ultimately settled on the symmetric LogDet discrepancy measure as it appeared to be

sensitive to differences in correlation matrices that the other measures were not. Figure 2.3

provides examples of model fit assessment using the global comparison of the rank correla-

tion matrices based on the symmetric LogDet discrepancy measure. In the figure, we display

the scatterplots of dsld(C
obs,Crep,m) versus dsld(C

rep,m,Crep,m′). Figure 2.3(a) presents a

case where the model does a good job of replicating the observed rank correlation matrix;

we see the points are largely symmetrically around the 45 degree lines in black.

The plot on the right in Figure 2.3(b) shows the result for a case of poor model fit. In

this case, we see that dsld(C
rep,m, Crep,m

′
) is always smaller than dsld(C

obs, Crep,m), forcing

the cloud of points to the upper left of the plot. It is this type of pattern that we expect to

see when there is non-trivial inconsistency between the dependence structure of the model

and the data.

Another means of evaluating the model’s ability to represent the dependence structure

observed in the data is to compare the eigenvalues of the observed rank correlation matrix to

those of replicated data correlation matrices. The eigenvalues of correlation matrices form

the basis of heuristic tests in factor analysis such as the latent root criterion (Guttman,

1954) or the scree test (Cattell, 1966). These heuristic tests are typically employed to

determine the number of factors to include in the model. Figure 2.4 presents sample plots

of the ten largest eigenvalues of the simulated data marked with a black “X”. The grey
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(a) Good Fit (b) Poor Fit

Figure 2.3: Sample Scatterplots of dsld(C
obs, Crep,m) versus dsld(C

rep,m, Crep,m
′
) for all repli-

cated datasets. The grey line represents the 45 degree line.

points and intervals on the plot display the posterior predictive mean and 95% posterior

predictive intervals for the eigenvalues. In Figure 2.4(a), we see a case where the model

does a good job of replicating the eigenvalues of the observed rank correlation matrix. In

fact, it is somewhat difficult to distinguish the observed values from the posterior predictive

means. The observed values and posterior predictive values are more easily distinguished

in Figure 2.4(b) where the model does not fit the data well.
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(a) Good Fit (b) Poor Fit

Figure 2.4: Sample Plots of top ten eigenvalues depicting the mean prediction (grey point)

and 95% prediction intervals (grey line segment) of the eigenvalues calculated using repli-

cated data. Eigenvalues computed from the observed data are denoted by a black “X”.
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Chapter 3

INTRODUCTION TO THE SIVD STUDY

Our primary motivating example is a dataset from a large multicenter study called the

Subcortical Ischemic Vascular Dementia (SIVD) Program Project Grant (Chui et al., 2006).

The SIVD study follows individuals longitudinally until death, collecting serial imaging and

neuropsychological data from a large group of study participants. One major goal of the

study is to further elucidate relationships between brain structure and function.

Participants in the study were recruited to span a range of cognitive functioning and

presence (vs absence) of lacunes. Lacunes are small areas of dead brain tissue caused by

blocked or restricted blood supply. Cognitive functioning was assessed using the Clinical

Dementia Rating total score, a numerical rating of dementia status based on medical history

and clinical examination as well as other forms of assessment (Morris, 1993, 1997). Among

the data collected in this study are the results of neuropsychological testing and standardized

magnetic resonance imaging (MRI) scans of the participants’ brains (Mungas, Harvey, Reed,

Jagust, DeCarli, Beckett, Mack, Kramer, Weiner, Schuff, et al., 2005). A computerized

segmentation algorithm classified pixels from the MRI brain scans into different components,

including white matter hyperintensities (Cardenas, Ezekiel, Di Sclafani, Gomberg, and Fein,

2001).

In our applications, we focused on one particular cognitive domain, executive function-

ing, thought to be particularly susceptible to cerebrovascular disease (Hachinski, Iadecola,

Petersen, Breteler, Nyenhuis, Black, Powers, DeCarli, Merino, Kalaria, et al., 2006). Exec-

utive functioning refers to higher order cognitive tasks (“executive” tasks) such as working

memory, set shifting, inhibition, and other frontal lobe-mediated functions. In Chapters 4-

6, we are concerned with relating individual levels of executive functioning at the initial

SIVD study visit to the concurrent MRI-measured amount of white matter hyperintensities

(WMH) located in the frontal lobe of the brain. Executive functioning capabilities may be
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particularly sensitive to white matter hyperintensities in this region (Kuczynski, Targan,

Madison, Weiner, Zhang, Reed, Chui, and Jagust, 2010). White matter hyperintensities are

areas of increased signal intensity that are commonly associated with increasing age.

The SIVD neuropsychological battery includes 21 distinct indicators that can be con-

ceptualized as measuring some facet of executive functioning. We refer to the executive

functioning-related outcomes as “indicators” as they include some elements that are scales

by themselves, and other elements that are subsets of scales. Observed responses to the

SIVD neuropsychological test items are diverse in their types. In addition to binary and or-

dered categorical outcomes, the SIVD neuropsychological indicators include count as well as

censored count data. In our analyses, we generally excluded two outcomes, Mattis Demen-

tia Rating Scales M and N, as everyone except one participant among the analytic sample

received full credit on these outcomes. As a result, we typically used 19 of the 21 executive

functioning outcomes in our analyses.

Neuropsychological data in the SIVD study are available for 667 individuals, of whom 627

have a complete set of scores for the executive functioning indicators. Brain imaging data

are available for 445 participants, of whom 370 have complete sets of measurements. That

is, on occasion images used to estimate the occipital region volumes are cut off and prevent

an accurate set of volume measurements. As a result, we only consider those participants

for whom the images are complete. Finally, we restricted our analyses to participants with

concurrent and complete cognitive and MRI results at their initial study visit. We defined

cognitive and MRI results as concurrent when the measurements were recorded within 6

months of one another. This restriction limits the analytic sample to 341 participants.

Table 4.2 displays basic information for the 19 outcomes as well as some summary statistics

observed in the data for the 341 participants.

To allow the reader some familiarity with the test outcomes, we provide a brief de-

scription of selected executive functioning indicators. In the Digit Span Forward task, the

participant is asked to repeat back digits in the same order they are read. The set of digits

increases by one with every other trial. Testing continues until the participant is unable to

repeat sets of numbers of a particular length. The total number of correctly repeated digits

is the observed outcome reported in the data set. Digit Span Backward is the same as Digit
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Table 3.1: Summary statistics for baseline responses of 341 participants to 19 SIVD ex-

ecutive functioning outcomes as well as outcome type assignment. ’RC Count’ denotes a

right-censored count outcome.

Range Mean Median Outcome Type

Digit Span Forward 3-12 7.69 8 Count

Digit Span Backwards 1-12 5.97 6 Count

Visual Span Forward 0-13 7.15 7 Count

Visual Span Backwards 0-12 6.18 6 Count

Verbal Fluency Letter F 1-26 11.8 12 Count

Verbal Fluency Letter A 0-40 10.2 10 Count

Verbal Fluency Letter S 0-50 12.4 12 Count

MDRS E 2-20 16.64 19 RC Count

MDRS G 0-1 0.96 1 Binary

MDRS H 0-1 0.98 1 Binary

MDRS I 0-1 0.95 1 Binary

MDRS J 0-1 0.97 1 Binary

MDRS K 0-1 0.98 1 Binary

MDRS L 0-1 0.79 1 Binary

MDRS O 0-1 0.94 1 Binary

MDRS V 9-16 14.9 16 RC Count

MDRS W 0-8 6.44 7 Ordered Cat.

MDRS X 0-3 2.66 3 Ordered Cat.

MDRS Y 0-3 2.93 3 Ordered Cat.

Span Forward except that participants are asked to repeat the number sequence backwards.

For the Verbal Fluency Letter F, A, and S tests, participants are asked to name unique

words starting with the specified letter. Participants are scored based on the number of
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unique words listed in 1 minute.

The Mattis Dementia Rating Scale consists of questions designed to test a number of cog-

nitive subdomains such as attention, initiation and conceptualization. We only considered a

subset of these to be indicators of executive functioning. Among the Mattis Dementia Rat-

ing Scale test outcomes that we identified as executive functioning-related, Mattis Dementia

Rating Scale outcome V asks a participant to examine pictures and identify similarities and

differences. Mattis Dementia Rating Scale W asks a participant to compare words and

identify similarities.

For Mattis Dementia Rating Scale outcome E, participants are given one minute and

are asked to name as many items found in supermarkets as they can. The participant’s

score is the number of valid items named and the score is censored at 20. Mattis Dementia

Rating Scale I instructs participants to repeat a series of alternating movements while Mattis

Dementia Rating Scale L instructs participants to copy drawings of ramparts.

In Figures 3.1, we present sets of histograms for two of the executive functioning indica-

tors. The plot on the left in each set is the histogram for all 341 study participants. The two

remaining plots in each set are histograms for the sample broken down by age (years) and

years of education. In Figure 3.1(a), we see the effect of the censoring described above for

Mattis Dementia Rating Scale E. In fact, for most if not all of the Mattis Dementia Rating

Scales, a high number of study participants attained the maximum score. In looking at the

histograms by age, scores do appear to decrease for older age groups, although the effect

is perhaps not as sharp as one might expect. Perhaps more pronounced is the increase of

scores with education in the rightmost histograms in each set. We see similar relationships

with age and education for the other outcomes.

Figure 3.2 presents the corresponding histograms for frontal white matter hyperintensity

volume and total brain volume. The histogram for frontal white matter hyperintensity

volume is heavily right-skewed whereas the histogram for total brain is more symmetric. The

frontal white matter hyperintensity volume plots by age and education show the histogram

shifting to right for older age groups and to lower values for higher educational attainment.

In Figure 3.2(b), the relationships between total brain volume and age and education run

in the opposite direction.
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(a)

(b)

Figure 3.1: Histograms of SIVD Executive Functioning Outcomes. The plot on the left for

each outcome is the histogram for the total analytic sample. The two plots in the center

and on the right are histograms by age (years) and years of education.

In Figure 3.3, we display bivariate scatterplots with loess curves (local regression, Cleve-

land and Devlin (1988)) of some of the executive functioning indicators against the frontal

white matter hyperintensity volume and total brain volume. For both Digit Span Backwards

and Mattis Dementia Rating Scale W, there is a negative relationship with frontal white
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(a)

(b)

Figure 3.2: Histograms of SIVD MRI-measured Brain Volumes. The plot on the left for

each outcome is the histogram for the total analytic sample. The two plots in the center

and on the right are histograms by age (years) and years of education.

matter hyperintensity volume. The relationship with total brain volume is more ambiguous.

Digit Span Backwards appears to possibly be positively associated with total brain volume.

However, there appears to be no relationship between Mattis Dementia Rating Scale W and

total brain volume.
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(a)

(b)

Figure 3.3: Bivariate plots of SIVD executive functioning outcome against MRI-measured

brain volumes. The red dotted line is a loess curve and is surrounded by a shaded 95%

pointwise confidence interval.

In Chapters 4-6, we propose models for studying the association between multivariate

mixed outcomes and covariates of interest. We demonstrate these models using executive

functioning indicators and frontal white matter hyperintensity volume data from the SIVD

study. It should be noted that, in demonstrating our methods, we ignore possible effects of
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the SIVD study design features. For example, our analyses do not account for the multicen-

ter nature of the study. Because participants were recruited from different centers, it may

be important to account for possible within-center correlations among the participants. One

means of accounting for a possible multicenter effect would be a straightforward extension

of the hierarchical model to include center-specific effects. Such extensions, however, are

beyond the scope of this dissertation.
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Chapter 4

ITEM RESPONSE THEORY MODEL FOR MIXED OUTCOMES

4.1 Introduction

Item response theory (IRT) is commonly applied to test questions, or items, to simultane-

ously estimate parameters characterizing the ‘ability’ of individuals and parameters char-

acterizing the ‘difficulty’ of items. IRT accomplishes the dual characterization of individual

and items by modeling the probability of a correct response for each individual and item

conditional on a person-specific latent variable and item-specific parameters (Van der Lin-

den and Hambleton, 1997). The most commonly applied IRT models such as the two and

three parameter logistic models (Lord et al., 1968) and the graded response model (Same-

jima, 1970, 1972) were developed for binary and ordered categorical items. Many IRT

software programs including Parscale (Muraki and Bock, 2008), BILOG-MG (Zimowski,

Muraki, Mislevy, and Bock, 2008) and Testfact (Bock, Gibbons, Schilling, Muraki, Wilson,

and Wood, 2003) implement estimation only for binary and ordered categorical outcomes

and hence many analyses are restricted to these types of outcomes.

In cognitive testing data, such as the SIVD study introduced in Chapter 3, the testing

outcomes are often mixed in the sense that some items may have binary outcomes, others

have count outcomes, and others yet may be continuous. To accommodate such mixed

outcomes, we apply methods from the more general category of latent variable models

(Bartholomew et al., 2011), of which IRT models are a subset. We further extend these

methods for additional outcome types including right-censored count encountered in our

motivating example, the SIVD study and time-to-completion outcomes common in other

studies involving cognitive testing such as the Alzheimer’s Disease Neuroimaging Initiative

(Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, and Beckett, 2005;

Weiner, Aisen, Jack, Jagust, Trojanowski, Shaw, Saykin, Morris, Cairns, Beckett, et al.,

2010).
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As discussed in Chapter 3, we would like to study the association between executive

functioning and frontal white matter hyperintensity volume and we propose to do so through

a hierarchical IRT model where the latent variable underlying the executive functioning

indicators is related to the MRI measurements of frontal white matter hyperintensities.

Many items used in the neuropsychological tests may not easily be classified as binary or

ordinal categorical. For instance, some items in the SIVD battery closely resemble count or

right-censored count outcomes. One practical approach in situations where outcomes are

continuous or discrete with a large number of categories may be to bin the observations in

some fashion so that we may apply the standard IRT models and software. We would like

to model the respective distributions of these outcomes directly to avoid such binning.

Existing research on latent variable models for mixed outcomes is largely focused on

two parametric approaches. The first approach is to specify a different generalized linear

model for each outcome that best suits its type (e.g. binary, count, ordered categorical).

Shared latent variables are included as predictors in each of these generalized linear models

and induce dependence among the outcomes. Sammel et al. (1997) proposed this type of

parametric approach to latent variable modeling for mixed outcomes in order to analyze

multivariate sets of binary and continuous outcomes. Moustaki and Knott (2000) general-

ized the results of Sammel et al. (1997) by demonstrating the specification of a wider variety

of exponential family distributions as the conditional distributions of outcomes given the

latent variables. These extensions allowed for the analysis of polytomous, count and gamma

distributed outcomes in addition to the binary and normally distributed outcomes analyzed

by Sammel et al. (1997). The methods of Sammel et al. (1997) and Moustaki and Knott

(2000) relied on maximum likelihood for inference and employed the EM algorithm for es-

timation. In a Bayesian framework, Dunson (2003) extended the generalized latent trait

models to allow for repeated measurements, serial correlations in the latent variables and

individual-specific response behavior.

The second parametric approach to analyzing mixed discrete and continuous outcomes

with latent variables is the underlying latent response approach. In this approach, ordinal

outcomes are assumed to have underlying latent responses that are continuous and normally

distributed. As the continuous outcomes are also assumed to be normally distributed, in-
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troduction of the underlying latent responses enables one to proceed with the analysis as

one might for any multivariate normal data. To map the underlying latent responses to

observed ordinal outcomes, one must estimate threshold parameters. The underlying latent

response approach has long been in use with ordinal probit models (Aitchison and Silvey,

1957) and this approach also aids in constructing Gibbs samplers for Bayesian estimation

of models for ordinal data (Johnson and Albert, 1999). In the context of latent variable

models, Shi and Lee (1998) employed Bayesian estimation for factor analysis with polyto-

mous and continuous outcomes. More recently, Fahrmeir and Raach (2007) used a similar

framework that also allowed for nonlinear covariate effects through the use of penalized

splines. However, as noted by Dunson (2003), the underlying latent response approach is

limited in that some observed outcome types such as counts may not be easily linked to

underlying continuous responses.

Generalized latent trait models, on the other hand, can be extended to account for

additional outcome types. Skrondal and Rabe-Hesketh (2004) discuss a number of different

outcome types that can be modeled using the generalized latent trait model framework,

including censored and duration outcomes. For these reasons, we have elected to use these

generalized latent trait models while retaining the two parameter IRT parameterization to

obtain latent variable estimates based on observed item responses of mixed type (binary,

ordered categorical, count). Motivated by data from the SIVD study and test items from

other studies of cognitive functioning, we extend these models to allow for right-censored

count outcomes as well as time-to-completion outcomes.

The remainder of this chapter is organized as follows. Section 4.2 discusses the gener-

alized latent trait model cast in an IRT framework (i.e. using the IRT parameterization)

as well as an extension of this framework to include outcomes of other types. Bayesian

estimation of the model using a Metropolis-Hastings within Gibbs algorithm is presented in

Section 4.3. We demonstrate these methods on simulated data in Section 4.4. In Section 4.5,

we demonstrate these methods on data from the SIVD study, examining the association be-

tween executive functioning indicators and covariates of interest, in particular the MRI

measurements of white matter hyperintensities in the frontal lobe.
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4.2 Adapting IRT Models for Mixed Outcomes

4.2.1 IRT Models: Overview

We begin with a review of IRT models. For binary items, a common IRT model is the two

parameter logistic form. Assume that we have observed J item responses for I individuals

where a correct responses is designated with a ‘1’ and an incorrect response a ‘0’. Let the

matrix Y = {Yij : i = 1, . . . , I; j = 1, . . . , J} denote the set of binary item responses. Under

the two parameter logistic IRT model, the probability of a correct response on item j for

participant i is the following,

P (Yij = 1|θi, aj , bj) =
1

1 + exp (−[ajθi − bj ])
. (4.1)

Here aj and bj are item specific discrimination and difficulty parameters while θi is an

individual-specific latent trait. The latent variable θi is commonly referred to as an ability

parameter in IRT-related literature. To remain consistent with the literature, we will use

this term strictly as a name for the parameter. The difficulty parameter bj in equation (4.1)

is a location measure for the item while the discrimination parameter aj serves as a scaling

parameter. The probability of a correct response is assumed to increase with θi in IRT

models. The scalar parameter aj is restricted to be positive. An equivalent and perhaps

more common formulation is to use the linear form aj(θi − b∗j ) instead of ajθi − bj in

equation (4.1) where b∗j = bj/aj .

When working with ordinal responses of more than two categories, IRT practitioners

commonly rely upon the graded response model (Samejima, 1970, 1972) or the generalized

partial credit model (Muraki, 1992). As we will employ it later, we discuss the generalized

partial credit model briefly. The generalized partial credit model is essentially an adja-

cent categories logit model. If we denote the number of categories for item j by Kj , the

probability that individual i is credited with item response kj ∈ {1, . . . ,Kj} is

P (Yij = kj |θ, aj ,bj) =
exp

(∑kj
h=1 ajθi − bjh

)
∑Kj

l=1 exp
(∑l

h=1 ajθi − bjh
) (4.2)

where bj is now a vector of location or threshold parameters between categories. It is a
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convention to set bj1 = 0 so that there are a total of Kj−1 parameters. See Van der Linden

and Hambleton (1997) for more background regarding IRT models.

4.2.2 Existing Generalized Latent Trait Methods Applied to IRT

We commence by presenting the approach of Moustaki and Knott (2000) and Dunson (2003)

to accommodating mixed outcomes in latent variable models. This presentation proceeds

in the context of IRT models by restricting the linear predictor in the latent variable model

to the above two parameter IRT parameterization, ajθi − bj . We follow here generally the

exposition and notation of Dunson (2003).

Suppose that I participants respond to J items. The observed response on item j for

participant i is represented as yij with the full set of responses for participant i denoted

by the vector yi = (yi1, . . . , yiJ)T . These outcomes may be binary, count, continuous and

ordered categorical. Let JB denote the number of binary outcome items, JC the number of

count items, JN the number of continuous items and JO the number of ordered categorical

items so that J = JB + JC + JN + JO. Similarly, let jB = 1, . . . , JB index the binary items,

jC = 1, . . . , JC index the count items and so forth so that yi1, . . . , yiJB are binary responses,

yi1, . . . , yiJC are count responses, yi1, . . . , yiJN are continuous responses and yi1, . . . , yiJO are

ordered categorical responses.

We further specify ηij = ajθi − bj . In the following ηij , will serve as the linear predictor

in the generalized latent trait model. If we designate fj (yij |ηij) as the conditional density

of the response yij given the item parameters and the latent ability, we specify the densities:

Binary: fjB (yijB |ηijB ) =
exp (yijBηijB )

1 + exp (ηijB )
, (4.3)

Count: fjC (yijC |ηijC ) = exp (− exp (ηijC ) + ηijCyijC ) /yijC !, (4.4)

Continuous: fjN (yijN |ηijN , τjN ) =

√
τjN
2π

exp
(
−τjN

2
(yijN − ηij)

2
)
, (4.5)

Ordinal: fjO (yijO |ηijO) =
exp

(∑yijO
l=1 ηijO(l)

)
∑KjO

m=1 exp
(∑m

l=1 ηijO(l)

) . (4.6)

The parameter, τjN , in equation (4.5) is a precision parameter (inverse of the variance)

for the continuous outcome jN . In equation (4.6), we use the generalized partial credit
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model for the ordered categorical outcomes, a model that is essentially equivalent to the

adjacent categories logit model. Here ηijO(l)
= ajOθi−bjO(l)

where bjO(l)
specifies a threshold

or transition location parameter between the lth and the l − 1 categories. KjO denotes

the number of categories for ordinal item jO. The above equations thus specify logistic,

Poisson, normal and adjacent category logit forms for binary, count, continuous and ordinal

responses.

Under the assumption of conditional independence of the responses given θi, the con-

ditional joint density of observed responses is the product of the item conditional densities

over all items and participants,

f(Y|H) =
∏
i

∏
jB

fjB (yijB |ηijB )
∏
jC

fjC (yijC |ηijC )
∏
jN

fjN (yijN |ηijN )
∏
jO

fjO(yijO |ηijO)


(4.7)

where Y = {yij : i = 1, . . . , I; j ∈ {1B, . . . , JB, 1C , . . . , JC , 1N , . . . , JN , 1O, . . . , JO}} and

H = {ηij : i = 1, . . . , I; j ∈ {1B, . . . , JB, 1C , . . . , JC , 1N , . . . , JN , 1O, . . . , JO}}.

4.2.3 Extensions to Include Additional Distributions

Although existing generalized latent trait models can accommodate mixed outcomes from

binary, count, continuous and ordinal distributions, other, more specialized, cases have not

been demonstrated in the literature1. For example, consider Mattis Dementia Rating Scale

E, an item in the SIVD dataset where participants are asked to name as many supermarket

goods as they can in 1 minute. As first presented in Chapter 3, the participant’s score is

the number of valid items named with 20 being the maximum score that can be attained.

Using equations (4.4) and (4.6), we might consider modeling responses for Mattis Dementia

Rating Scale E as count data or as ordinal data. However, there are shortcomings to

both approaches. To model the responses as count data using a Poisson distribution while

ignoring the restriction on scores would bias our estimates. If we rather model the outcomes

as ordinal data, then we have a more flexible model form but, with 21 categories, estimating

1Note that Skrondal and Rabe-Hesketh (2004) discuss a number of different types of outcomes that can
be modeled using the generalized latent trait model framework, including censored and duration outcomes,
but do not demonstrate those discussed here in applied settings.
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20 transition location parameters may pose a challenge with regards to slow convergence

and prior specification.

Alternatively, we might consider modeling the Mattis Dementia Rating Scale E responses

using a right-censored Poisson distribution. Censored distributions are useful in cases where

responses known to be outside of a specified range are assigned a value within the range.

For Mattis Dementia Rating Scale E, we know that participants with a score of 19 or below

on the item have not been limited by the maximum attainable score of 20. For those with

scores of 20, however, we cannot determine whether the individual scored 20, or perhaps

scored higher but then were credited with a score of 20 due to the item’s scoring rules. As

such, for participants with scores of 20, we only know definitively that participant scored

higher than 19.

In general terms, let x be a random variable with density f , then z is a right-censored

observation of x if

z =

 x if x ≤ d2

d2 + 1 if x > d2

where d2 is the point of censoring. Thus, for Mattis Dementia Rating Scale E, d2 = 19.

The random variable z then has the density fRC

fRC(z) = [1− F (d2)]1[z>d2] · f(z)1[z≤d2] . (4.8)

If yij has a right-censored Poisson distribution with mean parameter λij , then its density

f(yij) is as follows:

f(yij |λij) =

 ∞∑
z=d2+1

exp(−λij)λzij
z!

1[yij>d2] · [exp(−λij)λ
yij
ij

yij !

]
1[yij≤d2]

. (4.9)

If we let log λij = ηij as we did for the uncensored count data model, then

f(yij |ηij) =

 ∞∑
z=d2+1

exp(− exp(ηij)) exp(zηij)

z!

1[yij>d2]

·
[

exp(− exp(ηij)) exp(yijηij)

yij !

]
1[yij≤d2]

. (4.10)
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Thus we can add right-censored count outcomes to the mixed outcomes IRT model discussed

in the previous section. We index these items using jCRC = 1, . . . , JCRC .

We might not only consider the use of the right-censored Poisson distribution for count

outcomes but also for ordinal categorical outcomes with a large number of categories where

a pronounced ceiling effect is evident. This would reduce the number of parameters to

estimate as the k − 1 parameters required for the category thresholds would be reduced

to a single difficulty parameter. Moreover, one could argue that this is not a significant

departure in the description of the outcome as an individual is effectively trying to attain a

high count of points scored on the item. For individuals who have attained the maximum

number of points, we only know that their ability is greater or equal to that necessary to

achieve this maximum.

Although not encountered in the SIVD set, many cognitive assessments such as that ad-

ministered in the Alzheimer’s Disease Neuroimaging Initiative include timed activity items.

One such example is the Trail Making Test Parts A and B. For both, the examiner presents

the participant with 25 circles distributed over a sheet of paper. In Trail Making Test Part

A, the circles are labeled 1-25 and the participant is asked to draw lines to connect the

numbered circles in ascending order. Part B of the test is comprised of circles labeled with

both numbers (1-13) and letters (A-L) and the participant is asked to draw lines connecting

the circles, alternating between numbers and letters in ascending fashion (1-A-2-B...L-13).

For both parts, the examiner instructs the participant to connect the circles as quickly as

possible without lifting the writing instrument from the paper. The examiner then records

the score as the number of seconds it takes the patient to complete the task.

Given the continuous nature of the scores, we might consider modeling time to comple-

tion items such as Trail Making A and B with a normal distribution as discussed above.

However, a distribution with strictly positive support may be more appropriate for these

timed outcomes. Drawing from survival analysis and time-to-event analyses, we propose a

lognormal regression model.

Additionally recall that IRT models typically assume the item response function to be

a monotone function of the ability parameter. Because a greater time score may imply less

ability (for example, in the case of the Trail Making Test items), the above model would
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violate the standard IRT assumptions. To rectify this, we work with the inverse of the timed

score. Thus if we now denote y∗ijT as the original timed score, let yijT = 1/y∗ijT denote the

inverse. If we index the timed items jT , then we specify the density of the inverse of the

timed score, yijT as

fjT (yijT |ηijT , τjT ) =

√
τjT
2π

1

yijT
exp

(
−τjT

2
(log yijT − ηijT )2

)
. (4.11)

There is one additional feature to consider when modeling the Trail Making Test items,

a feature that is common to many timed items. For Trail Making Test Part B, the examiner

discontinues timing after 5 minutes and records a time of 5 minutes for participants who

have not finished the task. For Trail Making Test Part A, the time limit is 2.5 minutes.

The recorded time is hence right-censored and one needs to consider a censored lognormal

distribution. Using a left-censored lognormal regression model for the inverse timed score

yijT , we have

fjTLC

(
yijTLC

|ηijTLC
, τjTLC

)
=

[∫ d1

∞

√
τjTLC

2π

1

z
exp

(
−
τjTLC

2

(
log z − ηijTLC

)2)
dz

]
1[

yijTLC
<d1

]

·

[√
τjTLC

2π

1

yijTLC

exp

(
−
τjTLC

2

(
log yijTLC

− ηijTLC

)2)]1[yijTLC
≥d1

]

(4.12)

where jTLC indexes the left-censored inverse timed score and d1 is the point at which the

data are censored on the left. We can hence model censored timed activity items in our

IRT for mixed outcomes framework.

4.2.4 Item Parameter Interpretation

Although we have relied upon the same linear expression ηij = ajθi − bj in the modeling of

each outcome, it is important to note that the item parameters aj and bj do not hold the

same interpretation across different types of outcomes. Whereas aj and bj for a binary item

define the shape of curve representing the probability of a correct response across levels of

ability, the interpretation of these parameters will be different for a count item modeled

with a Poisson distribution.
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To better explicate this, we rely on the interpretation from generalized linear models.

For a binary outcome, for example, we might interpret the discrimination parameter aj as

the increase in the log odds of answering that item correctly that is associated with a 1-unit

increase in the latent ability or, equivalently, we might interpret exp(aj) as the multiplicative

increase in the odds of answering that item correctly associated with a 1-unit increase in

ability. Meanwhile, for a count outcome, we would interpret exp(aj) as the multiplicative

increase in the expected count for that item associated with a 1-unit increase in ability.

Similar differences in interpretations for other types of outcomes can be described by using

the generalized linear models analogy.

Moustaki and Knott (2000) provide some means by which one might standardize the item

parameters aj for normal, binary and ordinal categorical items. As discussed in Section 4.1,

our primary interest is in relating executive functioning indicators to MRI-measured brain

volumes via a latent variable so interpretation of the item parameters may be considered sec-

ondary. However, for those interested in comparing items, such differences in interpretation

should be acknowledged.

4.2.5 Hierarchical IRT Model For Mixed Outcomes

Because we are interested in relating the level of cognitive functioning to covariates in-

cluding MRI brain volume measurements, we extend the IRT model for mixed outcomes

hierarchically with the linear equation for θi,

θi = xTi β + εi, εi ∼ N(0, 1). (4.13)

Here, the vector xi = (xi1, . . . , xip, . . . , xiP ) represents the covariate measurements for par-

ticipant i and β = (β1, . . . , βp, . . . , βP ) the population coefficients. We may then make

inference on a parameter of interest βp to investigate the association between a covariate

of interest and the ability parameter or, indirectly through the latent variable, the general

association between the covariate of interest and the outcomes. In the case of the SIVD

analysis, we relate volume measurements of white matter hyperintensities in the frontal

lobe to executive functioning ability as measured by item responses of mixed types (binary,

count, continuous, etc.).
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Extension of the model hierarchically to include equation (4.13) follows the multiple in-

dicator multiple cause (MIMIC) model (Goldberger and Hauser, 1971; Jöreskog and Gold-

berger, 1975) and the multilevel IRT model described by Fox and Glas (2001) where covari-

ates are related to outcomes through the latent variable or ability parameter only, rather

than also relating covariates directly to outcomes as in other formulations (Dunson, 2003).

This formulation specifies that two individuals, i and i′, with the same value for the abil-

ity parameter (θi = θi′) have the same response probability. In applying equation (4.13),

we are assuming that the difficulty or discriminating nature of the item does not vary for

individuals with the same ability parameter values but with different covariate values.

Consider the logit probability of a binary item using equations (4.13) and (4.1),

logit (P (Yij |θi, aj , bj)) = ajθi − bj (4.14)

= aj(x
T
i β + εi)− bj (4.15)

= ajx
T
i β + ajεi − bj . (4.16)

Here, all individual-level variation, whether explained (xTi β) or unexplained (εi), is scaled

by aj and affects the response probability in the same manner.

We could relax this restriction and modify equation (4.16) so that

logit (P (Yij |xi,β, εi, ωj , aj , bj)) = ωjx
T
i β + ajεi − bj , (4.17)

where ωj is not restricted to equal aj . The case where the response probability varies for

individuals with different covariate values but equal ability parameter values is often referred

to as test item bias. In our analyses of the SIVD dataset in this chapter and Chapter 5,

we assume no test item bias is present and incorporate covariates into the model using

equation (4.13). The semiparametric multivariate regression model used in Chapter 6 does

not use this assumption.

To ensure identifiability of an IRT model, one often specifies the latent variable as

normally distributed with a fixed variance and mean. The variance of the latent distribution

is still fixed in the hierarchical formulation listed above. The mean term is identifiable

because we do not include an intercept term α in equation (4.13). If we consider the linear
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predictor used in the likelihood,

ηij = ajθi − bj , (4.18)

we can incorporate equation (4.13) with an intercept included and see that

ηij = aj(α+ β1xi1 + . . . βixip + εi)− bj

= aj(α+ β1xi1 + . . . βixip + εi) + ajc− bj − ajc

= aj ((α+ c) + β1xi1 + . . . βixip + εi)− (bj + ajc)

= aj(α
∗ + β1xi1 + . . . βixip + εi)− b∗j , (4.19)

where c is an arbitrary constant. Due to this lack of identifiability, we do not include an

intercept, α, in our model. As we are focused on the association between the latent variable

and covariates of interest, the exclusion of this parameter is not important.

4.3 Estimation

Estimation of the hierarchical IRT model for mixed outcomes proceeds using Bayesian

methods relying upon Markov chain Monte Carlo (MCMC) methods to approximate the

posterior distributions. This section follows the computational framework laid out in Patz

and Junker (1999b) and Patz and Junker (1999a) for standard IRT models and extends

it to estimate the IRT model for mixed outcomes. Their estimation approach employs a

Metropolis-Hastings (MH) within Gibbs sampling approach.

4.3.1 Prior Distributions

We use Lognormal(0, σ2
a) and N(0, σ2

b ) prior distributions for the item parameters aj and

bj respectively. For the precision parameters τj related to outcomes modeled with normal

or lognormal distributions, we assigned Gamma(ν, φ) distributions. Finally, we specified

N(0, σ2
β) prior distributions for the regression coefficients in equation (4.13). The complete
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hierarchical model is

yij ∼


Fj(aj , bj , θi), j ∈ {jB, jC , jO, jCRC}

Fj(aj , bj , τj , θi), j ∈ {jN , jT , jTLC}
(4.20)

aj ∼ Lognormal(0, σ2
a), ∀j (4.21)

bj ∼ N(0, σ2
b ), ∀j (4.22)

τj ∼ Gamma(ν, φ), j ∈ {jN , jT , jTLC} (4.23)

θi ∼ N(xTi β, 1) (4.24)

βp ∼ N(0, σ2
β). (4.25)

Note that for ordinal categorical items, each threshold parameter bjO(l) is also assumed

to have a N(0, σ2
b ) prior. In the non-hierarchical version of the model, the prior for θi in

equation (4.24) is replaced by

θi ∼ N (0, 1) . (4.26)

4.3.2 Sampling From Posterior Distributions

The MH within Gibbs sampling scheme proceeds as follows. Let the superscript (m) for

a parameter denote the mth draw of that parameter while sampling. For MH steps, we

generate proposals for the ability parameter θ and the item parameter b using random walk

proposals from a normal distribution while proposals for the item parameter a are generated

using a lognormal distribution.

1. Sample ability θ. For each participant i = 1, . . . , I, draw θ
(m)
i from

p
(
θ

(m)
i |θ

(m−1)
i ,yi,a

(m−1),b(m−1), τ (m−1),xi, β
(m−1)

)
via a MH step.

2. Sample item parameters a,b. For items where the responses are modeled using

normal and lognormal distributions, we can obtain conditional distributions for the

difficulty parameters in a closed form. For these item responses modeled with normal

distributions,

b
(m)
j ∼ N

(
τ

(m−1)
j σ2

b

Iτ
(m−1)
j σ2

b + 1

[
a

(m−1)
j

I∑
i

θi −
I∑
i

yij

]
,

σ2
b

Iτ
(m−1)
j σ2

b + 1

)
, (4.27)
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where σ2
b is the variance of the prior distribution specified for bj . For lognormal item

responses,

b
(m)
j ∼ N

(
τ

(m−1)
j σ2

b

Iτ
(m−1)
j σ2

b + 1

[
a

(m−1)
j

I∑
i

θi −
I∑
i

log yij

]
,

σ2
b

Iτ
(m−1)
j σ2

b + 1

)
. (4.28)

Subsequently, a
(m)
j is drawn from p(a

(m)
j |a

(m−1)
j , b

(m)
j ,yj ,θ

(m), τ (m−1)) via a MH step.

For each outcome j = 1, . . . , J that has not been modeled as a normally or lognormally

distributed outcome,
(
a

(m)
j , b

(m)
j

)
are drawn jointly from

p(a
(m)
j , b

(m)
j |a

(m−1)
j , b

(m−1)
j ,yj ,θ

(m), τ (m−1)) via a MH step.

3. Sample precision parameters τ . This step only occurs for item responses mod-

eled as normal or lognormal outcomes, including left- and right-censored lognormal

outcomes. For the censored outcomes, τ
(m)
j is drawn from p(τ

(m)
j |τ (m−1)

j , a
(m)
j , b

(m)
j ,

yj ,θ
(m)) using MH. For the normally distributed outcomes, we draw from

τ
(m)
j ∼ Gamma

I/2 + ν,
2φ

φ
∑I

i

(
yij − η(m)

ij

)2
+ 2

 (4.29)

where η
(m)
ij = a

(m)
j θ

(m)
i − b(m)

j and ν, φ are the hyperparameters specified for the prior

distribution for τ . For the item responses modeled with lognormal distributions,

τ
(m)
j ∼ Gamma

I/2 + ν,
2φ

φ
∑I

i

(
log yij − η(m)

ij

)2
+ 2

 . (4.30)

4. Sample coefficients β. For the last step of our sampling scheme, the conditional

distribution for β is available in a closed form. With X denoting an I × p matrix of

covariates, we sample the parameters jointly from a multivariate normal distribution

specified as follows,

β(m) ∼ N

(XTX +
1

σ2
β

Ip×p

)−1

XTθ(m),

(
XTX +

1

σ2
β

Ip×p

)−1
 . (4.31)
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4.4 A Simulated Data Example

To demonstrate and test our model, we generated data according to the model and examined

the ability of the model estimation process to recover the data-generating parameter values.

We subsequently considered the fit of the model to the simulated data using the posterior

predictive model checking methods introduced in Section 2.4.

We tested the non-hierarchical version of the IRT model for mixed outcomes (equa-

tions 4.20-4.23, 4.26) using simulated data. We simulated responses for 400 hypothetical

individuals and 20 hypothetical items. The items consist of 7 binary, 5 ordinal categorical, 3

count, 3 right-censored count and 2 left-censored positive continuous (e.g. timed) outcomes.

These different types of responses were generated using the conditional distributions, in-

cluding the right-censored Poisson and left-censored lognormal distributions. We then used

the same model to estimate the parameter values. We drew 40,000 samples according to the

MH within Gibbs algorithm presented in section 4.3.2, conservatively discarding the first

half as burn-in.

Table 4.1 displays both the data-generating values and the posterior summaries for the

discrimination parameters, a. The posterior summaries include the bounds of the 95%

posterior credible interval. We saw that the model does a reasonable job of recovering

the data-generating parameters. The posterior mean was generally close to the true value

and the 95% posterior credible interval contains the true value in all cases. For the item

difficulty parameters, the 95% posterior credible interval contained the true value in 36 of

39 (92.3%) cases and, for the latent trait parameters, in 96% of the cases. Next, we utilized

the posterior predictive model checks to examine the fit of the model to the simulated data.

We first examined the model’s ability to replicate the marginal distributions of the

responses. Figure 4.1 presents histograms for simulated items 12 and 20. Item 12 was

generated using a right-censored Poisson distribution and item 20 using the generalized

partial credit model. In both cases, the model fit the marginal distributions reasonably

well with one exception for a score of 8 on item 12 (Figure 4.1(a)). Examining the plots of

the marginal distributions for other outcomes, we found that the model fit other marginals

similarly well.
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Table 4.1: Data-generating values and posterior summaries for discrimination parameters,

a, from simulated data examples using the IRT model for mixed outcomes.

Posterior Posterior Posterior

Item Truth Mean Median 95% CI

1 1.37 1.32 1.31 (1.02, 1.64)

2 1.04 0.84 0.83 (0.56, 1.13)

3 0.62 0.56 0.56 (0.35, 0.80)

4 1.73 1.43 1.43 (1.11, 1.77)

5 0.92 0.81 0.80 (0.57, 1.06)

6 1.02 0.97 0.97 (0.71, 1.26)

7 1.34 1.21 1.21 (0.84, 1.61)

8 0.53 0.60 0.60 (0.45, 0.76)

9 0.68 0.61 0.61 (0.54, 0.68)

10 0.74 0.68 0.67 (0.54, 0.82)

11 1.15 1.12 1.11 (1.01, 1.22)

12 1.04 0.98 0.98 (0.89, 1.07)

13 1.76 1.63 1.62 (1.45, 1.81)

14 1.18 1.11 1.11 (1.00, 1.23)

15 1.40 1.40 1.39 (1.22, 1.58)

16 0.53 0.48 0.48 (0.36, 0.60)

17 1.00 0.91 0.91 (0.73, 1.10)

18 1.86 1.68 1.67 (1.37, 2.03)

19 1.58 1.49 1.48 (1.19, 1.81)

20 1.24 1.45 1.44 (1.08, 1.90)

Next, we reviewed the model’s ability to replicate the rank correlations (Kendall’s τ) ob-

served in the data. Figures 4.2 and 4.3 present a correlation distance plot and an eigenvalue
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(a) Item 12 (b) Item 20

Figure 4.1: Histograms of the observed item scores in the simulated dataset. The black

points indicate the mean count across replicated datasets for each score. The black vertical

segment indicates the interval from the 2.5% to 97.5% quantiles across replicated datasets.

plot. The model appeared to do a good job of reproducing the rank correlations observed

in the data.

Finally, we examined the pairwise rank correlations of individual items. Figure 4.4

presents the pairwise correlation plots for items 3 and 14. In both cases, the model fit the

observed pairwise rank correlations well. Plots for other outcomes showed similar success.

Overall, we observed good recovery of data-generating parameters from the simulated data.

4.5 Application to the SIVD Study

We now demonstrate our IRT model for mixed outcomes using executive functioning data

from the SIVD study. Recall that we are interested in relating the individual’s level of

executive functioning to the amount of white matter hyperintensities located in the frontal

lobe at the first study visit. Table 4.2 displays labels as well as some summary statistics for

the 19 items observed in the data for I = 341 participants. For this analysis, we consider

only participants with a complete set of response to the executive functioning items as well

as a concurrent set of brain MRI measurements. Concurrent brain measurements here are

defined as within six months (before or after) of the neuropsychological testing date.
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Figure 4.2: Scatterplots of dsld(C
obs, Crep,m) versus dsld(C

rep,m, Crep,m
′
) for all replicated

datasets. The grey line represents the 45 degree line.

On the far right of the table, we have also listed the outcome type specified in our model

for each item. As one can see from the summary statistics, the items vary greatly in their

number of categories as well as in their difficulty. For many of the binary items as well as

the Mattis Dementia Rating Scale E and V, the mean and median scores are very close to

the maximum score. In the latter two outcomes, this indicates a possible ceiling effect.

Now consider Mattis Dementia Rating Scale E discussed in Section 4.2 as a motivating

example for modeling right-censored outcomes. Recall that participants are given 1 minute

to name as many supermarket goods as they can. The participant’s score is the number

of valid goods named and the score is censored at 20. A histogram of scores for this item

is presented in Figure 4.5(a). One can see evidence of a ceiling effect for this item. Given

the description of this item and its distribution of responses, treatment of the item as a
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Figure 4.3: Plot of ten largest eigenvalues depicting the mean prediction (grey point) and

95% prediction intervals (grey line segment) of the eigenvalues calculated using replicated

data. Eigenvalues computed from the observed data are denoted by a black “X”.

right-censored outcome is warranted.

The Mattis Dementia Rating Scale V asks a participant to examine pictures and identify

similarities and differences. The closely related Mattis Dementia Rating Scale W asks a

participant to compare words and identify similarities. Figure 4.5(b) depicts a histogram

of the scores for Mattis Dementia Rating Scale W. For both outcomes, we see evidence of

ceiling effects. Although each item’s description does not suggest its treatment as a right-

censored outcome, we might nonetheless treat it as such rather than treat it as an ordinal

categorical item. As discussed previously, the modeling of the outcome as a right-censored

count will reduce the number of parameters to estimate and does not significantly alter the

conceptual description of the item. In the case of Mattis Dementia Rating Scale V with
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(a) Item 3 (b) Item 14

Figure 4.4: Pairwise correlation plots for a single outcome against the remaining outcomes

depicting the mean posterior prediction (grey point) and 95% posterior prediction intervals

(grey line segment) for Kendall’s τ values calculated using replicated data. Kendall’s τ

values computed from the observed data are denoted by a black “X”.
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Figure 4.5: Histograms of scores for Mattis Dementia Rating Scale E and W.
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Table 4.2: Summary statistics for baseline responses of 341 participants to 19 SIVD ex-

ecutive functioning outcomes as well as outcome type assignment. ‘RC Count’ denotes a

right-censored count outcome.

Range Mean Median Outcome Type

Digit Span Forward 3-12 7.69 8 Count

Digit Span Backwards 1-12 5.97 6 Count

Visual Span Forward 0-13 7.15 7 Count

Visual Span Backwards 0-12 6.18 6 Count

Verbal Fluency Letter F 1-26 11.8 12 Count

Verbal Fluency Letter A 0-40 10.2 10 Count

Verbal Fluency Letter S 0-50 12.4 12 Count

MDRS E 2-20 16.64 19 RC Count

MDRS G 0-1 0.96 1 Binary

MDRS H 0-1 0.98 1 Binary

MDRS I 0-1 0.95 1 Binary

MDRS J 0-1 0.97 1 Binary

MDRS K 0-1 0.98 1 Binary

MDRS L 0-1 0.79 1 Binary

MDRS O 0-1 0.94 1 Binary

MDRS V 9-16 14.9 16 RC Count

MDRS W 0-8 6.44 7 Ordered Cat.

MDRS X 0-3 2.66 3 Ordered Cat.

MDRS Y 0-3 2.93 3 Ordered Cat.

possible scores from 0 to 16 (although the lowest observed in this study is 9), we model the

outcome as a right-censored count. In the case of Mattis Dementia Rating Scale W with a

maximum score of only 8, we model the outcome as ordered categorical.
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Having established the different conditional distributions for SIVD executive functioning

items that we specify in the IRT model for mixed outcomes, we now address the relation

of our estimate of the latent ability parameter to the variable of interest, volume of frontal

white matter hyperintensities, as well as covariates for which we would like to adjust. These

include age, sex, education and total brain volume. This leads to the regression equation:

E [θi] = β1Sexi + β2Educi + β3Agei + β4Voli + β5WMHi. (4.32)

where Sexi is the participant’s sex (Female=1, Male=0), Educi is the participant’s number

of years of education attained, Agei is the age of the participant at the time of examination,

Voli is the total brain volume of the participant, and WMHi is the frontal white matter

hyperintensity volume. We used standardized versions of the continuous predictor variables.

Implementation of the MH within Gibbs sampler resulted in high autocorrelations within

the item parameters as evidenced by low effective sample sizes and large number of iterations

recommended by the Raftery-Lewis diagnostic (Raftery and Lewis, 1995). Ultimately, we

used 100,000 iterations for the generalized latent trait model. We discarded the first 20,000

draws as burn-in. We employed the Geweke (Geweke, 1992) and Gelman-Rubin (Gelman

and Rubin, 1992) diagnostics to check convergence.

Table 4.3 displays estimation results for the regression parameters in the model. Both

point estimates and 95% credible intervals are presented. Based on the IRT model for mixed

outcomes, we expect a 1 SD increase in frontal white matter hyperintensity volume to be

associated with a -0.511 decrease in the latent variable with 95% posterior probability that

the parameter occurs in the range (-0.654, -0.376). Note that this range does not include

0. Thus the posterior distribution for the coefficient for frontal white matter hyperintensity

volume suggests a negative association between executive functioning ability and frontal

white matter hyperintensity volume.

We now consider the fit of the model to the data using the posterior predictive model

checking methods introduced in section 2.4. We first examined the marginal distributions

of the responses. Figure 4.6 presents the histograms for the observed responses to Verbal

Fluency A and Mattis Dementia Rating Scale E along with posterior predictive summaries.

We specified Poisson and right-censored Poisson distributions as the conditional distribu-
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Table 4.3: Posterior summaries for regression coefficients estimated using the IRT model

for mixed outcomes.

Coefficient Mean Median 95% CI

Sex 0.655 0.657 (0.273, 1.021)

Education 0.512 0.513 (0.381, 0.644)

Age -0.169 -0.169 (-0.307, -0.037)

Total Brain Vol. 0.147 0.148 (-0.022, 0.314)

Frontal WMH Vol. -0.511 -0.510 (-0.654, -0.376)

tions for the respective outcomes. Overall, the model does a decent job of replicating the

marginal distribution for the Verbal Fluency item. The fit of the model is not as assured for

Mattis Dementia Rating Scale item E where the model generally under-predicts the number

of participants to receive a score of 20.

(a) Verbal Fluency A (b) Mattis Dementia Rating Scale E

Figure 4.6: Histograms of the observed scores for the Verbal Fluency A and Mattis Dementia

Rating Scale E. The black points indicate the mean count across replicated datasets for each

score. The black vertical segment indicates the interval from the 2.5% to 97.5% quantiles

across replicated datasets.
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Having seen some mixed results in the model fit of the marginal distributions, we turn

our attention to the dependence structure. On a global level, we compare {d(Cobs, Crep,m)}

and {d(Crep,m, Crep,m
′
)}. The left-hand plot in Figure 4.7 displays these sets of points,

{d(Cobs, Crep,m)} and {d(Crep,m, Crep,m
′
)}, against one another. We see that the cloud of

points lies well to the left of the 45 degree line, sitting in the upper left of the plot. This

suggests poor model fit of the dependence structure among the outcomes. The right-hand

plot in Figure 4.7 further shows that the model does not replicate the eigenvalues of the

observed rank correlation matrix very well. The large second eigenvalue further suggests

that we may need to incorporate more than one latent variable to describe dependencies

successfully.

(a) Correlation Distance (b) Eigenvalues

Figure 4.7: The left plot presents a scatterplot of dsld(C
obs, Crep,m) versus

dsld(C
rep,m, Crep,m

′
) for all replicated datasets. The grey line represents the 45 degree

line. On the right, a plot of the top ten eigenvalues depicting the mean prediction (grey

point) and 95% prediction intervals (grey line segment) of the eigenvalues calculated using

replicated data. Eigenvalues computed from the observed data are denoted by a red “X”.

Figure 4.8 displays pairwise rank correlations for Mattis Dementia Rating Scale J and
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(a) MDRS J (b) Vis. Span Backwards

Figure 4.8: Pairwise correlation plots depicting the mean prediction (grey point) and 95%

prediction intervals (grey line segment) for Kendall’s τ values calculated using replicated

data. Kendall’s τ values computed from the observed data are denoted by a black “X”.

Visual Span Backwards. As one can see, there are some notable discrepancies between

the model and observed data. In Figure 4.8(a), the pairwise rank correlations of Mattis

Dementia Rating Scale J and the other items are partially well represented with some

significant deviations for Mattis Dementia Rating Scale I and K; all three of these items

ask participants to repeat alternating movements of some type. In Figure 4.8(b), the model

does not fully capture a number of the correlations, with the discrepancy in fitting the

correlation between Visual Span Forwards and Visual Span Backwards being the most

noticeable. These shortcomings suggests that we may need some means in our model to

account for residual correlation among these related items.

4.6 Discussion

In this chapter, we modified traditional item response theory models to accommodate mixed

outcomes by adapting and extending generalized linear latent trait models. Although IRT

models have traditionally been applied to binary and ordered categorical outcomes, they

are increasingly being applied to mixed outcomes. Motivated by a mixed outcome neu-



54

ropsychological testing battery, we applied the methods proposed by Sammel et al. (1997),

Moustaki and Knott (2000), and Dunson (2003) in the context of IRT models. Moreover,

we extended these methods to account for outcome types seen in cognitive function testing,

such as right-censored count outcomes and duration outcomes. We described Bayesian es-

timation of the IRT model for mixed outcomes and demonstrated the model on simulated

data.

In addition, we extended the model hierarchically to relate the latent trait, or ability

parameter in IRT terms, to covariates of interest. This allowed us to study the relationship

between indicators of executive functioning and the volume of frontal lobe white matter

hyperintensities in the SIVD study. Our analysis found a negative relationship between the

latent variable and frontal lobe white matter hyperintensities.

We used the posterior predictive model checking methods presented in Section 2.4 to

evaluate the fit of the model to the data. While the model fit some of the marginal distribu-

tions fairly well, others proved to be more problematic to fit. Moreover, the use of a single

latent variable in the model proved to be insufficient for replicating the rank correlations of

the observed SIVD responses. As a result, we may want to consider multiple latent variables

in our model to account for residual correlations among the items. Multidimensional item

response theory (Reckase, 2009) has been increasingly applied to handle such situations.

Reise, Morizot, and Hays (2007) have promoted the use of bifactor models to account for

residual correlation. Testlet models (Bradlow, Wainer, and Wang, 1999; Li, Bolt, and Fu,

2006) are another means by which IRT practitioners have sought to account for residual

correlation.

Although the generalized linear latent variable framework allows for a variety of distribu-

tions to accommodate outcomes of different types, the specification of different distributions

conditional on the latent variable requires additional implementation for each distribution

type and can be time-consuming in this regard. Moreover, there is no guarantee that we

have specified the correct conditional distribution for each outcome. Some initial simula-

tion studies performed by the author have indicated that misspecification of the conditional

outcome distributions may affect the accuracy with which the latent variables are estimated

but these simulation studies have been small in scope. However, further work is required in
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this area before making any definitive proclamations about the impact of misspecification

on estimation. Nonetheless, the IRT model for mixed outcomes provides a flexible frame-

work by which we may accommodate a variety of different outcome types encountered in

cognitive testing.
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Chapter 5

SEMIPARAMETRIC LATENT VARIABLE MODEL FOR MIXED
OUTCOMES

5.1 Introduction

In Chapter 4, we discussed a parametric approach towards handling mixed outcomes in

IRT models. While we discussed a wide range of outcomes that could be accommodated,

we obviously were not exhaustive in the types of outcomes discussed. One could continue

to further extend our model to accommodate many more types of outcomes that one may

encounter. However, specification of the appropriate conditional distributions for the mixed

outcomes is not our primary interest. Specification of a diverse set of distributions F1, . . . , FJ

to model the J mixed outcomes is merely a means to relating the mixed outcomes to

covariates.

In this chapter, we develop a semiparametric approach to mixed outcome latent vari-

able models that avoids specification of outcome conditional distributions given the latent

variables. Following on the extended rank likelihood approach of Hoff (2007), we start by

assuming the existence of continuous latent responses underlying each observed outcome.

We then make the assumption that the ordering of the underlying latent responses is con-

sistent with the ordering of the observed outcomes. This approach is similar to that of Shi

and Lee (1998) but does not require estimating unknown thresholds. When the data are

continuous, our approach is analogous to the use of a rank likelihood (Pettitt, 1982). When

the data are discrete, our approach relies on the assumption that the ordering of the latent

responses is consistent with the partial ordering of the observed outcomes. Hoff (2007)

introduced this general approach for estimating parameters of a semiparametric Gaussian

copula model with arbitrary marginal distributions and designated the resulting likelihood

as the extended rank likelihood.

Pettitt (1982) proposed the rank likelihood for estimation of semiparametric regression
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models for (univariate) continuous outcomes. In addition to the semiparametric Gaussian

copula model for mixed outcomes, Hoff (2008, 2009) developed semiparametric regression

models for continuous or discrete outcomes using the extended rank likelihood. Bickel

and Ritov (1997) studied the theoretical properties of the rank likelihood in a regression

context and Hoff (2007) and Hoff, Niu, and Wellner (2011) provide theoretical results for

the rank likelihood applied to copula estimation. Dobra and Lenkoski (2011) applied the

extended rank likelihood method to the estimation of graphical models for multivariate

mixed outcomes. The original idea for the following work on the semiparametric latent

variable model was presented earlier by Gruhl, Erosheva, and Crane (2010, 2011). Murray,

Dunson, Carin, and Lucas (2011) recently proposed a closely related factor analytic model

for mixed data.

This chapter is organized as follows. We review the semiparametric copula model and

introduce the semiparametric latent variable model in Section 5.2. We discuss Bayesian

estimation of this model in Section 5.3 and consider a parameter expansion version of the

semiparametric latent variable model. We extend the model hierarchically to analyze the

relationship of the primary factor to covariates of interest in Section 5.4. Section 5.5 demon-

strates the performance of the standard and parameter expansion models using simulated

data. Finally, we use the semiparametric latent variable model to analyze the relationship

between executive functioning and frontal white matter hyperintensities in Section 5.6.

5.2 Semiparametric Latent Variable Model

5.2.1 Model Formulation

As before, let i = 1, . . . , I denote the ith participant, and let j = 1, . . . , J denote the jth

outcome. Let yij denote the observed response of participant i on outcome j with marginal

distribution Fj . Moreover, let F−1
j (u) = inf{y : Fj(y) ≥ u} be the corresponding pseudo-

inverse of Fj , then yij can be represented as yij = F−1
j (uij) where uij is a uniform (0,1)

random variable. An equivalent representation is yij = F−1
j [Φ(zij)] where Φ(·) denotes

the normal CDF and zij is distributed standard normal. The unobserved variables zij are

latent responses underlying each observed response yij . Assuming that the set of correlations
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between zij and zij′ , 1 ≤ j < j′ ≤ J , is specified by the J × J correlation matrix C, the

Gaussian copula model is

z1, . . . , zn|C ∼ i.i.d. N(0,C) (5.1)

yi,j = F−1
j [Φ(zij)] . (5.2)

Here, zi is the J-length vector of latent responses zij for participant i.

In some analyses, the primary focus is on the estimation of the correlation matrix C

and not the estimation of the marginal distributions F1, . . . , FJ . If the latent responses zij

were known, estimation of C could proceed using standard methods. Although the latent

responses are unknown, Hoff (2007) noted that we do have rank information about the

latent responses through the observed responses because yij < yij′ implies zij < zij′ as the

observed responses are determined by the latent responses through a monotone function,

yij = F−1
j [Φ(zij)]. Denote the full set of latent responses by Z = (z1, . . . , zI)

T and the full

set of observed responses by Y = (y1, . . . ,yI)
T . Then Z ∈ D(Y) where

D(Y) = {Z ∈ RI×J : max
k
{zkj : ykj < yij} < zij < min

k
{zkj : yij < ykj}}. (5.3)

One can then construct a likelihood for C that does not depend on the specification of the

marginal distributions F1, . . . , FJ :

Pr(Z ∈ D(Y)|C, F1, . . . , FJ) =

∫
D(Y)

p(Z|C) dZ

= Pr(Z ∈ D(Y)|C). (5.4)

Equation (5.3) enables the following decomposition of the density of Y:

p(Y|C, F1, . . . , FJ) = p (Y,Z ∈ D(Y)|C, F1, . . . , FJ)

= Pr (Z ∈ D(Y)|C, F1, . . . , FJ)× p(Y|Z ∈ D(Y),C, F1, . . . , FJ)

= Pr (Z ∈ D(Y)|C)× p (Y|Z ∈ D(Y),C, F1, . . . , FJ) .

This decomposition uses the fact that the probability of the event Z ∈ D(Y) does not

depend on the marginal distributions F1, . . . , FJ and that the event Z ∈ D(Y) occurs

whenever Y is observed. Thus, the dependence structure of Y can be estimated through C
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without any knowledge or assumptions about the marginal distributions. More details on

the semiparametric Gaussian copula model can be found in Hoff (2007, 2009).

In the context of latent variable modeling, the main interest is typically not in directly

estimating the correlations, C, among observed variables but in characterizing the interde-

pendencies in multivariate observed responses through unobserved variables. Latent variable

models place structural constraints on the matrix of correlations among the observed re-

sponses and seek a more parsimonious description of the dependence structure. Moreover,

as in the case of the IRT models presented in Chapter 4, estimates of the latent variables

(conditional on an assumed latent structure) may be of interest to researchers as a means

of characterizing individuals using sets of responses. Factor analysis is the most common

type of latent variable model with continuous latent variables and continuous outcomes.

To develop a semiparametric approach for factor analysis with mixed outcomes, assume

Q factors where Q is generally less than J , let ηi be a vector of factor scores for individual

i and H = (η1, . . . ,ηI)
T be the I × Q factor matrix. Let Λ denote the J × Q matrix of

factor loadings. We define our semiparametric latent variable model as

ηi ∼ N(0, IQ) (5.5)

zi|Λ,ηi ∼ N(Ληi, IJ) (5.6)

z1, . . . , zn|Λ ∼ i.i.d. N(0, IJ + ΛΛT ) (5.7)

yij = gj(zij), (5.8)

where equation (5.7) is the result of marginalizing out the factors, ηi, in equation (5.6).

Here, we define gj(zij) = F−1
j

(
Φ
(
zij/

√
1 + λTj λj

))
, where λj denotes the j-th row of

Λ and the marginal distribution Fj remains unspecified. Note that the functions gj(·) are

nondecreasing and preserve the orderings. The model given by equations (5.5)-(5.8) does not

rely on the unrestricted correlation matrix C as does the Gaussian copula model. Assuming

that a factor analytic model is appropriate for the data, it constrains the dependencies

among the elements of zi to be consistent with the functional form of IJ + ΛΛT . As

a result, the proposed semiparametric latent variable model is a structured case of the

semiparametric Gaussian copula model and can be viewed as a semiparametric form of

copula structure analysis (Klüppelberg and Kuhn, 2009).
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Figure 5.1: Extended Rank Likelihood Applied To Gaussian Copula
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Figure 5.2: Extended Rank Likelihood Applied To Factor Analysis

Figure 5.1 depicts the semiparametric Gaussian copula model. In the unstructured case,

we directly estimate the correlations between the latent responses zij with no restrictions;

this general correlation structure is parameterized through C in the Gaussian copula model.

In the structured case of our semiparametric latent variable model, we restrict the corre-

lations of the latent responses zij after having marginalized out the latent factors to the

functional form diag
(
ΛΛT + IJ

)−1/2 (
ΛΛT + IJ

)
diag

(
ΛΛT + IJ

)−1/2
. Figure 5.2 depicts

the semiparametric latent variable model conditional on a structure with a single latent

factor. In this representation, the correlations among the latent responses zij are induced

through their relationship to the single latent factor ηi. The general framework of the semi-

parametric latent variable model given by equations (5.5)-(5.8) can be used for any special

cases of factor analysis.

Rather than limit ourselves strictly to a single factor as we did in the case of the IRT
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model for mixed outcomes in Chapter 4, we specify a bifactor latent structure (Holzinger and

Swineford, 1937) for the semiparametric latent variable model. We define bifactor models

as having a specific structure on the loading matrix, Λ, where each observed item loads

on the primary factor and may (or may not) load on one or more of the secondary factors

(Reise et al., 2007). Most commonly, bifactor models are applied such that an outcome

loads on at most one secondary factor. The bifactor model is a useful tool for modeling the

neuropsychological battery used in the SIVD study, as it retains a single underlying executive

functioning factor while accounting for local dependencies among groups of related items.

5.2.2 Model Identification

The lack of identifiability of factor analysis models that is due to rotational invariance is

well known (Anderson, 2003). If we define new factor loadings and new factor scores by

Λ̃ = ΛT and η̃i = T−1ηi, where T is an orthonormal Q×Q matrix, then the model

zi|Λ,ηi ∼ N(Λ̃η̃i, IJ) (5.9)

is indistinguishable from the model in equation (5.6). In the case where the covariance of

ηi is not restricted to the identity matrix, any nonsingular Q × Q matrix T results in the

same indeterminacy. In this more general case, we must place Q2 constraints to prevent

this rotational invariance. When we restrict the covariance of ηi to the identity matrix, this

restriction places 1
2Q(Q + 1) constraints on the model. We are then left with 1

2Q(Q − 1)

additional constraints to place on the model. We may satisfy this requirement by specifying

a bifactor structure with at least 1
2Q(Q − 1) zeros in the matrix of loadings Λ (Anderson,

2003; Millsap, 2001).

While these restrictions may resolve rotational invariance, the issue of reflection invari-

ance typically remains. Reflection invariance results from the the fact that the signs of

the loadings in any column in Λ may be switched. Thus, if D is a diagonal matrix of 1’s

and -1’s precipitating the sign changes, HΛT = HDDΛT = H̃Λ̃
T

. To resolve the issue

of reflection invariance, we could specify a prior that places additional constraints on the

signs of some of the loadings, e.g., as suggested by Congdon (2003) and Congdon (2006).

However, because different choices of constraint placement could potentially have an im-
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pact on model fit in complex factor models (Millsap, 2001; Erosheva and Curtis, 2011), we

apply the relabeling algorithm proposed by Erosheva and Curtis (2011). This algorithm

relies on a decision-theoretic approach and resolves reflection invariance associated with the

sign-switching behavior in Bayesian factor analysis in a similar fashion to the relabeling

algorithm introduced to address the label-switching problem in mixture models (Stephens,

2000).

In the semiparametric latent variable model, unlike the standard factor analysis model,

specific means and variances are not identifiable. Let

z̃ij = µj + σjzij (5.10)

where µj and σj are the specific mean and variance for item j. Moreover, if Z̃ ∈ RI×J

denotes the matrix of elements z̃ij and

D̃(Y) = {Z̃ : max{z̃kj : ykj < yij} < z̃ij < min{z̃kj : yij < ykj}}, (5.11)

then

Pr(Z̃ ∈ D̃(Y)|Λ,H,µ,Σ) = Pr(Z ∈ D(Y)|Λ,H). (5.12)

Thus, shifts in location and scale of the latent responses will not alter the probability of

belonging to the set of feasible latent response values implied by orderings of the observed

responses. As such, we set the specific means at µ = 0 and the specific variances at Σ = IJ .

5.3 Estimation

We take a Bayesian approach to estimate the semiparametric factor analysis model for mixed

outcomes given by equations (5.5)-(5.8). We consider three different prior distributions for

the factor loadings that are not restricted to zero in the model: a normal distribution, a

t-distribution and a scale mixture of normals with a compound gamma mixing density. The

normal distribution prior for the unrestricted factor loadings is specified when we employ

a Gibbs sampling algorithm with standard semi-conjugate priors for factor analysis (Shi

and Lee, 1998; Ghosh and Dunson, 2009). The latter two priors facilitate (and are induced

by) a parameter expansion approach to estimation that builds upon the work of Ghosh
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and Dunson (2009) on efficient computation for Bayesian factor analysis. In this section,

we first employ the standard approach with some modification before proceeding to the

development of the parameter expansion approach.

5.3.1 Standard Gibbs Sampling Approach

Due to the restrictions on the outcome specific means and variances discussed in Section 5.2,

the loading matrix Λ is the only parameter for which we must specify a prior in the semi-

parametric latent variable model. For the loadings, let λ′j denote the Kj non-zero elements

of the j-th row of Λ. We then specify the following semi-conjugate prior:

λ′j ∼ N(mλ′j
,Sλ′j ). (5.13)

Here, mλ′j
, a Kj-length vector, and Sλ′j , a Kj ×Kj covariance matrix, are hyperparameters

for the prior on λ′j .

The structural zero elements in the matrix of loadings Λ are specified in accordance with

our substantive understanding of the research problem at hand. However, we must have

enough zeros so that the model can be identified since we rely on the placement of these

structural zeros to resolve rotational invariance. Formally, we specify the prior for these

structural zero elements of Λ as

λjq ∼ δ0, (5.14)

where δ0 is a distribution with its point mass concentrated at 0. We estimate loadings with

no additional constraints on their signs. We then deal with potential multiple modes of the

posterior that are due to reflection invariance of the factor model by applying the relabeling

algorithm proposed by Erosheva and Curtis (2011).

We now develop the Gibbs algorithm for sampling factors H and loadings Λ. Because

the extended rank likelihood Pr (Z ∈ D(Y)|Λ,H) involves a complicated integral, any ex-

pressions involving the extended rank likelihood will be difficult to compute. We avoid

having to compute this integral by drawing from the joint posterior of (Z,H,Λ) via Gibbs

sampling. Given Z = z and Z ∈ D(Y), the full conditional density of Λ can be written as

p (Λ|H,Z = z,Z ∈ D(Y)) = p(Λ|H,Z = z)
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because the current draw values Z = z imply Z ∈ D(Y). A similar simplification may be

made with the full conditional density of H. Given Λ,H,Z ∈ D(Y) and Z(−i)(−j), the full

conditional density of zij is proportional to a normal density with mean λTj ηi and variance

1 that is restricted to the region specified by D(Y).

To sample from the approximate joint posterior including the latent responses, we pro-

ceed as in Hoff (2007) and Hoff (2009).

1. Draw underlying latent responses Z. For each i and j, sample zij from p(zij |Λ,

H,Z(−i)(−j),Z ∈ D(Y)). More specifically,

z
(m)
ij ∼ TN(zl,zu)(λ

T
j ηi, 1) (5.15)

where TN denotes truncated normal and zl, zu define the lower and upper truncation

points,

zl = max{zkj : ykj < yij} (5.16)

zu = min{zkj : ykj > yij}. (5.17)

2. Draw latent factors H. For each i, we can draw directly from the full conditional

distribution for ηi as follows,

ηi ∼ N
((

IQ + ΛTΛ
)−1

ΛT zi,
(
IQ + ΛTΛ

)−1
)
. (5.18)

3. Draw loadings Λ. For each j, we can draw directly from the full conditional distri-

bution for λ′j , the vector of non-zero loadings for outcome j.

λ′j ∼ N

((
S−1
λ′j

+
(
H′j
)T

H′j

)−1 (
S−1
λ′j
mλ′j

+
(
H′j
)T

zj

)
,
(
S−1
λ′j

+
(
H′j
)T

H′j

)−1
)
,

(5.19)

where H′j is a matrix comprised of the columns of H for which there are non-zero

loadings in λj .
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5.3.2 Parameter Expansion Approach

Ghosh and Dunson (2009) observed that the choice of semi-conjugate priors for factor analy-

sis models often results in poorly behaved Gibbs samplers. Specifically, as with hierarchical

models, the use of proper but diffuse priors often results in slow mixing due to the high

dependence among parameters. Ghosh and Dunson (2009) propose a parameter expansion

approach to remedy this problem.

Liu, Rubin, and Wu (1998) proposed a parameter expanded algorithm to accelerate the

EM algorithm and Liu and Wu (1999) applied parameter expansion to Gibbs sampling.

Among notable applications of the parameter expansion technique, Gelman (2006) applied

this approach to propose a set of prior distributions for variance parameters in hierarchical

models as alternatives to the commonly adopted inverse gamma prior distribution. Ghosh

and Dunson’s (2009) application of parameter expansion to factor analysis models induces

t or folded-t prior distributions on the factor loadings. Moreover, they demonstrate that

the parameter expansion approach leads to greater efficiency in sampling than the standard

Gibbs approach for a number of cases. Below, we derive an MCMC estimation algorithm

for our semiparametric latent variable model using the parameter expansion approach. We

compare the performance of this algorithm against the above proposed Gibbs sampler in a

simulation study in Section 5.5.

The central idea behind the parameter expansion approach, using the terminology of

Ghosh and Dunson (2009), is to start with a working model that is an overparameter-

ized version of the initial inferential model. After proceeding through MCMC sampling, a

transformation can be used to relate the draws from the working model to draws from the

inferential model. For our application, the overparameterized model is formulated in terms

of the latent responses,

z∗i ∼ N (Λ∗η∗i ,Σ) , (5.20)

η∗i ∼ N (0,Ψ) , (5.21)

where Σ and Ψ are diagonal matrices that are no longer restricted to the identity matrix.

The latent responses z∗i , the latent variables η∗i and the loadings Λ∗ are unidentified in this
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working model. The transformations from the working model to the inferential model are

then specified as

ηi = Ψ−1/2η∗i ,

zi = Σ−1/2z∗i , (5.22)

Λ = Σ−1/2Λ∗Ψ1/2.

To sample from the working model, we must specify priors for the diagonal elements

of Ψ and Σ as well as for Λ∗. We specify these priors in terms of the precisions ψ−2
q and

σ−2
j . In addition, we denote by λ∗′j the non-zero elements of the j-th row of Λ∗. The prior

on λ′j is then induced through the priors on ψ−2
q , σ−2

j and λ∗′j , rather than being specified

directly. Our priors are

ψ−2
q ∼ Gamma(νψ, φψ),

σ−2
j ∼ Gamma(νσ, φσ), (5.23)

λ∗′j ∼ N(mλ∗′j
,Sλ∗′j ).

We also consider the slightly simpler case where Σ is restricted to the identity matrix but

the (diagonal) elements of Ψ are unrestricted in the working model.

Our Gibbs sampling procedure for the working model proceeds according to the following

steps.

1. Draw latent responses Z∗. For each i and j, sample z∗ij from a truncated normal

distribution according to

z∗ij ∼ TN(z∗l ,z
∗
u)

((
λ∗j
)T
η∗i , σ

2
j

)
, (5.24)

where as before z∗l , z
∗
u define the lower and upper truncation points,

z∗l = max{z∗kj : ykj < yij} (5.25)

z∗u = min{z∗kj : ykj > yij}. (5.26)
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2. Draw latent variables H∗. For each i, we can draw directly from the full conditional

distribution for η∗i as follows,

η∗i ∼ N

((
Ψ−1 + (Λ∗)T Σ−1Λ∗

)−1
(Λ∗)T Σ−1z∗i ,

(
Ψ−1 + (Λ∗)T Σ−1Λ∗

)−1
)

(5.27)

3. Draw loadings Λ∗. For each j, we can draw directly from the full conditional

distribution for λ∗′j , the vector of non-zero loadings for outcome j.

λ∗′j ∼ N

((
S−1
λ′j

+ σ−2
j

(
H∗′j
)T

H∗′j

)−1 (
S−1
λ′j
mλ′j

+ σ−2
j

(
H∗′j
)T

z∗j

)
,(

S−1
λ′j

+ σ−2
j

(
H∗′j
)T

H∗j ′
)−1

)
. (5.28)

4. Draw inverse covariance matrix Ψ−1. For each q, we draw the diagonal element

ψ−2
q of Ψ−1 from the full conditional distribution as follows,

ψ−2
q ∼ Gamma

(
φψ + I/2, νψ +

1

2

∑
i

η2
iq

)
. (5.29)

5. Draw inverse covariance matrix Σ−1. For each j, we draw the diagonal element

σ−2
j of Σ−1 from the full conditional distribution according to

σ−2
j ∼ Gamma

(
φσ + I/2, νσ +

1

2
(zj −Hλj)

T (zj −Hλj)

)
. (5.30)

After proceeding through steps 1-5 for a number of iterations, we discard a number of

initial draws as burn-in and transform the remaining draws using equations (5.22) as part

of a postprocessing step. Thus, we have posterior draws from our inferential model. The

only remaining steps are to apply the relabeling algorithm of Erosheva and Curtis (2011),

assess convergence and calculate posterior summaries for the parameters in the inferential

model. In the slightly simpler case, where Σ is restricted to the identity matrix but the

(diagonal) elements of Ψ are unrestricted in the working model, we skip step 5, the Gibbs

sampling step for Σ, in the above algorithm.

We noted earlier that Ghosh and Dunson’s (2009) application of parameter expansion

to factor analysis models induces t or folded-t prior distributions on the factor loadings. If
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the prior covariance matrix on λ′j is diagonal, the prior induced on λ′jkj by the parameter

expansion is the product of the normal distribution prior on λ∗′jkj and the square root of

a ratio of gamma distribution priors on σ−2
j and ψ−2

kj
. The ratio of gamma distributed

random variables has a compound gamma distribution which is a form of the generalized

beta prime distribution with the shape parameter fixed to 1. If we integrate out this ratio,

the prior for λjkj is a scale mixture of normals (West, 1987) with a compound gamma mixing

density. Interestingly, this prior or related priors arise in research on shrinkage priors for

high-dimensional regression problems (see Armagan, Dunson, and Clyde, 2011 and Polson

and Scott, 2010). If the covariance of the latent responses, Σ, is fixed to the identity

matrix, then the priors induced on the factor loadings are t-distributions as in Ghosh and

Dunson (2009). Thus, we note that the developed parameter expansion approach results in

different priors for the factor loadings Λ than the standard priors presented in Section 5.3.1.

Derivations of the induced priors are presented in Appendix A.

In this chapter, we discussed different approaches to Bayesian estimation of the semi-

parametric latent variable model specified by equations (5.5)-(5.8). We considered three

different priors for the unrestricted factor loadings and these priors were associated with

different estimation approaches. We summarize these priors and the corresponding estima-

tion approaches in Table 5.1.

Table 5.1: Summary of prior distributions and estimation approaches.

Parameter Expansion

Prior Distribution for λjq Estimation Approach Additional Parameters

Normal Standard Gibbs None

t Parameter Expansion Ψ

Scale Mixture of Normals Parameter Expansion Ψ,Σ

w/ Compound Gamma Mixing Density
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5.3.3 Generating Replicated Data For Posterior Predictive Model Checks

To employ the posterior predictive model checking methods discussed in Section 2.4, we

now describe two methods for generating replicated data from the posterior predictive dis-

tribution for the semiparametric latent variable model. The more straightforward of the

two approaches generates I vectors of predicted latent responses according to

z
(rep,m)
i ∼ N

(
0, IJ +

(
Λ(m)

)T
Λ(m)

)
(5.31)

where superscript (rep,m) denotes the m-th replicated draw and superscript (m) denotes

the m-th posterior draw of the parameter. To generate predicted responses on the original

data scale rather than the latent scale, we rely on the inverse empirical marginal CDF for

each outcome, F̂−1
j (·), to transform the latent responses. That is,

y
(rep,m)
ij = F̂−1

j

(
Φ

(
z

(rep,m)
ij /

√
1 +

(
λ

(m)
j

)T
λ

(m)
j

))
. (5.32)

Hoff (2007) notes that such an approach ignores the uncertainty in the estimation of Fj

for the prediction of y
(rep,m)
ij . Nonetheless, this method provides a posterior predictive

distribution for which the univariate marginal distributions match those observed in the

data. One might consider this approach a conditional posterior predictive distribution as it

conditions on the empirical marginal distributions.

Hoff (2007) describes another procedure for calculating posterior predictive distributions

that does incorporate uncertainty in estimation of the univariate marginal distributions for

predicting y
(rep,m)
ij . We generate a new vector of latent responses, z

(rep,m)
I+1 , in addition to

I sets drawn as part of the Gibbs sampling algorithm. If z(I+1)j falls between two latent

responses, zij and zi′j , that share the same value on the original data scale (i.e., yij = yi′j)

then y(I+1)j must also take this value as gj(·) is monotonic. If z(I+1)j falls between two

latent responses, zij and zi′j , that do not share the same value on the original data scale,

then we use linear interpolation to obtain a value for y(I+1)j . Hoff (2007) points out that

the two approaches are largely equivalent for large I. In the rest of the paper, we rely on

the second approach to generate replicated data for our evaluations of model fit.
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5.4 Hierarchical Formulation and Estimation

To relate covariates of interest to the primary factor in the semiparametric latent variable

model and investigate their general association with the outcomes, we extend the model hi-

erarchically. In Chapter 4, we extended the IRT model for mixed outcomes hierarchically to

include covariates by specifying the mean of the latent variable as a function of covariates. In

doing so, we made the assumption that the model follows structure of the multiple indicator

multiple cause (MIMIC) model (Goldberger and Hauser, 1971; Jöreskog and Goldberger,

1975) and the multilevel IRT model described by Fox and Glas (2001) where covariates are

related to outcomes through the latent variable or ability parameter only, rather than also

relating covariates directly to outcomes as in other formulations (Dunson, 2003). We rely

on the same assumption here. For implications of this assumption, please refer back to

Chapter 4.

As before, we assume that

ηi ∼ N (mηi ,Ψ) , (5.33)

where mηi = 0,Ψ = IQ. However, we replace the first element of mηi with a function of

the covariates denoted by the P -length vector xi:

mηi =
(
xTi β, 0, . . . , 0

)T
. (5.34)

The complete hierarchical semiparametric latent variable model is therefore

yij = gj(zij) (5.35)

zi|Λ,ηi ∼ N(Ληi, IJ) (5.36)

ηi ∼ N (mηi , IQ) (5.37)

mηi =
(
xTi β, 0, . . . , 0

)T
. (5.38)

When we employ a parameter expansion approach for estimation of the model in equa-

tions (5.35)-(5.38),

η∗i ∼ N (mηi ,Ψ) , (5.39)

mηi =
(
xTi β

∗, 0, . . . , 0
)T
, (5.40)
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and the diagonal elements of Ψ are no longer restricted during MCMC. For β∗, we specify

the semi-conjugate prior:

β∗ ∼ N (mβ,Sβ) . (5.41)

Moreover, to further facilitate efficient computation, we add an additional working pa-

rameter, α, as suggested by Ghosh and Dunson (2009), so that

mηi =
(
α+ xTi β

∗, 0, . . . , 0
)T
. (5.42)

Relaxing the restriction on the mean of the latent variable promotes better mixing of the

regression coefficients. For α, we use the semi-conjugate prior:

α ∼ N
(
mα, s

2
α

)
. (5.43)

To estimate the hierarchical model (equations (5.35)-(5.38)), we modify the steps for

drawing η∗i and Ψ in the sampling algorithm from Section 5.3 to account for the inclusion of

covariates and the additional working parameter, α, in mηi . We sample β∗ and α according

to their full conditionals:

β∗ ∼ N

((
ψ−2

1 XTX + S−1
β

)−1 (
ψ−2

1 XT (η∗q=1 − 1Iα
)

+ S−1
β mβ

)
,
(
ψ−2

1 XTX + S−1
β

)−1
)
, (5.44)

α ∼ N
((
ψ−2

1 I + s−2
α

)−1
(
ψ−2

1 1TI
(
η∗q=1 −Xβ∗

)
+ s−2

α mα

)
,
(
ψ−2

1 I + s−2
α

)−1
)
. (5.45)

where X is an I × P matrix of covariates and η∗q=1 is a vector of the primary factor scores,

the first column of H∗. In the post-processing stage for the parameter expansion approach,

we make the transformations:

ηi = Ψ−1/2 (η∗i −α) , (5.46)

β = β∗ψ−1
1 , (5.47)

where α = (α, 0, . . . , 0)T . In the parameter expansion approach where the diagonal of Ψ is

unrestricted, given diagonal Sβ, the induced prior on βp is a scale mixture of normals with

a gamma mixing density. This normal-gamma prior was proposed by Griffin and Brown

(2010) as a prior for regression coefficients that generalizes the Bayesian Lasso (Park and

Casella, 2008).
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5.5 A Simulated Data Example

To test the semiparametric latent variable model, we generated simulated data and then

examined the model’s ability to recover the data generating parameters. We compared three

approaches to estimation: the standard Gibbs sampling approach (denoted henceforth as

Standard), the parameter expansion approach where the diagonal elements of both Σ and Ψ

are unrestricted during estimation (denoted as PX1), and the parameter expansion approach

where the diagonal of only Ψ is unrestricted during estimation (denoted as PX2). Recall

that the parameter expansion approaches induce different priors for the factor loadings, Λ.

We generated data for I = 500 hypothetical individuals on J = 15 different outcomes.

The data generating process employed a bifactor model with two secondary factors in ad-

dition to the primary factor. The loading matrix used to simulate the data is

Λ =



0.613 2.900 0.000

1.667 0.000 0.000

1.498 0.000 1.325

2.084 0.000 −1.037

0.030 0.000 0.000

1.268 0.000 0.994

−1.271 0.000 0.000

−2.100 0.000 2.356

1.131 0.000 0.000

1.470 0.000 0.000

−0.335 0.000 0.000

2.235 0.000 0.000

−1.267 2.972 0.000

2.499 −0.420 0.000

1.937 −0.020 0.000



. (5.48)

Here, all outcomes load on the general factor; outcomes 1, 13, 14 and 15 load on one

secondary factor; and outcomes 3, 4, 6 and 8 load on the other secondary factor. For each

individual, we simulated ηi ∼ N(0, IQ). We subsequently generated a matrix of latent
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responses, Z, with mean HTΛ and variance 1. Finally, we randomly drew cutoffs for each

outcome in order to produce discretized “observed” responses from the continuous latent

responses so that the number of unique values for each outcome ranged from 2 (outcome 1)

to 30 (outcome 9).

To fit the model to the simulated data, we employed each estimation approach to gener-

ate 50,000 MCMC draws, the first 10,000 of which we discarded as burn-in. In addition, we

thinned the posterior samples, keeping only every 10th draw. Thus, we used 4,000 draws

from each approximate posterior distribution to make our inferences.

Table 5.2 displays a summary of the posterior estimates of the loadings. For each

estimation approach, all 95% posterior credible intervals for the loadings contained the data

generating parameter. Similarly, the estimation approaches do a good job of recovering the

true factor values, H, with roughly 96% of the 95% posterior credible intervals containing

the data generating values in each of the three estimation approaches (detailed results not

shown).

Table 5.3 compares the efficiency of each estimation method by examining summary

statistics of the effective sample sizes1 of the posterior samples for the Λ parameters. Con-

sidering both the mean value and the different quantiles, the PX1 approach outperformed

the others. Examining traceplots for λ14,1 and λ4,3 in Figure 5.3, the chains from the PX1

approach displayed better mixing and less autocorrelation. The trace plots for λ14,1 are

typical of the trace plots for other non-zero elements of Λ while the trace plots for λ4,3

are typical of cases where there is extreme disparity between the effective sample sizes of

the MCMC draws using each approach. In examining the trace plots for other non-zero

elements of Λ (not shown), the PX1 approach tended to outperform the other estimation

methods in similar fashion. Due to greater efficiency, we employed PX1 estimation for the

rest of the paper.

Although the model given by equations (5.5)-(5.8) is identified provided that we have

enough fixed zeros in Λ, for evaluating convergence we have found it useful to additionally

1Effective sample sizes were calculated using the coda package in R.
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Table 5.2: Posterior means of the factor loadings Λ from the three different approaches to

semiparametric latent variable model estimation.

Standard PX1 PX2

Loading Truth Post. Mean Post. Mean Post. Mean

λ1,1 0.61 0.67 0.70 0.73

λ2,1 1.67 1.78 1.83 1.83

λ3,1 1.50 1.52 1.55 1.54

λ4,1 2.08 2.05 2.09 2.06

λ5,1 0.03 0.01 0.01 0.01

λ6,1 1.27 1.42 1.46 1.51

λ7,1 -1.27 -1.41 -1.45 -1.45

λ8,1 -2.10 -1.95 -2.14 -2.22

λ9,1 1.13 1.16 1.18 1.19

λ10,1 1.47 1.39 1.43 1.43

λ11,1 -0.34 -0.33 -0.34 -0.34

λ12,1 2.23 2.06 2.13 2.12

λ13,1 -1.27 -1.14 -1.29 -1.19

λ14,1 2.50 2.31 2.37 2.38

λ15,1 1.94 1.78 1.82 1.82

λ1,2 2.90 2.75 2.91 3.03

λ13,2 2.97 2.87 3.19 2.92

λ14,2 -0.42 -0.50 -0.50 -0.51

λ15,2 -0.02 0.04 0.04 0.04

λ3,3 1.32 1.28 1.28 1.27

λ4,3 -1.04 -0.98 -0.98 -0.97

λ6,3 0.99 1.14 1.14 1.19

λ8,3 2.36 2.16 2.35 2.46

consider the scaled loadings, Λ̌ where

λ̌jq =
λjq√

1 + λTj λj

, (5.49)
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Table 5.3: Summary of effective sample sizes for Λ parameters by estimation approach.

Estimation Quantiles

Approach Mean 0% 25% 50% 75% 100%

Standard 605 11 101 149 376 4231

PX1 2611 329 1622 3169 3818 4000

PX2 540 10 63 106 402 4000
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Figure 5.3: Trace plots for λ14,1 and λ4,3 for the three different approaches.

so that

C = Cor(Z) (5.50)

= diag
(
ΛΛT + IJ

)−1/2 (
ΛΛT + IJ

)
diag

(
ΛΛT + IJ

)−1/2
(5.51)

= Λ̌Λ̌
T

+ Σ̌. (5.52)

Here, Σ̌ is a J × J diagonal matrix with diagonal entry σ2
j =

(
1 + λTj λj

)−1
. In our experi-
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ence, trace plots of the scaled loadings often appear more stable than those of the unscaled

loadings. Likewise, we observed that separate chains for estimation of Λ that have yet to

converge to similar values often appear to have converged when rescaled, providing an indi-

cation that the separate chains are estimating similar dependence structures. These scaled

loadings may also be useful for inferential purposes as they place the latent responses on

the same scale marginally with Var(zij) = 1 for all outcomes j = 1, . . . , J .

Posterior predictive model checks further suggest that the model fits the simulated data

well. In the following, we present posterior predictive checks using the PX1 model repli-

cated data. Figure 5.4 demonstrates that the model appears to successfully replicate the

marginal distributions of the outcomes 6 and 14. We observed similarly good results for

other outcomes.

(a) Outcome 6 (b) Outcome 14

Figure 5.4: Histograms of the observed outcome scores in the simulated dataset. The black

dots indicate the mean count across replicated datasets for each grade. The black vertical

segment indicates the interval from the 2.5% to 97.5% quantiles across replicated datasets.

Figure 5.5 presents the pairwise rank correlations between outcome 14 and the other

outcomes. The plot displays the observed and mean predicted rank correlations together

with their 95% posterior predictive intervals. For each of the 14 pairwise rank correlations

in the plot, the posterior credible interval covers the observed value, suggesting an adequate

model fit for this outcome. Though not shown, similar results are obtained for the other
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outcomes.

Figure 5.5: The mean posterior prediction (grey point) and 95% posterior prediction inter-

vals (grey line segment) for outcome 5 Kendall’s τ values calculated using replicated data.

Kendall’s τ values computed from the observed data are denoted by a black “X”.

Figure 5.6 presents correlation distance and eigenvalue posterior predictive model check

plots. Both figures detect no discrepancy between the model-predicted and observed rank

correlation matrices.

In the context of simulated data, we demonstrated that the 3 different estimation ap-

proaches can ably recover data-generating values. However, the parameter expansion ap-

proach, PX1, where both Σ and Ψ are unrestricted in the working model during the MCMC

sampling, outperformed the other approaches in that it displayed better mixing properties

during MCMC estimation. In our simulation example, the posterior predictive model checks

indicated that marginal distributions for observed outcomes, correlations among observed

outcomes, and eigenvalues of the observed correlation matrix were replicated well by the

model.
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(a) Correlation Distance (b) Eigenvalues

Figure 5.6: The left plot presents scatterplots of dsld(C
obs, Crep,m) versus

dsld(C
rep,m, Crep,m

′
) for all replicated datasets. The grey line represents the 45 de-

gree line. The right plot displays the mean posterior prediction (grey point) and 95%

posterior prediction intervals (grey line segment) of the largest ten eigenvalues calculated

using replicated data. Eigenvalues computed from the observed data are denoted by a

black “X”.

5.6 Application to the SIVD Study

As in section 4.5, we are interested in relating the individual’s level of executive functioning

to the white matter hyperintensity volume located in the frontal lobe at the first study visit.

We present again Table 5.4 which displays basic information for the 19 outcomes as well as

some summary statistics observed in the data for I = 341 participants. For many of the

binary outcomes as well as the Mattis Dementia Rating Scale outcomes E and V, the mean

and median scores are very close to the largest possible score.

To illustrate the challenges of modeling cognitive outcomes from the SIVD study para-

metrically, recall the cases of Mattis Dementia Rating Scale E and W. For Mattis Dementia
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Table 5.4: Summary statistics for I = 341 responses to 19 SIVD executive functioning

outcomes as well as outcome type assignment. ‘RC Count’ denotes a right-censored count

outcome.

Range Mean Median Outcome Type

Digit Span Forward 3-12 7.69 8 Count

Digit Span Backwards 1-12 5.97 6 Count

Visual Span Forward 0-13 7.15 7 Count

Visual Span Backwards 0-12 6.18 6 Count

Verbal Fluency Letter F 1-26 11.8 12 Count

Verbal Fluency Letter A 0-40 10.2 10 Count

Verbal Fluency Letter S 0-50 12.4 12 Count

MDRS E 2-20 16.64 19 RC Count

MDRS G 0-1 0.96 1 Binary

MDRS H 0-1 0.98 1 Binary

MDRS I 0-1 0.95 1 Binary

MDRS J 0-1 0.97 1 Binary

MDRS K 0-1 0.98 1 Binary

MDRS L 0-1 0.79 1 Binary

MDRS O 0-1 0.94 1 Binary

MDRS V 9-16 14.9 16 RC Count

MDRS W 0-8 6.44 7 Ordered Cat.

MDRS X 0-3 2.66 3 Ordered Cat.

MDRS Y 0-3 2.93 3 Ordered Cat.

Rating Scale outcome E, participants are given one minute and are asked to name as many

items found in supermarkets as they can. The participant’s score is the number of valid

items named, censored at 20. A histogram of observed scores for this outcome in Fig-
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Figure 5.7: Histograms of scores for MDRS E and W items.

ure 5.7(a) shows some evidence of a ceiling effect for this item. Similarly, Figure 5.7(b)

depicts a histogram of observed scores for Mattis Dementia Rating Scale W that asks a

participant to compare words and identify similarities. Although the description in this

case does not suggest right-censoring, there is also some evidence of a ceiling effect in the

histogram. We might treat Mattis Dementia Rating Scale outcome W as right-censored

rather than an ordered categorical outcome in a parametric approach. These are just two

examples that illustrate the uncertainty and challenge in specifying appropriate parametric

distributions for each cognitive outcome in the SIVD study. To bypass this specification, yet

still model the interdependencies among test items, we used the hierarchical semiparametric

latent variable model.

We are interested in modeling the relationship between the primary factor and the

volume of white matter hyperintensities located in the frontal lobe of the brain. Controlling

for other covariates, we specified the mean of the primary factor for participant i as

E [ηi1] = β1Sexi + β2Educi + β3Agei + β4Voli + β5WMHi, (5.53)

where Sexi is the participant’s sex (Female=1, Male=0), Educi is the number of years of
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education, Voli is the total brain volume of the participant, and WMHi is the frontal white

matter hyperintensity volume. We used standardized versions of the continuous predictor

variables.

One-factor semiparametric model We started our analysis by examining the Q = 1

model with a single latent factor explaining interdependencies among the test items. To

estimate the model, we utilized the parameter-expanded Gibbs sampling algorithm. Even

though we found this approach to be more efficient than the standard Gibbs sampler, we

still observed high autocorrelation within the chains for factor loadings. We drew 50,000

MCMC samples and discarded the first half as burn-in. We used trace plots and the Geweke

(Geweke, 1992) and Raftery-Lewis (Raftery and Lewis, 1995) diagnostic tests to assess

convergence.

Table 5.6 displays posterior summaries for the regression coefficients, β. We observed

a negative relationship between the primary factor and frontal white matter hyperintensity

volume. The accompanying 95% posterior credible interval (-0.466, -0.205) did not con-

tain zero, suggesting a negative association between frontal white matter hyperintensity

volume and the primary factor. That is, participants with a greater volume of white matter

hyperintensities accumulated in the frontal lobe tended to perform worse on indicators of

executive functioning.

We evaluated model fit using posterior predictive model checks. We began by examining

the fit of the marginal distributions. Figure 5.8 displays the histograms of observed responses

for Verbal Fluency A and Mattis Dementia Rating Scale E along with posterior predictive

summaries. In each case, the model appeared to do a satisfactory job of approximating the

data. We found similarly good approximations of the marginal distributions in the observed

data for the other outcomes as well.

We assessed the model’s ability to replicate the observed dependence structure in the

data at a global level by examining the correlation distance and the eigenvalues posterior

predictive model checking plots (Figure 5.9). The cloud of correlation matrix distances in

Figure 5.9(a) sits in the upper left of the plot, well removed from the 45 degree line. In

Figure 5.9(c), the first eigenvalue was well approximated by the model but the subsequent
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(a) Verbal Fluency A (b) MDRS E

Figure 5.8: Histograms of the observed scores for the Verbal Fluency A and MDRS E. The

black points indicate the mean count across replicated datasets for each score. The black

vertical segment indicates the interval from the 2.5% to 97.5% quantiles across replicated

datasets.

eigenvalues indicated model misfit, suggesting that additional factors may be necessary to

more accurately represent the dependence structure in the data.

We reviewed the pairwise rank correlations to better understand the shortcomings of the

single factor model and direct the next steps in our model building process. Figures 5.10(a)

and 5.10(b) display the pairwise correlation plots for the Mattis Dementia Rating Scale J

and Visual Span Backwards outcomes for the single factor model. In both cases, the model

fit the majority of the pairwise correlations well. However, in each case, there were a few

outcomes with poorly fitted correlations. For Mattis Dementia Rating Scale J, the model did

not appear to fully capture the correlation with the conceptually-related Mattis Dementia

Rating Scale I and K; all three of these outcomes ask participants to repeat alternating

movements of some type. Likewise, for Visual Span Backwards, the correlation with Visual

Span Forwards was not accurately approximated by the single factor model. In addition,

the correlations between Visual Span Backwards and the Mattis Dementia Rating Scale

outcomes L and O were not well approximated. Mattis Dementia Rating Scale outcomes

L and O involve copying drawings and, in this sense, also incorporate a visual component
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that may be the source of the residual correlation between the outcomes. Given that the

lack of fit is observed among outcomes that are related conceptually (e.g., that are parts of

a subtest or a subscale), our next step was to consider a bifactor model.

Examining the pairwise correlations for the other items in this manner, we identified pos-

sible secondary factors to account for residual correlation. We applied an iterative process

where we specified an additional secondary factor, refit the model and then checked the fit of

this new model. Ultimately, we specified a bifactor model with one general cognitive ability

factor and 3 secondary factors (for a total of Q = 4) as listed in Table 5.5. It is important

to note that, although we identified these secondary factors using the posterior predictive

model checks, they nevertheless have substantive interpretations as they link conceptually

related outcomes. The second factor loads on Mattis Dementia Rating Scale outcomes I,

J and K, test items that all involve repetition of alternating movements. The third factor

loads on the Visual Span outcomes and Mattis Dementia Rating Scale outcomes L, O and

V. These test items all include visual or drawing components. The fourth factor links three

Mattis Dementia Rating Scale outcomes that ask participants to identify similarities and

dissimilarities.

Bifactor semiparametric model For the semiparametric bifactor model with Q = 4,

we drew 500,000 MCMC samples and discarded the first 50,000 as burn-in. We kept every

50th draw, leaving us with 9,000 posterior draws. As with the single factor model, we

checked convergence using trace plots and the Geweke (Geweke, 1992) and Raftery-Lewis

(Raftery and Lewis, 1995) diagnostic tests. Convergence was satisfactory but, compared

to the single factor model, the mixing was considerably slower for a few of the secondary

factors that exhibited high levels of autocorrelation. We should also note that the speed of

convergence was influenced by the choice of hyperparameters for Σ and Ψ in the parameter

expanded model. The bifactor model represented the dependence structure of the observed

responses better. In Figure 5.9(b), we no longer see a discrepancy among the correlation

distances suggesting model misfit. Figure 5.9(d) shows that the bifactor model provided

a good fit to the observed eigenvalues well beyond the first eigenvalue. As can be seen in

Figures 5.10(c) and 5.10(d), the bifactor model did a better job of replicating the pairwise



84

Table 5.5: Proposed factor structure for SIVD executive functioning outcomes. ∗ indicates

a non-zero factor loading to be estimated.

Factor

1 2 3 4

MDRS G ∗ 0 0 0

MDRS H ∗ 0 0 0

MDRS I ∗ ∗ 0 0

MDRS J ∗ ∗ 0 0

MDRS K ∗ ∗ 0 0

MDRS L ∗ 0 ∗ 0

MDRS O ∗ 0 ∗ 0

Digit Sp Fwd ∗ 0 0 0

Digit Sp Bwd ∗ 0 0 0

Visual Sp Fwd ∗ 0 ∗ 0

Visual Sp Bwd ∗ 0 ∗ 0

Verb Flncy F ∗ 0 0 0

Verb Flncy A ∗ 0 0 0

Verb Flncy S ∗ 0 0 0

MDRS E ∗ 0 0 0

MDRS V ∗ 0 ∗ 0

MDRS W ∗ 0 0 ∗

MDRS X ∗ 0 0 ∗

MDRS Y ∗ 0 0 ∗

rank correlations compared to the single factor model.

Table 5.6 displays posterior summaries for the regression parameters. We saw little

change in our estimate for the parameter of interest, β5, the coefficient for frontal WMH
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when adding additional factors. Thus, our substantive conclusion regarding the association

between an individual’s executive functioning and the volume of white matter hyperintensi-

ties in the frontal region of the brain remains the same whether we use the one-factor model

or the better fitting bifactor model. Based on our semiparametric latent variable model, we

expect a 1SD increase in frontal white matter hyperintensity volume to be associated with

a 0.335SD decrease in the primary factor. In examining the other coefficients, we see that

none of the 95% posterior credible intervals have shifted to the extent that we would alter

our posterior belief about whether zero is a plausible value for the parameter. However, the

coefficients for sex, age and total brain volume did decrease by 30-40% in magnitude.

Table 5.6: Posterior summaries for regression coefficients for single factor, Q = 1, and

bifactor, Q = 4, models.

Q = 1 Q = 4

Coefficient Mean Median 95% CI Mean Median 95% CI

Sex 0.234 0.233 (-0.061, 0.516) 0.155 0.152 (-0.134, 0.440)

Education 0.354 0.354 (0.232, 0.479) 0.325 0.325 (0.206, 0.446)

Age -0.126 -0.126 (-0.246, 0.004) -0.078 -0.078 (-0.201, 0.044)

Total Brain Vol. 0.069 0.069 (-0.080, 0.215) 0.046 0.045 (-0.096, 0.194)

Frontal WMH Vol. -0.330 -0.328 (-0.466, -0.205) -0.335 -0.336 (-0.464, -0.208)

5.7 Discussion

In this chapter, we have developed a semiparametric latent variable model for multivariate

mixed outcome data. This model, unlike common parametric latent variable modeling ap-

proaches for mixed outcome data (Sammel et al., 1997; Moustaki and Knott, 2000; Dunson,

2003; Shi and Lee, 1998), does not require the specification of conditional distributions for

each outcome given the latent variables. In Chapter 4 when applying the generalized linear

latent variable model framework to item response theory models, we found it challenging
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to pick appropriate conditional distributions for each outcome encountered in real data, to

extend the parametric models to account for all cases of distributions, and time-consuming

to extend estimation methods appropriately. Moreover, the specification of outcome condi-

tional distributions given the latent variables may be of little interest by itself in any research

setting where the main question is in the relationship between a common factor (or factors)

and a covariate of interest. Our proposed semiparametric latent variable framework allows

one to model interdependencies among observed mixed outcome variables by specifying an

appropriate latent variable model while, at the same time, avoiding the specification of out-

come distributions conditional on the common latent variables. We have demonstrated this

approach for the single-factor and bifactor models, incorporating a covariate effect on the

general factor.

The extended rank likelihood can readily be employed with other latent variable models,

including item response theory models (Van der Linden and Hambleton, 1997) and struc-

tural equation models (Bollen, 1989). In structural equation models, the focus is often on

characterizing the relationship between latent variables and/or between latent variables and

fixed covariates as in the case of our hierarchical model. In such cases where the focus is

not on the loadings or outcome-related parameters, the proposed semiparametric approach

would be quite useful in dealing with mixed outcome data. However, the extended rank

likelihood may not be as useful in cases where outcome-specific parameters on the scale of

the observed outcomes are of interest. For example, in item response theory models, one

is often interested in examining the item difficulty and discrimination parameters to better

understand the characteristics of individual test questions. When using the extended rank

likelihood, the difficulty parameter, the analogue to the specific mean in the factor model, is

not directly identifiable. Nonetheless, one could still carry out posterior inference by relying

on the relationship between the difficulty parameter and the latent trait. In a two parameter

item response theory model for binary outcomes, the probability of positive response when

the factor score is set to zero is a one-to-one function of the difficulty parameter. Such an

alternative, however, may render the semiparametric approach less convenient for a practi-

tioner who is primarily interested in parameters characterizing the properties of individual

outcomes.
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We employed the semiparametric latent variable model to study the association between

the volume of white matter hyperintensities in the frontal lobe and cognitive testing out-

comes related to executive functioning from the Subcortical Ischemic Vascular Dementia

(SIVD) study. The semiparametric latent variable model allowed us to analyze the mixed

cognitive testing outcomes without requiring the specification of parametric distributions

for the outcomes conditional on the latent variables. It has been hypothesized that a greater

volume of frontal lobe white matter hyperintensities will be associated with more impaired

executive functioning. Consistent with this hypothesis, we found a negative association

between the primary factor in our model and the volume of white matter hyperintensities.

We started our model-building process by fitting the one-factor semiparametric model.

We relied on posterior predictive model checks to evaluate whether the model well approxi-

mated the dependence structure among observed responses. We successfully used posterior

predictive model checks to diagnose model misfit and to guide us in identifying a secondary

factor structure for the bifactor model. Our posterior predictive checks approach can there-

fore be thought of as a method of exploratory bifactor analysis (Jennrich and Bentler, 2011)

when the secondary factor structure is not known in advance. It also provides a mechanism

by which statistical methodologists can work together with substantive experts to develop

models that are theoretically justified and that are consistent with the data.

While we did not focus on formal model selection in this paper, one could explore

the use of model fit criteria and other model selection methods to determine the factor

structure for our semiparametric model. For example, one could use the methods of Knowles

and Ghahramani (2011) and Rai and Daumé III (2009) to incorporate the Indian Buffet

Process prior to simultaneously estimate the loadings, the loadings structure and the number

of factors. Within the bifactor model framework, Jennrich and Bentler (2011) recently

proposed using a rotation criterion to explore the secondary factor structure. Dunson (2006)

presented a Bayesian model averaging approach that accounts for the uncertainty in the

number of factors.

In our work with the cognitive testing data, we found that the semiparametric model was

more elegant and much easier in implementation than the standard parametric approaches

for mixed outcome data. Nonetheless, a formal comparison of the two methods is needed



88

to fully understand the differences and impact on conclusions. In addition, an alternative

approach to handling mixed outcomes in practice is to use mainstream latent variable mod-

eling software and treat all outcomes as ordered categorical. In cases where the number

of categories exceeds the number that can be accommodated by existing software, the out-

comes are typically consolidated into fewer categories to satisfy the software’s constraints.

It would similarly be useful to understand how the semiparametric model performs relative

to this software-constrained approach.
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(a) Correlation Distance, Q = 1 (b) Correlation Distance, Q = 4

(c) Eigenvalues, Q = 1 (d) Eigenvalues, Q = 4

Figure 5.9: Correlation distance and eigenvalue plots for the Q = 1 and Q = 4 models.

The left plot presents scatterplots of dsld(C
obs, Crep,m) versus dsld(C

rep,m, Crep,m
′
) for all

replicated datasets. The grey line represents the 45 degree line. The right plot displays

the mean posterior prediction (grey point) and 95% posterior prediction intervals (grey

line segment) of the largest ten eigenvalues calculated using replicated data. Eigenvalues

computed from the observed data are denoted by a black “X”.
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(a) MDRS J, Q = 1 (b) Visual Span Backwards, Q = 1

(c) MDRS J, Q = 4 (d) Visual Span Backwards, Q = 4

Figure 5.10: Pairwise correlation plots for the single factor (Q = 1) and bifactor models

(Q = 4). Each pairwise correlation plot depicts the mean posterior prediction (grey point)

and 95% posterior prediction intervals (grey line segment) for Kendall’s τ values calculated

using replicated data. Kendall’s τ values computed from the observed data are denoted by

a black “X”.
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Chapter 6

SEMIPARAMETRIC MULTIVARIATE REGRESSION FOR MIXED
OUTCOMES

6.1 Introduction

In Chapters 4 and 5, we investigated the association between multivariate mixed outcomes

and a set of covariates using a hierarchical Bayesian latent variable model. As we saw,

one of the challenges in applying these models is the specification of a latent structure that

approximates the dependence structure in the data well. For binary and ordered categorical

outcomes, an alternative method for investigating the associations between multivariate re-

sponses and covariates is the multivariate (ordered) probit regression model. In this chapter,

we propose a semiparametric multivariate regression model for mixed data that is distin-

guished first by its ability to handle data of arbitrary type. This flexibility is achieved by

using the extended rank likelihood method proposed by Hoff (2007). Second, the model

readily accounts for residual correlations whereas, in the hierarchical Bayesian latent vari-

able model, we must hypothesize or search for a latent structure to accommodate residual

correlations. Finally, we take a reduced rank regression approach and factor the coefficient

matrix into two vectors. As we demonstrate later, the semiparametric multivariate regres-

sion model with reduced rank form can be viewed as a more general formulation of the

hierarchical semiparametric bifactor model with the latent variables marginalized out.

Ashford and Sowden (1970) originally proposed the multivariate probit model as a means

of generalizing the standard probit model for correlated binary responses. However, until

computational developments in the 1990s, use of the model was limited as analysis of the

likelihood function was difficult without simplifying restrictions such as those in Ochi and

Prentice (1984). Starting with Chib and Greenberg (1998), Bayesian MCMC and Monte

Carlo EM (MCEM) methods were employed successfully for the estimation of these models.

Recent areas of application of the multivariate probit model and variants include marketing
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(Rossi and Allenby, 2003), medicine (Li and Schafer, 2008) and political science (Alvarez,

Katz, Llamosa, and Martinez, 2009).

Reduced rank regression developed by Anderson (1951) and Izenman (1975) decomposes

the coefficient matrix in a multivariate regression model into two lower rank (i.e., less

than full rank) matrices and results in a more parsimonious, as well as perhaps a more

interpretable, representation of the coefficient matrix. In our case, we assume a rank-one

structure for the multivariate regression coefficient matrix. Our rank-one structure for the

coefficient matrix may be viewed as consisting of row and column effects that are analogous

to the population regression coefficients and factor loadings in the hierarchical latent variable

models of Chapters 4 and 5. Schmidli (1996) notes that reduced rank regression models are

well suited for situations where correlated outcomes may be represented by a factor analysis

model where the factors are functions of covariates.

Most articles presenting the methods and theory of multivariate reduced rank regres-

sion assume the data are normally distributed. Moving beyond the Gaussian assumption,

Variyam, Blaylock, and Smallwood (1998) employed reduced rank regression in a multivari-

ate probit context. Yee and Hastie (2003) proposed reduced rank vector generalized linear

models for different data types, focusing on categorical data. Heinen and Rengifo (2008)

presented reduced rank multivariate dispersion models that include Gamma, inverse Gaus-

sian, Poisson, binomial and negative binomial distributions among others. Finally, although

not presented in the context of multivariate reduced rank regression, Hung and Wang (2011)

proposed using the reduced rank parameterization of coefficients for matrix-variate logistic

regression as a means of relating a matrix of covariates to a univariate binary response while

extracting row and column information from the matrix of covariates.

The remainder of this chapter is organized as follows. In Section 6.2, we introduce the

semiparametric multivariate reduced rank regression model. We additionally discuss iden-

tifiability and the relationship between the semiparametric multivariate regression model

and the hierarchical semiparametric latent variable model. MCMC methods for estimation

of the model are presented in Section 6.3. We demonstrate the model on a simulated data

example in Section 6.4. Finally, we apply the model to the SIVD dataset that we previously

analyzed with the IRT and semiparametric latent variable models in Sections 4.5 and 5.6.
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6.2 Model

6.2.1 Model Formulation

Let Y be an I × J matrix of ordinal outcomes where I denotes the number of individuals

and J the total number of outcomes (items) for each individual. Denote by Z an I × J

matrix of latent responses such that

yij = gj(zij) (6.1)

where i = 1, . . . , I, j = 1, . . . , J and gj is a monotone transformation particular to outcome

j. Let g = (g1, . . . , gJ) represent the vector of monotone transformations. Then,

yi = g(zi) (6.2)

where yi = (yi1, . . . , yiJ)T and zi = (zi1, . . . , ziJ)T are transposed row vectors from their

respective matrices, Y and Z.

Let X represent the I × P matrix of covariates with P covariates for each individual.

Let xi be a transposed row vector from this matrix. Then, under the semiparametric

multivariate regression model, the vector of latent responses, zi, is distributed

zi ∼ N
(
BTxi,C

)
(6.3)

where B is a P × J matrix of coefficients and C is a J × J covariance matrix. If each gj

is a step function and we estimate the thresholds at which each jump takes place, then we

have the multivariate ordered probit model. In multivariate probit regression, the matrix

B of coefficients typically contains all unique elements where each coefficient describes the

relationship between a particular covariate and a particular outcome (in the presence of the

other covariates). In other instances, the columns of the matrix B may be restricted to

be equal so that the relationship between a covariate and an outcome is the same for all

outcomes (for instance if the data are longitudinal as in Chib and Greenberg (1998) for the

Six Cities example).

We propose using the parameterization B = βλT where β is a P -length vector and λ is

a J-length vector. Equation (6.3) then becomes

zi ∼ N
(
λβTxi,C

)
. (6.4)
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In this restricted formulation, the coefficient matrix B = βλT is now comprised of P + J

parameters rather than P × J parameters and is being represented by a rank one matrix.

Employing the matrix normal distribution, the equivalent formulation for the matrix of

latent responses is

Z ∼ MN
(
XβλT , II ,C

)
. (6.5)

The parameters β can be viewed as describing the relationships between the covariates and

a “typical” outcome in the set of J outcomes. We may in turn think of the quantity βTxi as

the expected latent response and the parameters λ as scaling parameters with each vector

element λj specific to the corresponding outcome j. The parameters λ serve a similar role

as factor loadings in the semiparametric latent variable model. We explore this connection

further in Section 6.2.3. We will rely on the extended rank likelihood for estimating the

parameters of interest β,λ,C and therefore are not required to specify or estimate the

transformations gj .

6.2.2 Identifiability

The proposed model in equation (6.4) is not identifiable and there are two primary areas

of concern. First, the respective signs and scales of λ and β cannot be determined as

B = βλT = (cβ)(λ/c) for any constant c. As a result, it is necessary to fix a value of c in

order to identify these parameters. To do so, we restrict one (at the model user’s discretion)

λj > 0 and set
∏
j |λj | = 1.

Secondly, let d = (d
−1/2
1 , . . . , d

−1/2
J ) be a J-length vector of arbitrary constants and let

D be a J × J matrix with the vector d on the diagonal and 0 elsewhere. Then, as noted

by Chib and Greenberg (1998), p(zi|β,λ,C) = p(Dzi|β,Dλ,DCD). This equivalence will

affect our estimation procedure as the scale of the latent response matrix Z is not fixed. To

address the latter identifiability issue, we follow the convention in the multivariate probit

analysis literature and restrict the covariance matrix C to be a correlation matrix. As will

be discussed in Section 6.3, this restriction complicates the estimation process as sampling

correlation matrices in MCMC can be challenging.
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6.2.3 Relation To Hierarchical Semiparametric Latent Variable Model

In Chapter 5, we proposed a hierarchical semiparametric latent variable model that was

constructed to relate multivariate mixed outcomes to covariates of interest. Recall that we

formulated the model as follows,

yij = gj(zij) (6.6)

zij |ηi ∼ N(λTj ηi, 1) (6.7)

ηi ∼ N(mηi , IQ) (6.8)

where λj and ηi are Q-length vectors. Moreover, mηi =
(
βTxi, 0, . . . , 0

)T
with Q elements.

The vector zi = (zi1, . . . , ziJ) is conditionally distributed

zi|ηi ∼ N(Ληi, IJ), (6.9)

where Λ is the J ×Q matrix of loadings.

If we integrate out ηi,

p(zi|Λ,mηi
) =

∫
(2π)−J/2 exp

(
−

1

2
(zi −Ληi)

T (zi −Ληi)

)
(2π)−Q/2 exp

(
−

1

2

(
ηi −mηi

)T (
ηi −mηi

))
dηi

(6.10)

= (2π)−J/2 exp

(
−

1

2
zTi zi −

1

2
mT

ηi
mηi

)∫
(2π)−Q/2 exp

[
−

1

2
ηTi

(
ΛTΛ + IQ

)
ηi (6.11)

+
1

2
ηTi

(
Λzi + mηi

)
+

1

2

(
Λzi + mηi

)T
ηi

]
dηi

= (2π)−J/2
∣∣∣ΛTΛ + IQ

∣∣∣−1/2
exp

[
−

1

2
zTi zi −

1

2
mT

ηi
mηi

(6.12)

+
1

2

(
Λzi + mηi

)T (
ΛTΛ + IQ

)−1 (
Λzi + mηi

)]
·
∫

(2π)−Q/2
∣∣∣∣(ΛTΛ + IQ

)−1
∣∣∣∣−1/2

exp

[(
ηi −

(
ΛTΛ + IQ

)−1 (
Λzi + mηi

))T
(
ΛTΛ + IQ

)(
ηi −

(
ΛTΛ + IQ

)−1 (
Λzi + mηi

))]
dηi

= (2π)−J/2
∣∣∣ΛTΛ + IQ

∣∣∣−1/2
exp

[
−

1

2
zTi zi −

1

2
mT

ηi
mηi

(6.13)

+
1

2

(
Λzi + mηi

)T (
ΛTΛ + IQ

)−1 (
Λzi + mηi

)]
= (2π)−J/2

∣∣∣ΛTΛ + IQ

∣∣∣−1/2
exp

[
−

1

2
zTi

(
IJ −Λ

(
ΛTΛ + IQ

)−1
ΛT

)
zi (6.14)

−
1

2
mT

ηi

(
IQ −

(
ΛTΛ + IQ

)−1
)

mηi
+

1

2
zTi Λ

(
ΛTΛ + IQ

)−1
mηi

+
1

2
mηi

(
ΛTΛ + IQ

)−1
ΛT zi

]
.
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By applying Sylvester’s Determinant Theorem and the Woodbury Matrix Identity, we

have

∣∣IQ + ΛTΛ
∣∣ =

∣∣IJ + ΛΛT
∣∣ (6.15)(

ΛTΛ + IQ
)−1

= IQ −ΛT
(
IJ + ΛΛT

)−1
Λ (6.16)

IJ −Λ
(
ΛTΛ + IQ

)−1
ΛT =

(
IJ + ΛΛT

)−1
(6.17)

Λ
(
ΛTΛ + IQ

)−1
=
(
IJ + ΛΛT

)−1
Λ. (6.18)

If we denote ΣΛ = IJ + ΛΛT ,

p(zi|Λ,mηi
) = (2π) |ΣΛ|−1/2 exp

(
−

1

2
zTi Σ−1

Λ zi −
1

2
mT

ηi
ΛTΣ−1

Λ Λmηi
(6.19)

+
1

2
zTi Σ−1

Λ Λmηi
+

1

2
mT

ηi
ΛTΣ−1

Λ zi

)
= (2π)−1/2 |ΣΛ|−1/2 exp

(
−

1

2

(
zi −Λmηi

)T
Σ−1

Λ

(
zi −Λmηi

))
. (6.20)

Recall that mηi =
(
βTxi, 0, . . . , 0

)T
so,

zi|Λ,β,xi ∼ N(λq=1β
Txi, IJ + ΛΛT ), (6.21)

where λq=1 is the first column of the matrix Λ. This is essentially the MIMIC model of

Jöreskog and Goldberger (1975) with secondary factors to account for residual correlation.

This mean structure is the same as the mean structure in the semiparametric multivariate

reduced-rank regression model. In the hierarchical semiparametric latent variable model,

we interpret the coefficients β as measuring the association between covariates and the

primary latent factor that is a common component of the responses for an individual. In

the multivariate reduced rank regression setting, we analogously view the parameters β as

describing the relationships between the covariates and a typical outcome in the set of J

outcomes.

Meanwhile, we characterize the dependence structure of zi|xi by IJ+ΛΛT . As seen with

the SIVD dataset, unless we have identified a suitable bifactor structure, the dependence

structure of the bifactor model may be insufficient to replicate the dependence structure

observed within the data. When the number of outcomes is not large (as in the case of

the SIVD dataset), it may make sense to estimate C directly rather than use a restricted

approximation of it so as to avoid the search to find a suitable latent structure. If the
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number of outcomes is large so that computation and estimation become difficult or slow,

then the parsimonious formulation of the dependence structure by the latent variable model

may be advantageous.

6.3 Estimation

We discussed the sampling the latent responses Z in Chapter 5 and we use the same approach

for estimation of the model in equation (6.4). The primary remaining challenge is handling

the identifiability restrictions from Section 6.2.2. There have been numerous developments

in the sampling of correlation matrices including work by Chib and Greenberg (1998),

Barnard, McCulloch, and Meng (2000), Liu (2001), Edwards and Allenby (2003), Liu and

Daniels (2006), Lawrence, Bingham, Liu, and Nair (2008). Tabet (2007) summarizes much

of this work.

We follow the procedure of Edwards and Allenby (2003) who sample covariance matri-

ces by ignoring the lack of identifiability during the MCMC sampling. To obtain identified

correlation matrix estimates, they post-process the draws from the MCMC chains. This

procedure can also be considered as a parameter expansion approach (Liu et al., 1998; Liu

and Wu, 1999) to estimation. In this case, the parameter expansion approach is used to

facilitate implementation rather than to improve efficiency. Whereas it may be difficult to

sample correlation matrices, there exist straightforward means to sample covariance matri-

ces using the inverse Wishart distribution. Edwards and Allenby (2003) draw covariance

matrices using the inverse Wishart distribution and, in a post-processing step, transform

these covariance matrices to correlation matrices. Convergence is monitored using the cor-

relation matrix draws. Hoff (2007) uses this approach in estimating the semiparametric

Gaussian copula model and Lawrence et al. (2008) takes a similar approach but makes the

transformation after each draw rather than for all draws combined in a post-processing step.

Compared to the alternate approaches of Chib and Greenberg (1998) and Barnard et al.

(2000), this approach is easily implemented. A shortcoming of this approach is its sensi-

tivity to prior specification for the unidentified parameters. If the prior is too weak, then

convergence and numerical stability issues may arise (Lawrence et al., 2008; Tabet, 2007).

If the prior is too strong, it may determine the posterior.
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We also handle the unidentifiability of λ and β through post-processing. To identify

these parameters, recall that we restrict one λj > 0 (at the user’s discretion) and set∏
j |λj | = 1. Alternatively we could restrict the scale of λ by choosing to set one of the λj

equal to 1 as is sometimes done with the loadings in latent variable modeling (Fox, 2010).

In the parameter expansion terminology of Ghosh and Dunson (2009), equation (6.4)

with the identifiability restrictions in Section 6.2.2 constitutes our inferential model. Our

parameter expanded working model then is

z∗i ∼ N
(
λ∗ (β∗)T xi,C

∗
)
, (6.22)

where λ∗, β∗, and C∗ are the working parameters.

Let D be a J × J matrix with the square root of the diagonal elements of C∗ on its

diagonal and 0, elsewhere and let λj′ be the element chosen to be restricted positive. The

following transformations link the working model to the inferential model,

λ̃ = D−1λ∗,

cλ =
∏
j

|λ̃j |,

zi = D−1z∗i , (6.23)

λ = sgn
(
λ̃j′
)
λ̃/cλ,

C = D−1C∗D−1,

β = sgn
(
λ̃j′
)
cλβ

∗.

Before discussing the Gibbs sampling steps of making draws from the working model, we

complete the model by specifying prior distributions for λ∗,β∗, and C∗ rather than directly

for λ,β and C. The priors are

λ∗ ∼ N (mλ,Sλ) , (6.24)

β∗ ∼ N (mβ,Sβ) , (6.25)

C∗ ∼ Inv. Wishart (νC , φC) . (6.26)

We sample from the posterior distribution for (Z∗,λ∗,β∗,C∗) using Gibbs sampling with

a hybrid (Hamiltonian) Monte Carlo (HMC) step to draw from the full conditional for λ∗.
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We employ the HMC step for λ∗ to speed convergence as we found directly sampling from

the full conditional for λ∗ exhibited very slow convergence. Recall from Section 2.2 that

HMC uses the derivative of the log of the full conditional distribution to produce directed

moves.

The Gibbs sampling algorithm proceeds as follows.

1. Draw latent responses Z∗. For each i and j, sample z∗ij from p(z∗ij |λ
∗,β∗,C∗,

Z∗(−i)(−j),Z
∗ ∈ D(Y)). More specifically, for each j and for each y = unique{y1j , . . . ,

ynj},

z∗ij ∼ TN(z∗l ,z
∗
u)(µz∗ij , σ

2
z∗ij

) (6.27)

where TN denotes truncated normal and z∗l , z
∗
u define the lower and upper truncation

points,

z∗l = max{z∗kj : ykj < y} (6.28)

z∗u = min{z∗kj : ykj > y}. (6.29)

The conditional mean and variance are

µz∗ij = Mij + (z∗i,−j −Mi,−j)
(
C∗−j,−j

)−1
C∗−j,j (6.30)

and

σ2
z∗ij

= C∗j,j −C∗j,−j
(
C∗−j,−j

)−1
C∗−j,j (6.31)

where

M = Xβ∗ (λ∗)T . (6.32)

2. Draw λ∗. We rely on HMC to sample λ∗. In order to implement HMC, we calculated

the derivative of the log joint density log p(Z∗,λ∗|β∗,C∗,X) = log p with respect to

λ∗,

d log p

dλ∗
= (C∗)−1

(
Z∗ −Xβ∗ (λ∗)T

)T
Xβ∗ − S−1

λ (λ−mλ) . (6.33)
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3. Draw β∗. We sample β∗ according to its full conditional distribution,

β∗ ∼ N

(((
(λ∗)T (C∗)−1 λ∗

)
XTX + S−1

β

)−1 (
XTZ∗ (C∗)−1 λ∗ + S−1

β mβ

)
, (6.34)((

(λ∗)T (C∗)−1 λ∗
)

XTX + S−1
β

)−1
)
.

4. Draw C∗. We sample C∗ according to its full conditional distribution,

C∗ ∼ Inv. Wishart

(
νC + I,

(
Z∗ −Xβ∗ (λ∗)T

)T (
Z∗ −Xβ∗ (λ∗)T

)
+ φC

)
. (6.35)

Once we have drawn a number of posterior samples using the above steps, we discard

some number of initial draws as burn-in and we post-process the draws using the transfor-

mations (6.23) to obtain λ, β, and C.

6.4 A Simulated Data Example

We tested the proposed model against simulated data to evaluate how well the model

recovered the data generating parameters. We simulated responses to J = 20 outcomes for

I = 400 participants. For each participant i = 1, . . . , 400, we generated P = 5 covariate

values comprising xi. The covariate values along with randomly drawn parameter values for

λ, β and C were used to simulate latent responses according to equation (6.4). We scaled

the data generating values of λ so that their product was equal to 1. Finally, we drew

a random number of thresholds to generate observed responses by discretizing the latent

responses.

To estimate the data generating parameters, we drew 60,000 samples using the model,

discarded the first 30,000 as burn-in and kept every 10th draw of the remaining samples.

Tables 6.1 and 6.2 present posterior summaries for λ and β. In the tables we see that the

model successfully recovered the data generating values for λ and β. The posterior mean

estimates were generally close to the the data-generating values. 19 of 20 posterior 95%

credible intervals for λ parameters contained the data generating truth and 5 of 5 for β

contained the corresponding truth. 97.9% of the posterior 95% credible intervals for the

J(J − 1)/2 parameters in C contained the true parameter values.
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Table 6.1: Posterior summary of λ.

Outcome Truth Post Mean Post. Median Post. 95% CI

1 1.839 1.785 1.779 (1.587, 2.018)

2 0.079 0.058 0.058 (0.038, 0.078)

3 -2.311 -2.449 -2.438 (-2.800, -2.153)

4 0.313 0.327 0.325 (0.283, 0.378)

5 -3.034 -2.957 -2.942 (-3.430, -2.554)

6 -2.653 -2.450 -2.438 (-2.779, -2.177)

7 -1.832 -1.799 -1.792 (-2.015, -1.635)

8 1.412 1.391 1.384 (1.235, 1.581)

9 2.670 2.689 2.679 (2.388, 3.051)

10 0.847 0.843 0.841 (0.754, 0.946)

11 -0.797 -0.780 -0.778 (-0.876, -0.705)

12 3.136 3.130 3.122 (2.771, 3.547)

13 2.038 2.073 2.069 (1.848, 2.354)

14 -3.530 -3.421 -3.405 (-3.903, -3.051)

15 -0.015 -0.026 -0.026 (-0.046, -0.005)

16 0.520 0.509 0.507 (0.457, 0.570)

17 3.618 3.082 3.062 (2.516, 3.762)

18 -0.074 -0.088 -0.088 (-0.111, -0.065)

19 -2.766 -2.907 -2.893 (-3.430, -2.460)

20 1.977 1.918 1.909 (1.656, 2.222)

The posterior predictive model checks introduced in Section 2.4 similarly show that the

model does a good job of approximating the simulated data. Figure 6.1 demonstrates that

the model is able to replicate the marginal distributions. Similarly, Figure 6.2 indicates that

the model approximates the observed rank correlations well.
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Table 6.2: Posterior summary of β.

Outcome Truth Post Mean Post. Median Post. 95% CI

1 3.341 3.476 3.490 (3.156, 3.682)

2 3.699 3.855 3.872 (3.508, 4.077)

3 0.401 0.412 0.413 (0.374, 0.440)

4 -1.006 -1.053 -1.057 (-1.117, -0.957)

5 -0.693 -0.720 -0.723 (-0.765, -0.655)

(a) Outcome 6 (b) Outcome 17

Figure 6.1: Histograms of the observed outcome scores in the simulated dataset. The black

dots indicate the mean count across replicated datasets for each grade. The black vertical

segment indicates the interval from the 2.5% to 97.5% quantiles across replicated datasets.

6.5 Application to the SIVD Study

In Chapters 4 and 5, we analyzed the SIVD dataset using the parametric IRT and semipara-

metric latent variable models. Here, we analyze this dataset by using the semiparametric

multivariate reduced rank regression model. Recall that the goal of our analysis is to in-

vestigate the relationship between executive functioning and the volume of white matter

hyperintensities located in the frontal lobe of the brain. To explore this relationship, we
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(a) Correlation Distance (b) Eigenvalues

Figure 6.2: The left plot presents scatterplots of dsld(C
obs, Crep,m) versus

dsld(C
rep,m, Crep,m

′
) for all replicated datasets. The grey line represents the 45 de-

gree line. The right plot displays the mean posterior prediction (grey point) and 95%

posterior prediction intervals (grey line segment) of the largest ten eigenvalues calculated

using replicated data. Eigenvalues computed from the observed data are denoted by a

black “X”. 1

used the executive functioning outcomes from the SIVD neuropsychological battery and

MRI-measured brain volumes. There are J = 19 different outcomes for I = 341 study

participants. Controlling for age, sex, education, and total brain volume, we have

βTxi = β1Sexi + β2Educi + β3Agei + β4Voli + β5WMHi, (6.36)

where Sexi is the participant’s sex (Female=1, Male=0), Educi is the number of years of

education, Voli is the total brain volume of the participant, and WMHi is the frontal white

matter hyperintensity volume. We used standardized versions of the continuous predictor

variables.

To estimate the model, we employed the Gibbs sampling algorithm with the HMC step

detailed in Section 6.3. We drew 200,000 samples and discarded the first half as burn-in,
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keeping every 25th draw. The large number of draws was required to ensure convergence

among a small subset of the parameters, particularly the regression coefficient for the Sex

covariate. We used trace plots and the Geweke (Geweke, 1992) and Raftery-Lewis (Raftery

and Lewis, 1995) diagnostic tests to assess convergence. Despite restricting only λ1 to be

positive, all of the posterior means for λ were positive suggesting that all of an individual’s

responses are positively correlated as we would expect based on intuition and the analyses

in the previous chapters.

Table 6.3 presents posterior summaries for the β parameters. Recall that we standard-

ized the continuous covariates (education, age, total brain volume, frontal white matter

hyperintensity volume) to have mean 0 and standard deviation 1. We immediately notice

that the coefficient for our covariate of interest, frontal white matter hyperintensity volume,

is negative and that the 95% credible interval (-0.201, -0.052) does not contain 0 as the

corresponding intervals did not in previous analyses.

Table 6.3: Posterior summaries for regression coefficients, β.

Coefficient Mean Median 95% CI

Gender 0.192 0.194 (0.046, 0.351)

Education 0.129 0.132 (0.044, 0.212)

Age -0.073 -0.073 (-0.144, -0.004)

Total Brain Vol. 0.038 0.037 (-0.030, 0.110)

Frontal WMH Vol. -0.125 -0.127 (-0.201, -0.052)

We then evaluated the fit of the model to the data using the posterior predictive model

checking methods discussed in Section 2.4. Figure 6.3 displays the histograms for the

observed responses to the Verbal Fluency A and Mattis Dementia Rating Scale E items along

with posterior predictive summaries. In each case, the model appeared to do a satisfactory

job of approximating the data as did the semiparametric bifactor model.

Content with the model’s ability to approximate the marginal distributions of the ob-
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(a) Verbal Fluency A (b) Mattis Dementia Rating Scale E

Figure 6.3: Histograms of the observed scores for the Verbal Fluency A and Mattis Dementia

Rating Scale E. The black points indicate the mean count across replicated datasets for each

grade. The black vertical segment indicates the interval from the 2.5% to 97.5% quantiles

across replicated datasets.

served responses well, we examined the model’s ability to replicated the dependence struc-

ture among the observed responses. Figure 6.4 presents the model’s ability to replicate the

rank correlations observed in the data at a global level. Both the correlation distance and

eigenvalue plots suggested that the semiparametric multivariate reduced-rank regression

model adequately represents the dependence structure in the data. Although we achieved

similarly good fit with the semiparametric latent variable model, we had to identify a suit-

able bifactor structure in order to achieve this type of fit. No such model search was

necessary in this case.

At the individual item level, we further checked the pairwise rank correlations. Figure 6.5

displays the pairwise correlation plots for Mattis Dementia Rating Scale J and Visual Span

Backwards. Not surprisingly, the model also did a good job of approximated the observed

pairwise rank correlations at the individual item level.
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(a) Correlation Distance (b) Eigenvalues

Figure 6.4: The left plot presents a scatterplot of dsld(C
obs, Crep,m) versus dsld(C

rep,m,

Crep,m
′
) for all replicated datasets. The grey line represents the 45 degree line. On the

right, a plot of top ten eigenvalues depicting the mean prediction (grey point) and 95%

prediction intervals (grey line segment) of the eigenvalues calculated using replicated data.

Eigenvalues computed from the observed data are denoted by a black “X”.

6.6 Discussion

In this chapter, we introduced an alternative to latent variable models for investigating the

association between multivariate mixed outcomes and covariates of interest. Our semipara-

metric multivariate regression model directly relates covariates to multivariate outcomes

using a reduced rank representation of the coefficient matrix. In particular, we used a rank-

one form that is the product of two vectors; one of these vectors may be viewed as a set of

regression coefficients between the covariates and a typical outcome and the other as a vector

that scales the typical response to each particular outcome. This simple structure facili-

tates interpretation and retains the same mean structure as the hierarchical semiparametric

latent variable model. As with the semiparametric latent variable model in Chapter 5, our
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(a) MDRS J (b) Visual Span Backwards

Figure 6.5: Pairwise correlation plots for Mattis Dementia Rating Scale J and Visual Span

Backwards. Each pairwise correlation plot depicts the mean posterior prediction (grey

point) and 95% posterior prediction intervals (grey line segment) for Kendall’s τ values

calculated using replicated data. Kendall’s τ values computed from the observed data are

denoted by a black “X”.

reduced rank regression model for mixed outcomes uses the extended rank likelihood so that

we may accommodate outcomes of arbitrary type.

A critical difference between the semiparametric latent variable model and the semipara-

metric multivariate regression model is that correlations of the latent responses underlying

the observed variables are directly estimated in the semiparametric multivariate regression

model estimation. In the semiparametric bifactor model, we must identify and impose a

secondary factor structure. However, the semiparametric bifactor model allows us to obtain

estimates of the primary factor scores for each individual. To the degree that practitioners

may be interested in these estimates, the latent variable estimates may be an important

feature of the semiparametric latent variable model.

We applied the semiparametric multivariate regression model to the SIVD study data.

We found that the model did fit the data well according to the posterior predictive model

checking methods. As in the previous chapters, we estimated a negative association be-
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tween the executive functioning indicators and the volume of frontal lobe white matter

hyperintensities.

A key assumption of the proposed model is a rank-one structure for coefficient matrix.

It is of course possible that a higher rank structure might be necessary to describe the

relationship between the outcomes and the covariates. In general, it would be valuable to

explore the effects of model misspecification in semiparametric multivariate regression and

gain a better understanding of how model misspecification may be detected.

Finally, we noticed in the case of the SIVD analysis that the model was particularly slow

to converge for all of the parameters. In the case where the regression coefficients are slow

to converge, it may be worth introducing an additional working parameter, an unidentified

intercept, in the parameter expanded estimation scheme to help reduce autocorrelation.

In the hierarchical semiparametric latent variable model in Section 5.4, we obtained better

mixing of the regression coefficient chains with the introduction of an unidentified intercept.

6.7 Postscript: Model Review

Beginning with Chapter 4 and continuing through this chapter, we considered three different

models for addressing the same question concerning the association between covariates and

multivariate outcomes of mixed type. Each of the three proposed models offers a means to

make inference on the relationship between covariates and a multivariate set of outcomes.

Figures 6.6, 6.7 and 6.8 present diagrams depicting the models, allowing us to visually dis-

tinguish them. In each plot, the circles represent latent variables and the squares represent

observed variables with solid borders corresponding to outcomes and dashed borders corre-

sponding to covariates. The one-sided solid arrows represent regression associations while

the two-sided dashed lines represent residual correlations.

With the IRT model for mixed outcomes in Chapter 4 (Figure 6.6), we take a paramet-

ric approach to modeling mixed outcomes whereas the subsequent models in Chapters 5

(Figure 6.7) and this chapter (Figure 6.8) adopt a semiparametric approach. In contrast to

the parametric approach in the IRT model for mixed outcomes, the semiparametric models

do not require the modeler to specify the appropriate type of distribution for each out-

come conditional on the latent variable. Moreover, if one does encounter additional types
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yi1 yi2 yi3 yi4 yi5 . . . yiJ

θi

xi3xi2xi1 . . . xiP

Figure 6.6: Diagram of the IRT Model for Mixed Outcomes. The circles represent latent

variables and the squares represent observed variables with solid borders corresponding

to outcomes and dashed borders corresponding to covariates. The one-sided solid arrows

represent regression coefficients.

of outcomes that we have not covered here, the semiparametric approach does not require

additional modeling and programming to accommodate these additional types of outcomes

whereas the parametric approach would.

Of course, there are situations where the application of the proposed IRT model for mixed

outcomes will have advantages. If we are interested in the parameters that describe the

different items such as the difficulty parameter, a location parameter that has no equivalent

in the semiparametric latent variable model, then the parametric approach may be preferred

or at a minimum may be more direct. Also, in using the semiparametric approach, we are

depending solely on the ranks of the data. As a result, we lose some information in that

small differences in the orderings of the data may not reflect possibly large differences on

the observed data scale. However, one advantage of this feature is that inference is invariant

to monotonic transformations of the data.

The IRT model for mixed outcomes and the semiparametric latent variable model rely



110

yi1 yi2 yi3 yi4 yi5 · · · yiJ

zi1 zi2 zi3 zi4 zi5 · · · ziJ

ηi1

xi3xi2xi1 · · · xiP

ηi2 ηiQ

Figure 6.7: Diagram of the Semiparametric Latent Variable Model with Bifactor Struc-

ture for Mixed Outcomes. The circles represent latent variables and the squares represent

observed variables with solid borders corresponding to outcomes and dashed borders corre-

sponding to covariates. The one-sided solid arrows represent regression coefficients.

on the latent variables to induce dependence among the outcomes. As with the standard

IRT model, we restrict the IRT model for mixed outcomes to a single latent variable model.

This limits the type of dependence structures that may be approximated by the model. For

the semiparametric latent variable model, we employ a bifactor structure to accommodate

residual correlations. This structure expands the types of dependence structures that may

be represented but also necessitates specification of the structure. The semiparametric

multivariate regression model (with rank one structure) meanwhile does not require any

search for a sufficient bifactor structure as it estimates the residual correlations directly.

In the semiparametric multivariate regression model, however, we must estimate every

element of the correlation matrix rather than rely on the parsimonious description that a

latent variable model affords. As the number of outcomes grows, the number of parameters
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yi1 yi2 yi3 yi4 yi5 · · · yiJ

zi1 zi2 zi3 zi4 zi5 · · · ziJ

xi3xi2xi1 · · · xiP

Figure 6.8: Diagram of the Semiparametric Multivariate Regression Model for Mixed Out-

comes. The circles represent latent variables and the squares represent observed variables

with solid borders corresponding to outcomes and dashed borders corresponding to covari-

ates. The one-sided solid arrows represent regression coefficients while the two-sided dashed

lines represent residual correlations.

to be estimated will greatly increase and the matrix inversions required in the estimation

procedure will further slow down estimation. In situations with a large number of outcomes,

the latent variable approach to multivariate modeling may be advantageous. Although we

limited the IRT model for mixed outcomes to a single latent variable, multidimensional

IRT models (Reckase, 2009) could be used to define a latent structure in a manner similar

to our approach for the semiparametric latent variable model to attempt to give a better

fit to the observed rank correlations. Finally, in some circumstances, the latent variable

estimates may be of value to practitioners who are interested in individual level parameters

summarizing a multivariate set of responses.

We demonstrated all three of the models on the SIVD study data, investigating the

association between executive functioning indicators and the volume of white matter hy-

perintensities in the frontal lobe. The mixed types of outcomes (e.g., binary, count, ordered

categorical, censored) in the data presented a challenge in applying more traditional meth-

ods to answer our substantiative question. Figure 6.9 displays posterior predictive check
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plots for each model of the marginal distributions. The top row of plots is for Verbal Fluency

A and the bottom row is for Mattis Dementia Rating Scale E. Although the IRT model did

not fair poorly, the semiparametric models did a better job of approximating the data.

(a) IRT (b) Semipar Single Fac-

tor

(c) Semipar Bifactor (d) Semipar MV Regr

(e) IRT (f) Semipar Single Factor (g) Semipar Bifactor (h) Semipar MV Regr

Figure 6.9: Histograms of the observed scores for the Verbal Fluency A (top row) and

Mattis Dementia Rating Scale E (bottom row) by model. The black points indicate the

mean count across replicated datasets for each score. The black vertical segment indicates

the interval from the 2.5% to 97.5% quantiles across replicated datasets.

In assessing the fit of the different models, we also focused on each model’s ability

to replicate the rank correlations observed in the data. Figure 6.10 displays plots of the

correlation distance and eigenvalue posterior predictive model checks for fit of all models to

the SIVD data. Models with a single latent variable applied in Chapters 4 and 5 did a poor

job of replicating the rank correlations observed in the data. The discrepancy in model fit

disappeared with the semiparametric bifactor model used in Chapter 5 once we identified a

suitable secondary factor structure. Meanwhile, the semiparametric multivariate regression

model replicated the dependence structure of the data well on our initial attempt.

In analyzing data from the SIVD study, all three of the models came to the same

conclusion, suggesting a negative relationship between the executive functioning indicators
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(a) IRT (b) Semipar Single Fac-

tor

(c) Semipar Bifactor (d) Semipar MV Regr

(e) IRT (f) Semipar Single Factor (g) Semipar Bifactor (h) Semipar MV Regr

Figure 6.10: Correlation distance and eigenvalue plots for the IRT model, the single factor

and bifactor semiparametric latent variable models, and the semiparametric multivariate

regression model. The top row of plots present scatterplots of dsld(C
obs, Crep,m) versus

dsld(C
rep,m, Crep,m

′
) for all replicated datasets. The grey line represents the 45 degree

line. The bottom row of plots display the mean posterior prediction (grey point) and 95%

posterior prediction intervals (grey line segment) of the largest ten eigenvalues calculated

using replicated data. Eigenvalues computed from the observed data are denoted by a black

“X”.

and the volume of frontal lobe white matter hyperintensities after controlling for age, sex,

education and total brain volume. All three models, however, took different approaches to

analyzing the data, resulting in different fits of the model to the data. As highlighted above,

each approach has different strengths and weaknesses and, as is often the case when choosing

an appropriate statistical method, the substantive context may dictate which method may
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be most appropriate.
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Chapter 7

SEMIPARAMETRIC CORRELATED BAYESIAN PARTIAL
MEMBERSHIP MODEL

7.1 Introduction

Mixture models provide a model-based approach to clustering. Population-level mixture

models describe a population as a collection of subpopulations where each observational

unit belongs exclusively to one of the subpopulations. Individual-level mixture models, on

the other hand, allow each observational unit to belong to multiple subpopulations at once,

with varying degrees of membership among individuals. Individual-level mixture models

can be viewed as a relaxation of population-level mixtures such as finite mixture or latent

class models. It is important to note that degree of membership is conceptually different

from uncertainty regarding membership.

The common example for an individual-level model is the genetic composition of indi-

viduals. Individuals may originate from a multitude of ancestries and their varying degree

of membership to these ancestries may be reflected in their genetic traits. A common

form of individual-level mixture model is the mixed membership (MM) model. MM models

such as the Grade of Membership (GoM) and latent Dirichlet allocation (LDA) have been

used to characterize subpatterns of disease and disability (Woodbury et al., 1978; Erosheva,

Fienberg, and Joutard, 2007), classify documents as mixtures of topics (Blei et al., 2003),

describe voters using Irish election data (Gormley and Murphy, 2009), determine the sec-

tor composition of stocks (Doyle and Elkan, 2009), and apply network analysis to social

networks and protein interaction networks (Airoldi, Blei, Fienberg, and Xing, 2008).

Beyond MM models, there have been many related efforts in machine learning under

the category of fuzzy or soft clustering. Fuzzy k-means is one popular soft clustering

method (Bezdek, 1981). Within model-based clustering, the Bayesian partial membership

(BPM) model, introduced by Heller et al. (2008), is another recently developed class of
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individual-level mixture models. In this chapter, we focus on the BPM model. Heller et al.

(2008) applied the model to binary data. In this chapter, we focus on the case of normally

distributed data and extend the BPM model to accommodate more flexible correlation

structures among class memberships and mixed outcomes.

The BPM model in its proposed form and MM models in general employ a Dirich-

let distribution for the class memberships, assuming a near independence structure among

class memberships. In cases where class memberships may be correlated, it may be more

appropriate to explicitly model the correlations among classes. To allow for more flexible

correlations among class or subpopulation memberships, we use the logistic normal dis-

tribution proposed by Blei and Lafferty (2007) for mixed membership topic models. The

ability to model correlation among class memberships could be useful for cognitive testing

data where increasing membership in a group typified by individuals with a deficit in one

cognitive area could be associated with an increase in membership in another group typified

by individuals with a deficit in a different cognitive area.

As in Chapters 5 and 6, we apply the extended rank likelihood method (Hoff, 2007) to

accommodate mixed type data. The BPM and MM models can model mixed outcomes using

a parametric approach that specifies different exponential family distributions appropriate

for each outcome type. Similarly to other chapters in this dissertation, we however take

the semiparametric approach so as to avoid specifying a distribution for each outcome.

Although Heller et al. (2008) formulated the BPM model with the capability to handle mixed

data, they only use binary data in their examples. Previously, Jorgensen and Hunt (1996)

proposed finite mixture models for categorical and continuous data. Banerjee, Merugu,

Dhillont, and Ghosh (2004) developed methods for soft clustering with mixed data by

relying on Bregman divergences. The general MM framework described in Erosheva (2002)

also allows for different types of outcomes.

In Section 7.2, we present the BPM model and, in Section 7.3, we compare it to the

MM model. We detail our extensions to the BPM model in Section 7.4. Section 7.4 also

describes the estimation procedure for our extended BPM model. We demonstrate the

extended BPM model on simulated data in Section 7.5. Finally, we use the extended BPM

model to analyze two datasets, NBA player statistics from the 2010-11 season (Section 7.6)
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and the SIVD study data described earlier (Section 7.7).

7.2 The Bayesian Partial Membership Model

To best understand the BPM model, we follow the exposition of Heller et al. (2008) and

first consider a standard finite mixture model. Let yi be a vector of p outcomes for the ith

observational unit. Let K denote the number of classes or mixture components, let pk(·)

specify the density particular to class k and let ψk specify the parameters characterizing

pk(·) for class k. The probability density for yi, given a collection of parameters Ψ =

(ψ1, . . . ,ψK) for all K classes and given the latent class membership indicator πik for class

k and individual i, is

p(yi|Ψ,πi) =

K∑
k

πikpk(yi|ψk) (7.1)

where πik ∈ {0, 1},
∑

k πik = 1. For the MM model, one replaces πik with a membership

score gik. Instead of being restricted to {0, 1}, the membership score gik is allowed to range

continuously between 0 and 1 but is subject to the constraint
∑

k gik = 1. Note that neither

πik nor gik are observed. Furthermore MM models employ the additional assumption that,

conditional on the membership vector g, the observations are independent so that

p(yi|Ψ,gi) =

J∏
j

K∑
k

gikpjk(yij |ψjk). (7.2)

MM models have most commonly been applied to binary and ordinal categorical data (Ero-

sheva, 2002).

An alternative means of specifying (7.1) is through the product of the densities,

p(yi|Ψ,π) =
K∏
k

pk(yi|ψk)πk . (7.3)

Heller et al. (2008) use this formulation to specify the BPM model. In their formulation,

p(yi|Ψ,g) =
1

c

K∏
k

pk(yi|ψk)gk (7.4)

where again gk ∈ [0, 1] and c is a normalizing constant.
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Heller et al. (2008) focus on the case where pk is an exponential family density (denoted

Exp(·)),

pk(yi|ψk) = Exp(ψk). (7.5)

Here, ψk denotes the natural parameters for the particular exponential family distribution.

If one substitutes this expression into (7.4), one sees that

p(yi|Ψ,g) = Exp

(∑
k

gkψk

)
. (7.6)

Thus yi is distributed according to the same exponential family distribution as the classes

but with natural parameters that are a convex combination of the natural parameters of the

different classes. The use of exponential family distributions allows one to model a variety

of outcome types.

Beyond the difference in formulation, an additional difference between the MM and

BPM models lies in the model assumptions. Whereas the MM model assumes the outcomes

are conditionally independent given the class memberships, the BPM model makes no such

assumption.

Heller et al. (2008) complete specification of the BPM model with the following hierar-

chical model. Let α be a K-dimensional vector of hyperparameters. Mixture weights are

drawn from a Dirichlet distribution

ρ ∼ Dir(α). (7.7)

Individual weights are then drawn from a Dirichlet distribution as well

gi ∼ Dir(aρ) (7.8)

where a is a positive scale parameter for which they specify an exponential prior distribution.

They specify a conjugate prior for the natural parameters for each class such that

ψk ∼ Conj(λ,ν). (7.9)

Finally the observations are distributed according to (7.6).



119

Although this model may seem very different in aim from the latent variable models

in the previous chapters, the similarities become more apparent if one considers the rela-

tionship between latent class models and continuous latent variable models (Heinen, 1996;

Bartholomew et al., 2011). Similarly to Erosheva (2002), who compared the Grade of Mem-

bership model and factor analysis models, we consider a factor analysis model with K − 1

factors, ηi, so that

yij ∼ N
(
µj + λTj ηi, σ

2
j

)
. (7.10)

If the factors ηi are restricted so that
∑

k ηik ≤ 1, define the K-length vectors gi =(
ηi1, . . . , ηi(K−1), 1−

∑
k ηik

)
and mj =

(
λi1 + µj , . . . , λi(K−1) + µj , µj

)
. These definitions

lead to the following restatement:

yij ∼ N
(
mT
j gi, σ

2
j

)
(7.11)

which is the BPM model for normally distributed data with class-specific means and a

common variance. Thus, the BPM model may be thought of as a type of factor analysis

where the factor scores are constrained.

7.3 Comparison of Partial Membership and Mixed Membership Structures

In this section, we contrast the BPM model with the MM model. Although the BPM

model is very similar in spirit to the MM model, the differences in formulation and model

assumptions can be observed in data generated by two individual-level mixture models.

First, as in Heller et al. (2008), we compare the data generated by each model when the

class densities are Gaussian. Following that, we study the model differences when the data

are binary, comparing the probability of a success under each model and how the differences

in the probability of a success vary for different class memberships.

Consider the simple scenario of two outcomes and three classes where the outcomes for

each class are normally distributed. Initially, we fixed the variance to be common across all

three classes, 4 for the first outcome and 25 for the second. We specified the means presented

in Table 7.1 for each class. We then generated 1000 random membership vectors from a

Dirichlet (aρ) distribution with a = 1 and ρ = (1/3, 1/3, 1/3). Using these membership
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Table 7.1: Means by class for outcomes 1 and 2.

Class

Outcome 1 2 3

1 10 25 40

2 25 40 10

scores, we simulated 1000 bivariate outcomes. The results are depicted in Figure 7.1. The

left plot shows the MM model and the center plot displays the corresponding BPM model

with a diagonal covariance matrix (that is, local independence was assumed as in the case

of the MM model), Σ =

4 0

0 25

. The right plot shows BPM model results with a full

covariance matrix where the variances of the outcomes are the same as the previous two

cases but the correlation between the outcomes was set to 0.4 so that Σ =

4 4

4 25

.

In Figure 7.1, the MM model under the parameter values appears to generate points in

three columns. Looking more closely, each column can be divided horizontally into three

parts corresponding to the means for each class for yi2. Dividing the columns in this manner

produces K2 = 9 clusters of points, consistent with the equivalent latent class representation

described by Erosheva (2002). The BPM model, in both the diagonal and full covariance

matrix cases, generates points in a more cloud-like structure. One can see that the BPM

model with the full covariance matrix generates a set of points that is “tilted”, albeit slightly,

as compared to the set generated by the BPM model with a diagonal covariance matrix.

By varying the values of a, we can further compare the models. If we set a = 10,

the membership scores will fluctuate more closely around 1/3 than a = 1. Figure 7.2

presents 1000 generated datapoints with membership scores generated from a Dirichlet

(aρ) distribution with a = 10 and ρ = (1/3, 1/3, 1/3). In the case of the MM model, the 32

clusters become slightly more apparent while the data generated by the BPM models reduce

to single clusters with less variation. If we set a = 1/10, the membership scores tend to be
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Figure 7.1: Simulated data according to different individual-level mixture model formula-

tions. The green points represent the class centers and the green ellipse represents a 1SD

contour. Left: MM. Center: BPM with diagonal covariance matrix. Right: BPM with full

covariance matrix.

closer to the extremes 0 or 1. Figure 7.3 presents the simulated data from each model with

this set of membership scores. The three plots now appear largely similar. The primary

differences are that the set of points generated by the BPM model with full covariance

matrix is “tilted” as compared to the other two and that the MM model appears to show

greater variation in points on the periphery.

We subsequently set class-specific variances (and correlations in the case of the full

covariance BPM) and again generated points from each individual-level mixture model.

The class specific variances are listed in Table 7.2. For the BPM model with full covariance

matrix, the correlations by class were set to 0.4, -0.4, and 0.7. Figure 7.4 presents the data

generated by these models. The sets of points generated by the MM and BPM model with

diagonal covariance appear rectangular in shape. The set of points from the BPM model

with diagonal covariance is more densely populated in the center while one can faintly make
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Figure 7.2: Simulated data according to different individual-level mixture model formula-

tions with membership scores generated using scale parameter a = 10. Left: MM. Center:

BPM with diagonal covariance matrix. Right: BPM with full covariance matrix.

Table 7.2: Variances by class for outcomes 1 and 2.

Class

Outcome 1 2 3

1 4 25 9

2 36 1 4

the clusters in the set of points generated by the MM model. The BPM model with full

covariance matrices on the other hand is more triangular in structure.

Figures 7.5 and 7.6 provide the corresponding plots for membership vectors generated

by a = 10 and a = 1/10 respectively. With a = 10, we again see the greater concentration

of points into a single cluster for the BPM models while the different clusters become a
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Figure 7.3: Simulated data according to different individual-level mixture model formula-

tions with membership scores generated using scale parameter a = 1/10. Left: MM. Center:

BPM with diagonal covariance matrix. Right: BPM with full covariance matrix.

little more apparent for the MM Model. In the case of a = 1/10, the MM and BPM with

diagonal covariance models again appear very similar. The full covariance BPM model

however displays a triangular boundary with an empty center.

To provide further explication of the similarities and the differences between the MM and

BPM models, we consider a single binary outcome, X ∈ {0, 1}, for an arbitrary individual

with membership vector g = (g1, . . . , gk, . . . , gK) assuming K classes. Assume that each

extreme profile outcome is generated by a Bernoulli distribution with the probability of

success, pk, different for each class. Under the MM model we have,

p(x|g) =
∑
k

gkp
x
k(1− pk)1−x, (7.12)

so that

p(0|g) =
∑
k

gk(1− pk) (7.13)
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Figure 7.4: Simulated data according to different individual-level mixture model formula-

tions. The green points represent the class centers and the green ellipse represents a 1SD

contour. Left: MM. Center: BPM with diagonal covariance matrix. Right: BPM with full

covariance matrix.

p(1|g) =
∑
k

gkpk. (7.14)

Thus we see that the probability mass function for a binary outcome under the MM model

can be expressed as that of a Bernoulli where the probability of success is a convex combi-

nation/weighted arithmetic mean of the class parameters,

p(x|g) =

(∑
k

gkpk

)x(∑
k

gk(1− pk)

)1−x

. (7.15)

Under the partial membership model, we have

p(x|g) =
1

c

∏
k

[
pxk(1− pk)1−x]gk

=
1

c

∏
k

[pxk]gk
∏
k

[
(1− pk)1−x]gk

=
1

c

∏
k

[
pgkk
]x∏

k

[(1− pk)gk ]1−x
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Figure 7.5: Simulated data according to different individual-level mixture model formula-

tions with membership scores generated with scale parameter a = 10. Left: MM. Center:

BPM with diagonal covariance matrix. Right: BPM with full covariance matrix.

=
1

c

(∏
k

pgkk

)x(∏
k

(1− pk)gk
)1−x

.

Notice that the first product term is essentially the weighted geometric mean of the class

probabilities of success. To figure out the normalizing constant c,∑
x

p(x) = p(0) + p(1)

=
1

c

∏
k

(1− pk)gk +
1

c

∏
k

pgkk = 1

c =
∏
k

pgkk +
∏
k

(1− pk)gk .

Thus

p(x|g) =

( ∏
k p

gk
k∏

k p
gk
k +

∏
k(1− pk)gk

)x( ∏
k(1− pk)gk∏

k p
gk
k +

∏
k(1− pk)gk

)1−x
. (7.16)

Under the partial membership, x|g also has a Bernoulli distribution but where the probabil-

ity of success is related to the weighted geometric mean of the class probabilities of success
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Figure 7.6: Simulated data according to different individual-level mixture model formula-

tions with membership scores generated with scale parameter a = 1/10. Left: MM. Center:

BPM with diagonal covariance matrix. Right: BPM with full covariance matrix.

as opposed to the weighted arithmetic mean.

We now look at various examples to understand how the probability of success for x|g

differs between the two models. We set K = 3 classes. In Table 7.3, we see that when

the class probabilities are relatively close together there is little difference between the two

models.

However, in Table 7.4, when the class probabilities have much more spread, the differ-

ences between the two models are more noticeable.

Next, as in Erosheva (2005), consider a 2 × 2 table where X1 and X2 denote binary

outcomes. The table has been normalized so that the sum of the cell entries plm = P (X1 =

l,X2 = m), l,m = 1, 2, add up to one. Let λ1 = p11 + p12 = P (X1 = 1), λ2 = p11 + p21 =

P (X2 = 1) denote the corresponding marginal probabilities of positive responses. See

Table 7.5. Further, set K = 2 classes with the grade of membership in the first of the two

classes denoted by g and membership in the second quantified by 1 − g. Let λ1
1 and λ2

1

denote the marginal probabilities for X1 for classes 1 and 2 respectively. We use similar
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Table 7.3: For K = 3 and (p1 = .4, p2 = .5, p3 = .6), we calculate the Bernoulli probability

of a success for x|g under the mixed membership model (pmm) and the partial membership

model (ppm) for varying g.

g pmm ppm

1 (0.34,0.21,0.46) 0.5122 0.5124

2 (0.23,0.43,0.34) 0.5109 0.5111

3 (0.52,0.37,0.11) 0.4596 0.4591

4 (0.08,0.85,0.07) 0.4987 0.4987

5 (0.29,0.19,0.52) 0.5235 0.5238

6 (0.27,0.45,0.28) 0.5013 0.5013

7 (0.57,0.37,0.06) 0.4488 0.4483

8 (0.41,0.45,0.15) 0.4739 0.4736

9 (0.51,0.11,0.38) 0.4867 0.4865

10 (0.33,0.4,0.26) 0.4928 0.4928

notation for the marginals for X2. Under local independence, we have

p11 · p22 = p12 · p21. (7.17)

For the mixed membership model, we then have

λ1(g) = g · λ1
1 + (1− g) · λ2

1 (7.18)

λ2(g) = g · λ1
2 + (1− g) · λ2

2 (7.19)

for the marginal probabilities conditional on g and

p12(g) =
(
gλ1

1 + (1− g)λ2
1

)
·
(
g(1− λ1

2) + (1− g)(1− λ2
2)
)

(7.20)

p21(g) =
(
g(1− λ1

1) + (1− g)(1− λ2
1)
)
·
(
gλ1

2 + (1− g)λ2
2

)
(7.21)

p22(g) =
(
g(1− λ1

1) + (1− g)(1− λ2
1)
)
·
(
g(1− λ1

2) + (1− g)(1− λ2
2)
)

(7.22)
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Table 7.4: For K = 3 and (p1 = .02, p2 = .15, p3 = .90), we calculate the Bernoulli

probability of a success for x|g under the mixed membership model (pmm) and the partial

membership model (ppm) for varying g.

g pmm ppm

1 (0.34,0.21,0.46) 0.4497 0.341

2 (0.23,0.43,0.34) 0.3761 0.2906

3 (0.52,0.37,0.11) 0.1673 0.0826

4 (0.08,0.85,0.07) 0.1908 0.1624

5 (0.29,0.19,0.52) 0.5028 0.4241

6 (0.27,0.45,0.28) 0.3249 0.2296

7 (0.57,0.37,0.06) 0.1192 0.0609

8 (0.41,0.45,0.15) 0.2062 0.1151

9 (0.51,0.11,0.38) 0.3681 0.2061

10 (0.33,0.4,0.26) 0.3039 0.1944

Table 7.5: Notation for cell and marginal probabilities for two binary variables, X1 and X2.

X2

X1

p11 p12 λ1

p21 p22 1− λ1

λ2 1− λ2 1

for the cell probabilities conditional on g.

We now compare these results with the corresponding results from the partial member-

ship models of Heller et al. (2008). The marginal probabilities conditional on g take the
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form,

λ1(g) =
1

c1
(λ1

1)g(λ2
1)(1−g) (7.23)

=

(
λ1

1

c1

)g (
λ2

1

c1

)(1−g)
(7.24)

λ2(g) =
1

c2
(λ1

2)g(λ2
2)(1−g) (7.25)

=

(
λ1

2

c2

)g (
λ2

2

c2

)(1−g)
(7.26)

and the cell probabilities under the local independence assumption are

p12(g) =
1

c1
(λ1

1)g(λ2
1)(1−g) 1

c2
(1− λ1

2)g(1− λ2
2)(1−g) (7.27)

=

(
λ1

1(1− λ1
2)

c1c2

)g (
λ2

1(1− λ2
2)

c1c2

)(1−g)
(7.28)

p21(g) =
1

c1
(1− λ1

1)g(1− λ2
1)(1−g) 1

c2
(λ1

2)g(λ2
2)(1−g) (7.29)

=

(
(1− λ1

1)λ1
2

c1c2

)g (
(1− λ2

1)λ2
2

c1c2

)(1−g)
(7.30)

p22(g) =
1

c1
(1− λ1

1)g(1− λ2
1)(1−g) 1

c2
(1− λ1

2)g(1− λ2
2)(1−g) (7.31)

=

(
(1− λ1

1)(1− λ1
2)

c1c2

)g (
(1− λ2

1)(1− λ2
2)

c1c2

)(1−g)
. (7.32)

We plotted the marginal probabilities for different λ while varying g from 0 to 1. We

started with the λ1
1 = 0.1, λ2

1 = 0.8, λ1
2 = 0.3, λ2

2 = 0.6, the values used in Erosheva (2005),

and reduced λ1
1 to 0 and increased λ2

2 to 1 while holding λ2
1, λ

1
2 constant. Table 7.6 presents

the λ values used to generate the marginal probability plots.

Figure 7.7 presents the marginal probability plots for these scenarios with Scenario 1 on

the far left and Scenario 5 on the far right. The green points are the BPM values for λ1 and

λ2 for varying values of g whereas the red points are the corresponding values for the MM

model. For Scenario 1, we see that the BPM points produce a nonlinear path but, for these

values of the λ’s, appears to reasonably approximate the MM model. As λ11 decreased and

λ22 increased over the scenarios, the paths of points increasingly diverge. For scenario 5, the

BPM model produces points that take only three pairs of values, sitting at corner values.

At g = 0 and g = 1, the BPM produces λ values equivalent to the MM model. For values
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Scenario λ1
1 λ2

1 λ1
2 λ2

2

1 0.1 0.8 0.3 0.6

2 0.05 0.8 0.3 0.95

3 0.01 0.8 0.3 0.99

4 0.001 0.8 0.3 0.999

5 0 0.8 0.3 1

Table 7.6: λ values used to generate marginal probability plots in Figure 7.7.

Figure 7.7: Marginal Probability Plots for Scenarios 1-5 in Table 7.6. Scenario 1 is the

leftmost plot and Scenario 5 is the rightmost.

of g where 0 < g < 1 in scenario 5, λ1 = 0 and λ2 = 1 under the BPM model. In scenarios

where one of the class conditional response probabilities equals 1, any partial membership

in the class implies that that individual’s probability for that outcome must be 1. Similarly,

when one of the class conditional response probabilities equals 0, any partial membership

in that class implies that the probability for that outcome must be 0. We do not observe

this property in the mixed membership model. Moreover, as one of the class probabilities
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decreases to 0 or increases to 1, the marginal probabilities under the BPM and MM models

increasingly diverge and shown in Figure 7.7.

In this section, we compared the behavior of the MM and BPM models for continuous

and discrete distributions. In the case of the continuous distributions, we saw that for

certain parameter values the MM model generates a very distinct pattern of clustered data.

In the case of binary data, we saw that for class probabilities close to 0 or 1 the BPM model

would exhibit its own distinct behavior. It may be helpful to keep these distinctions in mind

when considering these models for different applications.

7.4 Semiparametric Correlated Bayesian Partial Membership Model: Deriva-
tion and Estimation Algorithms

We extend the BPM model in two ways. First, one limitation of this model is its inability to

flexibly accommodate correlations among an observational unit’s membership in the classes.

The Dirichlet prior induces a small negative correlation among the class memberships in

individuals. Blei and Lafferty (2007) addressed this shortcoming in mixed membership topic

models by replacing the Dirichlet prior for individual membership scores with a logistic nor-

mal prior. Under this model, draws from the multivariate normal prior are then transformed

to map to the probability simplex so that the values are positive and constrained to add to

1,

ηgi ∼ N (ρ,Σ) , (7.33)

gik =
exp(ηgik)∑
l exp(ηgil)

. (7.34)

Because of the constraints that
∑

k gik = 1, we fix the Kth element of ηgi to 0 so that

the vector contains only K − 1 free elements and ρ and Σ have dimension K − 1 and

(K − 1) × (K − 1) respectively. Atchison and Shen (1980) discuss properties and uses of

the logistic normal, including a comparison with the Dirichlet distribution. They suggest

that the logistic normal can suitably approximate the Dirichlet distribution so that little,

if anything, would be lost if we applied the logistic normal in cases where a Dirichlet prior

would be appropriate.

Secondly, while the use of exponential family distributions in the BPM model allows for
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great flexibility in the modeling of outcomes, the need to choose the parametric distributions

appropriate for different outcomes can be a nuisance and may lead to model misspecification

as has been discussed in Chapters 4-6. To be able to handle non-nominal outcomes of an

arbitrary type, we again turn to the extended rank likelihood method introduced by Hoff

(2007). As has been discussed in previous chapters, multivariate sets of mixed outcomes are

pervasive and a method to accommodate mixed outcomes requiring little specification on

the part of the practitioner is useful, particularly in the case of the BPM when the focus is

on the membership scores, the number of classes, or differences between the classes. With

these modifications to the original BPM, we propose a semiparametric correlated partial

membership model.

To formalize the model, consider a multivariate set of p outcomes for n observational

units with each outcome denoted as before by yij , i = 1, . . . , n, j = 1, . . . , p. Initially, we

focus on a model where the variance of the latent responses does not vary by class and the

outcomes are conditionally independent given the class memberships and the class-specific

means. Incorporating the modifications proposed above, the semiparametric correlated

BPM is constructed as follows,

yij = hj(zij), (7.35)

zij |µj ,gi ∼ N
(
gTi µj , 1

)
, (7.36)

gik =
exp(ηgik)∑
l exp(ηgil)

, (7.37)

ηgi ∼ N (ρ,Σ) , (7.38)

ρ ∼ N (mρ,Sρ) , (7.39)

Σ ∼ Inv. Wish(νΣ,SΣ), (7.40)

µj ∼ N(mµ,Sµ), (7.41)

where hj(·) is an unspecified monotone transformation, µj = (µ1j , . . . , µjK) are class specific

mean parameters and gi = (gi1, . . . , giK). Here, ηgi = (ηgi1 , . . . , ηgi(K−1)
) is a vector of

membership scores prior to transformation, ρ = (ρ1, . . . , ρK−1) is vector representing the

mean membership scores prior to transformation, and Σ is a (K − 1)× (K − 1) covariance

matrix for pre-transformation membership scores. Again, we designate ηgi as length K − 1
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instead of length K as ηiK is set to 0 to ensure identifiability.

Equation (7.37) defines the transformation of the multivariate normal membership scores

ηgi for individual i to the constrained vector gi. Equations (7.38) and (7.41) define the priors

for ηgi and µj while equations (7.39) and (7.40) define hyperpriors for the parameters in

equation (7.38).

Note that the variance in equation (7.36) is set to 1. As discussed in Chapter 5, the

latent responses do not have a fixed location or scale. As a result, we fix the variance of

the latent responses conditional on G and µj for each outcome to 1. Similarly, we must

fix the location in some manner. We elect to fix the class-specific means for the 1st class,

µj1 = 0, j = 1, . . . , p.

Estimates of M are on the latent response scale and cannot be directly translated to

the observed data scale. The vector µj does impart information about the ordering of the

class-specific means on the observed data scale. If we define the class-specific mean on the

observed data scale for outcome j and class k as E[yij |gik = 1], we could use the posterior

predictive distribution to estimate this quantity. Specifically, to estimate means for class k,

we make posterior predictions for the case where gik = 1, gil = 0 for l 6= k. We make these

predictions for each MCMC draw of parameter values and average over the predictions. To

make posterior predictions from the semiparametric correlated partial membership model,

we rely on a similar procedure to that discussed in Section 5.2.

7.4.1 Estimation of Correlated Partial Membership Model for Normally Distributed Out-

comes

Before covering estimation of the semiparametric correlated partial membership model, we

first examine the case of the correlated partial membership model for normally distributed

outcomes with all class variances set to 1. Let Ω = {mρ,Sρ, νΣ,SΣ,mµ,Sµ} denote all

hyperparameters in the BPM and let Θ denote all parameters for which we we would like

to approximate posterior distributions. The joint log probability of Y and Θ conditional
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upon Ω,Σ is

p (Y,Θ|Ω,Σ) =
∏
i

∏
j

(2π)−1/2 exp

−1

2

(
yij −

∑
k

gikµjk

)2
 (7.42)

·
∏
i

[
(2π)−(K−1)/2 |Σ|−1/2 exp

(
−1

2

(
ηgi − ρ

)T
Σ−1

(
ηgi − ρ

))]
(7.43)

·
∏
j

∏
k

(
2πs2

µjk

)−1/2
exp

(
− 1

2s2
µjk

(
µjk −mµjk

)2)
(7.44)

·
∏
k

(
2πs2

ρk

)−1/2
exp

(
− 1

2s2
ρk

(ρk −mρk)2

)
. (7.45)

As Heller et al. (2008) noted, all of the parameters in Θ are continuous and moreover

we may take the derivatives of the log of the above probability expression. As a result, the

problem of Bayesian estimation for this model lends itself to Hybrid (Hamiltonian) Monte

Carlo (HMC). HMC uses the derivative of the log joint probability to inform its proposals.

As a result, in high dimensions, this algorithm may outperform more traditional algorithms

such as MH or Gibbs sampling. For a thorough introduction to HMC, see Section 2.2 and

Neal (2010).

We do not rely on HMC to draw Σ but rather draw Σ in a separate Gibbs step for the

correlated partial membership model. Thus to sample (Θ,Σ), we apply a Gibbs sampling

algorithm where the first step involves sampling Θ via HMC and then Σ from its full

conditional distribution.

The log joint probability density of which we will take derivatives is

log p (Y,Θ|Ω,Σ) =
∑
i

∑
j

−1

2
log (2π)− 1

2

(
yij −

∑
k

gikµjk

)2
 (7.46)

+
∑
i

[
−K − 1

2
log (2π)− 1

2
log |Σ| − 1

2

(
ηgi − ρ

)T
Σ−1

(
ηgi − ρ

)]
(7.47)

+
∑
j

∑
k

[
−1

2
log
(

2πs2
µjk

)
− 1

2s2
µjk

(
µjk −mµjk

)2]
(7.48)

+
∑
k

[
−1

2
log (2π)− 1

2
log s2

ρk
− 1

2s2
ρk

(ρk −mρk)2

]
. (7.49)
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The derivative of the log joint probability with respect to µjk remains the same as above,

d log p

dµjk
=
∑
i

(
yij −

∑
l

gilµjl

)
gik − s−2

µjk

(
µjk −mµjk

)
. (7.50)

The derivative of the log joint probability with respect to ηgik is

d log p

dηgik
=
∑
j

(
yij −

∑
l

gilµjl

)∑
l

µjl
dgil
dηgik

−
(
Σ−1

(
ηgi − ρ

))
k

(7.51)

where
(
Σ−1

(
ηgi − ρ

))
k

is the k-th element of the vector Σ−1
(
ηgi − ρ

)
. Finally, the deriva-

tive of the log joint probability with respect to ρk is

d log p

dηρk
=

(∑
i

Σ−1
(
ηgi − ρ

))
k

− s−2
ρk

(ρk −mρk) (7.52)

where, as above, the subscript k outside the parentheses denotes k-th element of the vector

of values, Σ−1
(
ηgi − ρ

)
.

7.4.2 Estimation of Semiparametric Correlated Partial Membership Model

To make posterior draws from the semiparametric Bayesian partial membership model, we

use a Gibbs sampling algorithm with three steps. Because the extended rank likelihood

Pr (Z ∈ D(Y)|G,M,ρ,Σ) involves a complicated integral, any expressions involving the

extended rank likelihood will be difficult to compute. We avoid having to compute this

integral by drawing from the joint posterior of (Z,G,M,ρ,Σ) via Gibbs sampling. Given

Z = z and Z ∈ D(Y), the full conditional density of G,M,ρ can be written as

p (G,M,ρ|Σ,Z = z,Z ∈ D(Y)) = p (G,M,ρ|Σ,Z = z)

because the current draw values Z = z imply Z ∈ D(Y). A similar simplification may be

made with the full conditional density of Σ. Given Σ,G,M,ρ,Z ∈ D(Y) and Z(−i)(−j),

the full conditional density of zij is proportional to a normal density with mean µTj gi and

variance 1 that is restricted to the region specified by D(Y).

Our Gibbs sampling algorithm with the HMC step proceeds as follows:
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1. Draw underlying latent response Z. For each i and j, sample zij from p(zij |G,M,

ρ,Σ,Z(−i)(−j),Z ∈ D(Y)). More specifically,

z
(m)
ij ∼ TN(zl,zu)(µ

T
j gi, 1) (7.53)

where TN denotes truncated normal and zl, zu define the lower and upper truncation

points,

zl = max{zkj : ykj < yij} (7.54)

zu = min{zkj : ykj > yij}. (7.55)

2. Draw jointly class memberships, class means, membership means G,M,ρ.

In this step, we jointly sample G,M,ρ from p (G,M,ρ|Σ,Z,Ω) using HMC. To do

so, we use the log joint probability in equation (7.46) and the derivatives in equa-

tions (7.50), (7.51) and (7.52), replacing yij with zij .

3. Draw membership correlation matrix Σ. Sample from p (Σ|Z,G,M,ρ,Ω).

Σ ∼ Inv. Wishart
(
νΣ + n, SΣ +

(
HG − 1nρ

T
)T (

HG − 1nρ
T
))

(7.56)

where HG is an n× (K − 1) matrix with rows ηgi .

7.5 A Simulated Data Example

To test the semiparametric correlated partial membership model, we simulated parameters

and data according to the model in equations (7.35)-(7.41) and subsequently fit the model

to the simulated data. The only exceptions were the class mean and the population mem-

bership mean parameters which we manually set to well-dispersed values. We generated

data for 400 individuals, 3 classes and 30 outcomes. For each outcome, we drew a random

number of thresholds for each outcome that we used to discretize the latent responses into

the “observed” ordinal responses. Table 7.7 displays summary statistics for the simulated

individual class memberships. In each class, individuals have a wide range of membership.

Class 1 is the dominant class, with the largest value for all quantities presented.
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Table 7.7: Summary of simulated class memberships.

Class 1 Class 2 Class 3

Mean 0.50343 0.29715 0.19942

Min 0.00044 0.00002 0.00042

1st Quartile 0.16749 0.03295 0.04661

Median 0.49960 0.17812 0.13424

3rd Quartile 0.84707 0.51746 0.28839

Max 0.99906 0.99521 0.88146

To fit the model, we drew 200,000 MCMC samples of the parameters, keeping every

50th draw. We discarded the first quarter of these retained samples as burn-in, resulting

in 3,000 samples from the posterior distribution. We examined trace plots and used the

Geweke (Geweke, 1992) and Raftery-Lewis (Raftery and Lewis, 1995) diagnostic tests to

assess convergence. Figure 7.8 displays trace plots for the membership scores for a randomly

selected individual and the class means for a random selected outcome. For each plot, the

true value is displayed as the solid red line while the blue solid line represents the posterior

mean and the blue dashed lines are the 2.5% and 97.5% posterior quantiles. In each case,

we do not see any evidence of a lack of convergence and the data-generating parameters

appear to be recovered.

Tables 7.8, 7.9 and 7.10 present summaries of the posterior distributions for M, ρ, and

Σ. Recall that the class means for the first class are restricted to 0 so only two columns are

displayed. In general, one can see that the posterior means and medians are close to the

data-generating values. The 95% posterior credible intervals contained the truth in 93.3%

of the cases.

Based on the results summarized in Tables 7.9 and Tables 7.10, the model also recovers

the untransformed population mean membership score, ρ, and covariance, Σ, from the

logistic-normal prior well. Finally, although we do not present the results due to the number
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(a) Membership Scores, Simulated Individual 272

(b) Class Means, Simulated Outcome 15

Figure 7.8: Trace plots for membership scores and class means for a randomly selected indi-

vidual and outcome in the simulated data example. In each plot, the blue solid line marks

the posterior mean while the dashed lines mark the 2.5% and 97.5% posterior quantiles.

The red solid line represents the data generating value.

of parameters, the 95% posterior credible intervals for the membership scores, G, contained

the truth for 94.9% of the simulated membership scores.
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We subsequently performed the posterior predictive model checks discussed in Sec-

tion 2.4. To gain a better understanding of whether these model checks would offer any

insight in the case where the number of classes was misspecified, we also fit two class (K = 2)

and four class (K = 4) models. In fitting these model for the wrong number of classes, it

should be noted that a much larger number of MCMC iterations (approximately 1,000,000)

was required to attain convergence.

Figure 7.9 presents histograms for outcomes 14 and 19 for the three models K = 2, 3, 4.

The three class (K = 3) and four class (K = 4) models appear to do a good job of replicating

the observed marginal distributions for these outcomes and there is little to suggest that

we could distinguish between these models based on these histograms. The two class model

(K = 2) however does a poor job of approximating the observed marginal distributions. We

chose these two outcomes in particular because the misfit in the two class (K = 2) model

was particularly evident. However, these outcomes were hardly the only two outcomes for

which misfit was evident. Meanwhile, the three class (K = 3) and four class (K = 4) models

fit the other outcomes in a similar manner.

In Figure 7.10, we present the correlation distance and eigenvalue plot used as part of

our posterior predictive model checking methods. The three class (K = 3) and four class

(K = 4) models both appear to replicate the observed rank correlations well. Again, the

two class (K = 2) model does not fit the observed data well. Thus, the posterior predictive

model checks on which we have relied throughout appear (in this case) to help identify a

model with two few classes. We see no differences in fit however in the three class (K = 3)

and four class (K = 4) models using these diagnostics. A reasonable approach would be

to default to the model with the fewest classes that fits the observed data well. In this

simulated data case, the model estimates however helped suggest the three class (K = 3)

model. For one of the elements of ρ in the four class (K = 4) model implied that the mean

membership in that class was zero suggesting that the fourth class was unnecessary. In

applications to real data, we do not necessarily expect the results to be so clear-cut.
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Table 7.8: Posterior summaries for class means for classes 2 and 3.

Class 2 Class 3

Truth Mean Median Truth Mean Median

1 -10 -9.695 -9.647 15 15.771 15.707

2 -3 -3.584 -3.582 3 3.558 3.555

3 -4 -4.130 -4.129 -14 -14.770 -14.741

4 6 5.685 5.672 -4 -4.053 -4.050

5 -3 -2.878 -2.870 -10 -10.031 -10.026

6 -10 -10.126 -10.093 -2 -1.895 -1.902

7 -12 -12.284 -12.212 -3 -2.688 -2.679

8 -12 -11.338 -11.311 13 13.277 13.208

9 -3 -3.097 -3.087 14 15.281 15.197

10 -11 -12.003 -11.986 10 11.045 11.018

11 -14 -14.795 -14.784 10 11.666 11.603

12 -13 -10.280 -10.256 10 8.730 8.715

13 -10 -9.755 -9.729 8 9.160 9.134

14 10 11.471 11.456 -9 -11.281 -11.151

15 -3 -3.121 -3.112 10 9.952 9.932

16 -11 -10.624 -10.616 10 10.144 10.107

17 10 8.483 8.455 4 2.950 2.951

18 -10 -10.529 -10.474 18 19.061 19.077

19 -10 -9.632 -9.610 10 10.047 10.011

20 -3 -2.756 -2.752 -10 -9.393 -9.372

21 3 3.150 3.148 -3 -3.482 -3.475

22 10 10.134 10.082 -10 -11.910 -11.881

23 11 9.800 9.719 -10 -10.379 -10.277

24 -15 -13.672 -13.647 11 10.627 10.575

25 7 6.265 6.230 -9 -9.879 -9.840

26 -11 -11.781 -11.729 15 17.378 17.367

27 -11 -11.439 -11.431 7 7.927 7.894

28 3 2.739 2.734 -3 -3.204 -3.185

29 -4 -3.638 -3.643 4 4.227 4.214

30 -10 -10.732 -10.683 10 11.796 11.742
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Table 7.9: Posterior summary for membership score means, ρ.

Truth Post. Mean Post. Median Post. 95% CI

ρ1 1.000 0.904 0.900 (0.597, 1.236)

ρ2 -0.100 -0.014 -0.011 (-0.288, 0.265)

Table 7.10: Posterior summary for membership score covariances, Σ.

Truth Post. Mean Post. Median Post. 95% CI

Σ1,1 4.147 5.195 5.128 (3.649, 7.069)

Σ2,1 -0.379 -1.053 -1.051 (-1.805, -0.345)

Σ1,2 -0.379 -1.053 -1.051 (-1.805, -0.345)

Σ2,2 3.717 3.355 3.302 (2.385, 4.587)
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(a) Outcome 14, K=2 (b) Outcome 19, K=2

(c) Outcome 14, K=3 (d) Outcome 19, K=3

(e) Outcome 14, K=4 (f) Outcome 19, K=4

Figure 7.9: Histograms of the observed scores for simulated outcomes 14 and 19. The black

points indicate the mean count across replicated datasets for each score. The black vertical

segment indicates the interval from the 2.5% to 97.5% quantiles across replicated datasets.
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(a) Correlation Distance, K=2 (b) Correlation Distance, K=3 (c) Correlation Distance, K=4

(d) Eigenvalues, K=2 (e) Eigenvalues, K=3 (f) Eigenvalues, K=4

Figure 7.10: Correlation distance and eigenvalue plots for varying K for simulated data

under the BPM model. The top row plots present scatterplots of dsld(C
obs, Crep,m) versus

dsld(C
rep,m, Crep,m

′
) for all replicated datasets. The grey line represents the 45 degree

line. The bottom row plots display the mean posterior prediction (grey point) and 95%

posterior prediction intervals (grey line segment) of the largest ten eigenvalues calculated

using replicated data. Eigenvalues computed from the observed data are denoted by a black

“X”.
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7.6 Application to 2010-11 NBA Player Data

In the New York Times basketball blog Off The Dribble on February 28, 2012, Joshua

Brustein highlighted some of the NBA-related research being presented at the increasingly

visible MIT Sloan Sports Analytics Conference. Team chemistry and composition appeared

to be recurring themes in the research with the intent of understanding how chemistry

and composition might relate to winning. In understanding team composition, comparing

it across teams and ultimately relating it to game outcomes, it is helpful to be able to

group players by playing style and/or ability. Currently, basketball players are typically

assigned to one of five positions: point guard (PG), shooting guard (SG), small forward

(SF), power forward (PF) and center (C). NBA management and observers may commonly

use a more informal typing of players with 3 categories that consolidates the above positions

by physical attributes and function on the court: point guard, wings (shooting guards and

small forwards), and bigs (power forwards and centers). However, current positions and

player assignments to those positions may not fully reflect the variety of playing styles (Lutz,

2012). One approach to identifying positions for players would be to use a finite mixture

model to perform a cluster analysis on players based on their season statistics.

Rather than assign players specifically to one playing style or another or identify classes

that are themselves mixtures of more extreme classes, we would argue that players them-

selves are compositions of different extreme playing styles. For instance, the term “combo

guard” is regularly used to describe a player who combines the skills and playing style of a

point guard and shooting guard.

To apply the semiparametric correlated partial membership model to identify playing

styles and player membership in those styles, we used 13 different statistics from the 2010-11

NBA season. We collected the data from hoopdata.com (Hoopdata, 2012). The statistics

included minutes played per game, percent of made field goals that are assisted, assist rate,

turnover rate, offensive rebound rate, defensive rebound rate, steals per 40 minutes, blocks

per 40 minutes, and the number of shots attempted per 40 minutes at each of the following

locations: at the rim, from 3-9 feet, from 10-15 feet, from 16-23 feet, and beyond the 3-point

line. These statistics overlap with 13 of the 14 used in a cluster analysis by Lutz (2012).
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Table 7.11: Variables, abbreviations and formulas.

Variable Abbreviation Formula (if calculated)

Minutes played per game (minimum of 10) Min -

Percent of made field goals that are assisted % Ast made field goals that are assisted
total made field goals

Assist Ratio AR Assists×100
FGA+(FTA×.44)+Turnovers

Turnover Ratio TOR Turnovers×100
FGA+(FTA×.44)+Turnovers

Offensive Rebound Rate ORR 100×(Player ORebs×(Team Min/5))
(Player Min×(Team ORebs+Opp DRebs))

Defensive Rebound Rate DRR 100×(Player DRebs×(Team Min/5))
(Player Min×(Team DRebs+Opp ORebs))

Attempted field goals at the rim per 40 minutes Rim -

Attempted field goals from 3-9 feet per 40 minutes 3-9 -

Attempted field goals from 10-15 feet per 40 minutes 10-15 -

Attempted field goals from 16-23 feet per 40 minutes 16-23 -

3-point field goals attempted per 40 minutes 3s -

Steals per 40 minutes Stls -

Blocks per 40 minutes Blks -

Table 7.11 presented as in Lutz (2012) lists these variables, their abbreviations and formulas

of calculated statistics.

We included only players who had played 30 or more games and averaged 10 or more

minutes per game. This restriction limited the number of players in the sample to 332. The

statistics are continuous but some, such as minutes played per game (maximum of 48) or

percent of made field goals (0-100), are restricted in their range. By relying on the orderings

of the outcomes to make inference, the semiparametric correlated partial membership model

can readily handle these different types of outcomes.

We considered models with different numbers of classes (K = 3, 4, 5, 6). The four class,

five class and six class (K = 4, 5, 6) models produced similar results in that four of the classes

in the five and six class models (K = 5, 6) bore a strong resemblance to the four in the four

class (K = 4) model. Although the five and six class (K = 5, 6) models appeared to fit

the data better than the four class (K = 4) model, both of these models continued to show

signs of a lack of convergence even after a large number of iterations. The chains for the



146

membership scores appeared relatively stable but the chains for the class mean parameters

displayed a lack of convergence for the five and six class (K = 5, 6) models. The four class

(K = 4) model, however, did not show signs of a lack of convergence according to trace plots

and the Geweke diagnostic test (Geweke, 1992) and still showed reasonable fit according

to posterior predictive model checks. Thus, we present here the results for the four class

(K = 4) model. Figure 7.11 displays trace plots for the class means for a randomly selected

statistic, the field goals attempted from 10-15 feet per 40 minutes, and trace plots for the

membership scores for a randomly selected player, Kirk Hinrich. Both sets of trace plots

are representative of the trace plots for the class means of the other statistics and for the

membership scores of the other players.

We used the posterior predictive model checking methods introduced in Section 2.4 to

evaluate model fit. Figure 7.12 displays histograms of the observed data for turnover rate

and field goals attempted at the rim per 40 minutes as well as black points and intervals

indicating the posterior predictive means and 95% posterior predictive intervals. In general,

the model appeared to approximated the marginal distributions reasonably well. The model

approximated the marginal distributions in similar fashion for the other outcomes not shown

here.

We proceeded to check the ability of the model to replicate the observed rank correlations

using the plots in Figure 7.13. In the correlation distance plot, there appeared to be some

lack of fit. In the eigenvalue plot, the first 5 eigenvalues were reasonably well fit but the 95%

posterior predictive interval for the 6th eigenvalue did not contain the observed value. Plots

of the pairwise rank correlations for individual outcomes, however, showed generally good

fit. Preliminary1 posterior predictive model checks for a five class (K = 5) model showed

generally superior fit for the eigenvalue and correlation distance plots but the differences

were fairly small for the marginal distribution and pairwise correlation plots. We do not

present the results for the five class model, however, due to some evidence of a lack of

convergence for some of the class mean parameters.

Satisfied with the model fit, we analyzed the model results. Table 7.12 presents the

1“Preliminary” because the posterior predictive checks were based on values from chains that did not all
show convergence.
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(a) Class Means, FGA from 10-15 ft. per 40 min.

(b) Membership Scores, Kirk Hinrich

Figure 7.11: Trace plots for class means and membership scores for field goal attempted

(FGA) from 10-15 feet per 40 minutes and Kirk Hinrich in the NBA player data example.

In each plot, the blue solid line marks the posterior mean while the dashed lines mark the

2.5% and 97.5% posterior quantiles.

posterior mean for M . Recall that the means are on the latent response scale and that

the first column was fixed to 0 to set the location of the latent responses. As a result,
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(a) Turnover Rate (b) FGA At The Rim/40 min

Figure 7.12: Histograms of the observed scores for the Turnover Rate and Field Goal At-

tempts (FGA) At The Rim per 40 minutes. The black points indicate the mean count across

replicated datasets for each interval. The black vertical segment indicates the interval from

the 2.5% to 97.5% quantiles across replicated datasets.

we focus on the ordering of the classes in Table 7.12. Looking across the classes, we were

able to differentiate the types of players that the classes represent immediately. In no

particular order, class 2 appeared to be a ball handler/point guard class with players who

are characterized by high assist rates, higher than average turnover rates, very few assisted

field goals and high steals per 40 minutes. Class 3 could reasonably be designated a spot-

up shooter class characterized by players who primarily take shots beyond the three point

line and for whom most of their field goals are assisted (meaning they do not create their

own shots in contrast to class 2). Class 1 was characterized by players who shoot at all

ranges inside the 3 point line and who also rebound and block shots fairly well. This class

is typified by offensively well-rounded big men. Class 4 described players who rebound well

(particularly on the offensive end of the floor), block shots, make steals and are limited in

both their shooting range and minutes. This defensive big men class could just as well be

called active or limited big men.

Tables 7.13-7.16 list the players with top ten membership scores in each class. In general,

we believe it is reasonable to say that the qualitative assessments of the player by NBA
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(a) Correlation Distance (b) Eigenvalues

Figure 7.13: The left plot presents a scatterplot of dsld(C
obs, Crep,m) versus dsld(C

rep,m,

Crep,m
′
) for all replicated datasets. The grey line represents the 45 degree line. On the

right, a plot of top ten eigenvalues depicting the mean prediction (grey point) and 95%

prediction intervals (grey line segment) of the eigenvalues calculated using replicated data.

Eigenvalues computed from the observed data are denoted by a black “X”.

observers would agree quite well with the model-derived class that they typify. For instance,

in class 2, it was comforting to see Steve Nash, considered by many to be the prototypical

NBA point guard (at least offensively), at the top of the list. Similarly, James Jones, whose

job in the Miami Heat offense in 2010-11 was largely limited to sitting at the three point

line and shooting open shots created for him by his teammates, typified class 3. Class 1

was generally dominated by well-known big men with diverse offensive games such as Al

Jefferson, Zach Randolph, Elton Brand, Tim Duncan and Paul Gasol. Class 4, the defensive

big men, proved interesting in that, even for the highest ranking members in that class, the

class 4 membership typically is not the largest class membership for that player.

Looking through Tables 7.13-7.16, however, we did not see the names of the players who

are considered the league’s most dynamic stars, players such as LeBron James, Kobe Bryant,
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Table 7.12: Posterior means for class means in the K = 4 model. Bolded figures indicate

that the corresponding posterior 95% CI did not include 0.

Class 1 Class 2 Class 3 Class 4

(Well-Rounded Big Men) (Ball Handlers) (Spot-up Shooters) (Defensive Big Men)

Min 0.00 -0.53 -3.18 -7.11

% Ast 0.00 -11.65 27.78 -2.63

AR 0.00 7.19 0.97 6.83

TOR 0.00 5.61 -7.11 16.41

ORR 0.00 -6.69 -19.19 11.39

DRR 0.00 -5.59 -8.29 1.73

Rim 0.00 -0.99 -16.81 1.46

3-9 0.00 -3.27 -22.41 -13.66

10-15 0.00 -4.90 -15.69 -32.91

16-23 0.00 -2.94 -1.05 -22.35

3s 0.00 1.78 14.56 -7.86

Stls 0.00 2.99 -0.56 2.69

Blks 0.00 -4.29 -7.42 2.87

Dwyane Wade, Kevin Durant or Derrick Rose. Table 7.17 presents the membership scores for

these players. The players’ “dynamic” style was evidenced by their significant membership

in multiple classes. Although much larger than the typical point guard, LeBron James’ rare

ability to handle the ball for a man of his size was reflected in his high membership in the

Ball Handlers class. Yet he still maintained a significant membership in the Well-Rounded

Big Men class. Kobe Bryant’s membership was almost perfectly split between the Well-

Rounded Big Men class and the Ball Handlers class while Dwyane Wade’s membership

scores flip the membership scores of LeBron James in the Well-Rounded Big Men and

Ball Handlers classes. Kevin Durant’s versatility offensively was reflected in his non-trivial

membership scores in the Well-Rounded Big Men, Ball Handlers and Spot-up Shooters
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Table 7.13: Players with top ten membership scores for class 1 (Well-Rounded Big Men).

Class

Player Name Team Pos 1 2 3 4

Al Jefferson UTH C 0.788 0.057 0.077 0.079

Nazr Mohammed CHA C 0.756 0.028 0.074 0.142

Zach Randolph MEM PF 0.751 0.058 0.065 0.126

Chris Kaman LAC C 0.744 0.068 0.106 0.082

Brook Lopez NJN C 0.733 0.094 0.094 0.079

Elton Brand PHI PF 0.732 0.085 0.108 0.074

J.J. Hickson CLE PF 0.731 0.059 0.088 0.122

Tim Duncan SAS C 0.730 0.084 0.087 0.098

Dwight Howard ORL C 0.729 0.031 0.059 0.181

Pau Gasol LAL PF 0.727 0.085 0.085 0.103

classes.

We compared our results to some of the results from the cluster analysis by Lutz (2012) in

one of the papers selected for the proceedings at the MIT Sloan Sports Analytics conference.

Lutz (2012) sought to re-examine the concept of NBA player positions and determine the

association between cluster membership and winning games during the regular season. Using

a finite mixture of Gaussians, he identified 10 clusters reflecting these different playing styles

(double the standard 5 positions to which players are typically assigned).

Lutz (2012) summarized these clusters in a table which we reproduced in Table 7.18.

Note that some of the names of the clusters used by Lutz (2012) seem to suggest that certain

groups are characterized by players who represent a mixture of playing styles: “combo”

guards and “versatile” swingmen.

We considered the membership scores for players who typify the Combo Guard cluster

of Lutz (2012). Table 7.19 presents the membership scores for these players as well. The
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Table 7.14: Players with top ten membership scores for class 2 (Ball Handlers).

Class

Player Name Team Pos 1 2 3 4

Steve Nash PHO PG 0.085 0.805 0.095 0.016

Devin Harris NJN PG 0.094 0.764 0.122 0.020

Chris Paul NOR PG 0.108 0.763 0.111 0.018

T.J. Ford IND PG 0.120 0.756 0.098 0.025

Jonny Flynn MIN PG 0.083 0.753 0.138 0.026

Will Bynum DET PG 0.119 0.741 0.114 0.026

Tony Parker SAS PG 0.149 0.728 0.101 0.021

Jose Juan Barea DAL PG 0.139 0.727 0.107 0.026

Raymond Felton NYK PG 0.136 0.691 0.138 0.035

John Wall WAS PG 0.170 0.689 0.111 0.030

semiparametric correlated partial membership model appeared to view these players as

combo guards as well, not by necessitating a separate class for these players but by reflecting

their split membership primarily between classes 2 and 3, the Ball Handlers and Spot-up

Shooters classes. In this sense, the semiparametric correlated partial membership model

reduced the number of classes as compared to the cluster analysis of Lutz (2012) and

reflected heterogeneity in the population by modeling the heterogeneity in the individual

with partial memberships.

One feature of the semiparametric correlated partial membership model that we high-

lighted in Section 7.4 was the use of the logistic normal prior to flexibly model the correla-

tions among the memberships. Although we have posterior draws for Σ, these values can

not be directly translated into posterior correlations for the membership scores. Instead,

for each posterior draw of G, we calculated the correlations of the membership scores. We

then took the mean of these correlations across the different draws of G to obtain estimates
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Table 7.15: Players with top ten membership scores for class 3 (Spot-up Shooters).

Class

Player Name Team Pos 1 2 3 4

James Jones MIA SF 0.274 0.122 0.441 0.163

Brian Cardinal DAL PF 0.196 0.130 0.434 0.240

Daequan Cook OKC SG 0.262 0.187 0.413 0.138

James Posey IND SF 0.262 0.151 0.406 0.181

Keith Bogans CHI SG 0.238 0.171 0.394 0.197

Kyle Korver CHI SG 0.293 0.247 0.381 0.079

Eddie House MIA PG 0.265 0.300 0.362 0.073

Jodie Meeks PHI G 0.309 0.253 0.347 0.091

DeShawn Stevenson DAL SG 0.226 0.305 0.337 0.132

Raja Bell UTH SG 0.300 0.256 0.334 0.110

of the membership score correlations. The results are presented in Table 7.20.

In Table 7.20, there are moderate to large negative correlations between the Well-

Rounded Big Men (class 1) and the Ball Handlers (class 2) and Spot-up Shooters (class

3) as well as between the Defensive Big Men (class 2) and the Ball Handlers (class 3).

Well-Rounded Big Men (class 1) and Defensive Big Men (class 4) showed moderate posi-

tive correlation between them. The negative correlations between Ball Handlers (class 2)

membership and Well-Rounded and Defensive Big Men (classes 1, 4) memberships are not

unexpected as these playing styles tend to be mutually exclusive in players. The positive

correlation between the Well-Rounded and Defensive Big Men (classes 1, 4) memberships

also makes sense as many players tend to exhibit a mix of these playing styles.

Earlier we mentioned that the five and six class (K = 5, 6) models showed better model

fit. We noted that four of the classes in the five and six class (K = 5, 6) models corresponded

very closely to the four classes above. The fifth class in the five and six class models was
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Table 7.16: Players with top ten membership scores for class 4 (Defensive Big Men).

Class

Player Name Team Pos 1 2 3 4

Joel Przybilla POR C 0.306 0.123 0.202 0.369

Omer Asik CHI C 0.435 0.060 0.136 0.369

Joey Dorsey TOR PF 0.488 0.051 0.106 0.356

DeAndre Jordan LAC C 0.496 0.052 0.132 0.320

Erick Dampier MIA C 0.434 0.099 0.179 0.288

Shaquille O’Neal BOS C 0.524 0.050 0.149 0.278

Andris Biedrins GSW C 0.549 0.061 0.114 0.276

Ben Wallace DET C 0.438 0.160 0.129 0.273

Semih Erden BOS C 0.465 0.079 0.184 0.272

Aaron Gray NOR C 0.593 0.051 0.090 0.265

Table 7.17: Membership scores for commonly regarded dynamic players

Class

Player Name Team Pos 1 2 3 4

Derrick Rose CHI PG 0.286 0.581 0.101 0.032

Dwyane Wade MIA SG 0.482 0.361 0.096 0.061

Kevin Durant OKC SF 0.515 0.264 0.175 0.046

Kobe Bryant LAL SG 0.424 0.429 0.118 0.029

LeBron James MIA SF 0.365 0.482 0.108 0.045

typified by big men with extended shooting range (in the 16-23 ft. range). The highest

posterior mean membership in this fifth class was around 0.27. The sixth class in the six

class (K = 6) model was a class with generally low membership; the highest posterior mean
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Table 7.18: Cluster labels and typical members found in Lutz (2012).

Cluster Cluster Label Typical Members

Combo Guards 1 Steve Blake / Mario Chalmers / Rudy Fernandez

Backup Bigs 2 Deandre Jordan / Ben Wallace / Brendan Haywood

Skilled Swingmen 3 Shane Battier / Lamar Odom / Paul George

Floor Spacers 4 Channing Frye / Matt Bonner / Mike Miller

Elite Bigs 5 Amare Stoudemire / Elton Brand / Brook Lopez

Big Bodies 6 Jason Collins / Antonio McDyess / Kurt Thomas

Aggressive Bigs 7 Brandon Bass / Carlos Boozer / Tyler Hansbrough

Ball Handlers 8 Chris Paul / Kyle Lowery / Devin Harris

Perimeter Scorers 9 Rudy Gay / Dwyane Wade / Eric Gordon

Versatile Shooters 10 James Harden / Ray Allen / Nicolas Batum

Table 7.19: Membership scores for players typifying the Lutz (2012) combo guard cluster.

Class

Player Name Team Pos 1 2 3 4

Mario Chalmers MIA PG 0.178 0.475 0.268 0.079

Rudy Fernandez POR SG 0.238 0.407 0.258 0.097

Steve Blake LAL PG 0.200 0.377 0.311 0.112

membership in this class was only 0.044. The top ten members of this class did not seem

to be well characterized other than perhaps by mid-sized players who have some tendency

to shoot around the rim.

In this section, we applied the semiparametric correlated partial membership model to

NBA player statistics from the 2010-11 season. The four class example served to demon-

strate the features of the semiparametric correlated partial membership as well as provide
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Table 7.20: Posterior mean of membership score correlations.

1 2 3 4

1 1.000 -0.877 -0.438 0.395

2 -0.877 1.000 0.076 -0.678

3 -0.438 0.076 1.000 -0.074

4 0.395 -0.678 -0.074 1.000

sensible results consistent with more qualitative characterizations of player styles. We com-

pared our results to those of a comparable cluster analysis (Lutz, 2012) and found that our

model was able to reduce the number of classes identified by characterizing individuals as

compositions of different playing styles.
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7.7 Application to the SIVD Study

In this section, we apply the semiparametric correlated partial membership model to the

SIVD executive functioning data introduced in Chapter 3. We began by applying a two

class (K = 2) model to the data. A two class model would be reasonable when, for instance,

one class was characterized by participants with normal or excellent executive functioning

and a second class was typified by individuals with deficient executive functioning, with

many individuals a composition of two. We made 200,000 draws, keeping every 40th draw

and discarding the first half as burn-in. We used trace plots and the Geweke (Geweke, 1992)

and Raftery-Lewis(Raftery and Lewis, 1995) diagnostic tests to assess convergence.

Figure 7.14 presents plots assessing the two class (K = 2) model’s ability to fit the

observed marginal distributions. In each case, the model did a good job of fitting the

marginal distributions. We saw similarly good fit for the other outcomes.

(a) Verbal Fluency A (b) MDRS E

Figure 7.14: Histograms of the observed scores for the Verbal Fluency A and MDRS E. The

black points indicate the mean count across replicated datasets for each score. The black

vertical segment indicates the interval from the 2.5% to 97.5% quantiles across replicated

datasets.

Figures 7.15(a) and 7.15(c) present the correlation distance and eigenvalue plots for the

two class (K = 2) model. The model, much like the single factor semiparametric latent
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variable model, did not approximate the observed rank correlations well. This misfit may

suggest that we require more classes as we saw in the simulated data example in Section 7.5.

However, in contrast to the simulated data example, we did not see evidence of misfit for

the marginal distributions.

We subsequently examined the pairwise correlations. Figures 7.16(a) and 7.16(b) show

the pairwise rank correlations for Mattis Dementia Rating J and Visual Span Backwards.

Again, much like our results with the single factor semiparametric latent variable model, we

see that the majority of pairwise correlations are well approximated but there are notable

cases of misfit. For instance, we see misfit for the correlations of Mattis Dementia Rating

Scale J with Mattis Dementia Rating Scale I and K. As noted in Section 5.6, these items

are conceptually related. Likewise, for Visual Span Backwards, the correlation with Visual

Span Forwards was not accurately approximated by the two class (K = 2) model.

To improve the fit of the model, we tried increasing the number of classes. A six class

(K = 6) model was the model with the fewest number of classes for which we attained a

seemingly sufficient fit to the observed rank correlations as can be seen in Figures 7.15(b),

7.15(d), 7.16(c) and 7.16(d). We do not present any of the posterior predictive checks for the

marginal distributions as there was little to no difference from the corresponding posterior

predictive checks for the two class (K = 2) model.

In Tables 7.21 and 7.22, posterior means for the class means, M, are listed along with

the 95% posterior credible intervals or, in the case of Table 7.22, an indication of whether

the 95% posterior credible interval contained 0. Recall that the means for class 1 in both

models are fixed to 0 and, as a result, are not presented in the tables. For the K = 2

model, the interpretation of the two classes is clear: class 1 is typified by individuals with

high levels of executive functioning and class 2 is typified by people with very low levels

of executive functioning. For the K = 6 model, the interpretation of the six classes is less

clear.

It is possible that the six class (K = 6) model produces classes for which there is no

obvious corresponding substantive meaning in an attempt to fit the data well. The inability

to fit the data well with fewer classes may reflect the restrictions of the model as the

covariances between outcomes are set to 0. The addition of more classes may aid the model
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Table 7.21: Posterior summary for class means for class 2 in the K = 2 model.

Class 2 Class 2 Class 2

Post. Mean Post. Median Post. 95% CI

Digit Sp Fwd -6.349 -6.303 (-8.815, -4.267)

Digit Sp Bwd -8.210 -8.000 (-11.339, -5.878)

Visual Sp Fwd -5.924 -5.817 (-8.488, -3.904)

Visual Sp Bwd -6.942 -6.840 (-9.357, -4.818)

Verb Flncy F -11.357 -11.179 (-15.343, -8.295)

Verb Flncy A -14.122 -13.931 (-18.768, -10.141)

Verb Flncy S -13.662 -13.497 (-18.329, -10.041)

MDRS E -8.333 -8.139 (-11.523, -5.889)

MDRS G -10.898 -10.486 (-17.067, -6.257)

MDRS H -5.857 -5.698 (-9.964, -2.554)

MDRS I -6.535 -6.422 (-10.193, -3.641)

MDRS J -7.330 -7.058 (-12.453, -3.590)

MDRS K -6.668 -6.374 (-12.161, -2.839)

MDRS L -6.594 -6.525 (-9.493, -4.024)

MDRS O -6.301 -6.125 (-10.132, -3.447)

MDRS V -5.543 -5.440 (-8.069, -3.518)

MDRS W -8.024 -7.833 (-11.357, -5.237)

MDRS X -9.493 -9.484 (-13.241, -6.125)

MDRS Y -17.615 -17.328 (-26.370, -10.743)

in representing the dependence structure in the data under the covariance restrictions. Given

that the two class (K = 2) appeared to fit the marginal distributions well and that the model

misfit occurred in approximated residual correlations among conceptually related items, it

is conceivable that removing the assumption of independence among items conditional on
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the membership scores and class means would result in a two class model that fits the data

very well.

Table 7.22: Posterior means for class means for classes 2-6 in the K = 6 model. Bolded

figures indicate that the corresponding posterior 95% CI did not include 0.

Class 2 Class 3 Class 4 Class 5 Class 6

Digit Sp Fwd -9.293 -10.255 -11.112 -8.347 0.209

Digit Sp Bwd -5.793 -7.694 -12.859 -1.919 4.156

Visual Sp Fwd -3.518 -1.760 -9.010 11.223 -4.579

Visual Sp Bwd 0.919 2.670 -9.819 17.176 0.013

Verb Flncy F -4.052 11.692 0.407 3.190 24.470

Verb Flncy A -14.654 0.728 -6.658 -1.630 16.053

Verb Flncy S -19.676 3.247 -5.531 -1.375 23.824

MDRS E -3.726 2.986 -5.826 9.603 0.985

MDRS G -8.843 8.698 -5.303 1.427 0.178

MDRS H -0.568 5.713 -0.732 10.893 5.617

MDRS I 11.820 -4.517 -15.140 2.056 4.742

MDRS J 12.365 -2.687 -17.668 -3.060 4.400

MDRS K 12.763 -4.008 -16.375 -1.177 1.579

MDRS L 1.581 3.175 -7.203 12.236 0.422

MDRS O 0.126 1.228 -6.396 9.300 0.943

MDRS V 2.926 4.453 -2.268 10.472 7.269

MDRS W -3.084 18.386 -16.560 -10.017 -9.919

MDRS X -6.867 18.379 -13.795 -14.612 -6.850

MDRS Y -13.690 13.626 -11.931 4.959 -0.843
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(a) Correlation Distance, K = 2 (b) Correlation Distance, K = 6

(c) Eigenvalues, K = 2 (d) Eigenvalues, K = 6

Figure 7.15: Correlation distance and eigenvalue plots for the K = 2 and K = 6 models.

The left plot presents scatterplots of dsld(C
obs, Crep,m) versus dsld(C

rep,m, Crep,m
′
) for all

replicated datasets. The grey line represents the 45 degree line. The right plot displays

the mean posterior prediction (grey point) and 95% posterior prediction intervals (grey

line segment) of the largest ten eigenvalues calculated using replicated data. Eigenvalues

computed from the observed data are denoted by a black “X”.
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(a) MDRS J, K = 2 (b) Visual Span Backwards, K = 2

(c) MDRS J, K = 6 (d) Visual Span Backwards, K = 6

Figure 7.16: Pairwise correlation plots for the K = 2 and K = 6 models. Each pairwise

correlation plot depicts the mean posterior prediction (grey point) and 95% posterior pre-

diction intervals (grey line segment) for Kendall’s τ values calculated using replicated data.

Kendall’s τ values computed from the observed data are denoted by a black “X”.
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7.8 Discussion

In this chapter, we extended the Bayesian partial membership (BPM) model of Heller et al.

(2008) in two ways. First, we followed the developments of Blei and Lafferty (2007) for

the mixed membership topic model and used a logistic normal prior for untransformed

membership scores. Use of this prior allowed us to model and estimate correlations among

membership scores. Second, we augmented the model’s ability to accommodate mixed

outcomes by applying the extended rank likelihood model of Hoff (2007).

Prior to discussing the extensions of the model, we examined the similarities and differ-

ences of Mixed Membership (MM) models and BPM models. One of the differences between

the models that we highlighted was the fact that the BPM model need not impose a local

independence assumption. We demonstrated the different sets of data produced by MM

and BPM models with the same distributions for each class. Moreover, in the case of binary

data, we highlighted the fact that the models could be very similar in some instances before

diverging significantly at extreme values of the class parameters.

We applied the semiparametric correlated partial membership model to simulated data

and two real datasets. Each of the examples proved illuminating. In demonstrating the

semiparametric model on simulated data, we showed that the model could recover the data-

generating parameters but we also examined whether the effect of misspecifying the number

of classes would be reflected in the posterior predictive model checks. In the simulated data

case, we found that specifying too few classes resulted in poor fit but the fit with too many

classes was comparable to that with the correct number of classes. However, in the cases of

too many classes, we saw in the simulated data example that the mean class membership

for one of the classes was close to zero. We noted that we do not necessarily expect this

result across different applied examples as we have not run repeated simulations and do not

have a complete understanding of how the model performs when the number of classes is

misspecified.

The NBA player data example illustrated a number of features of the semiparametric

correlated partial membership model including the ability to flexibly model correlations

among classes, the elimination of the need to specify conditional distributions for the out-
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comes and the utility of individual-level mixture models in general. Compared to a cluster

analysis of the same data (Lutz, 2012), we found fewer types were needed to fit the data

because the playing styles of certain players could successfully be represented by partial

membership. Estimation of the model however was plagued by extremely slow mixing and

convergence, highlighting the need for further research into methods that will improve the

computational efficiency of estimating the model.

In the SIVD study example with executive functioning indicators, we found that a two

class model appeared to fit the observed marginal distributions but struggled with repli-

cating the observed rank correlations. We found a model with a larger number of classes

could fit the observed correlations well but did not produce classes with clear substantive

interpretations. To represent a larger array of data patterns (as demonstrated in Sec-

tion 7.3), we could extend the model to allow for covariances among outcomes common

across all classes, class specific variances or ideally class specific covariances. We have

implemented the Bayesian partial membership model for normally distributed data with

class-specific variances as well as means. Extension to the semiparametric version of the

model is straightforward but in our experiments we encountered to an even greater extent

some of the computation challenges witnessed in the NBA player data example.

Although we addressed some identifiability issues in Section 7.4, we have not thoroughly

demonstrated the identifiability of the model and, as we consider more complex models, the

issue of identifiability will become more important. Frühwirth-Schnatter (2006) provides

an overview of identifiability for population-level mixture models. Holzman, Munk, and

Gneiting (2006) note that “identifiability often is tacitly assumed to hold while proofs

remain unavailable.” While many mixtures of univariate continuous densities have been

shown to be identifiable (not including nonidentifiability due to permutation of class labels)

as well as mixtures of multivariate normals, some discrete mixtures have been shown to

be nonidentifiable (Frühwirth-Schnatter, 2006). Teicher (1967) has proven identifiability

results for products of densities. These results may be useful in establishing identifiability

of the partial membership model going forward.
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Chapter 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this dissertation, we proposed novel methods for the analysis of multivariate mixed

outcomes. Our primary aims were to model the interdependence among mixed outcomes

and make inference on the association between mixed outcomes and a set of covariates. We

considered both parametric and semiparametric approaches to modeling mixed outcomes. In

the parametric case, we extended the standard IRT model to accommodate mixed outcomes

specific to cognitive testing data. In the semiparametric case, we based our approach on

the extended rank likelihood method of Hoff (2007), originally developed for the estimation

of copulas. We introduced this method for the estimation of semiparametric models in

the areas of factor analysis, multivariate regression, and model-based clustering for mixed

outcomes.

The Subcortical Ischemic Vascular Dementia (SIVD) study, a longitudinal study collect-

ing brain imaging and neuropsychological testing data from elderly participants, motivated

the development of these models. Specifically, we sought to analyze the indicators of exec-

utive functioning in the neuropsychological testing data and study the association between

these outcomes and the MRI-measured volume of white matter hyperintensities in the frontal

lobe. The neuropsychological tests employed in the SIVD study and related studies pro-

duce mixed data, directing our focus on methods for outcomes of different type. We now

summarize our methodological contributions before presenting some ideas for future work

in the next section.

Following a parametric approach to accommodating mixed outcomes, we extended a

latent variable model with standard IRT parameterization to handle mixed outcomes specific

to cognitive testing data. We utilized the generalized latent trait model developments of

Sammel et al. (1997), Moustaki and Knott (2000) and Dunson (2003) to handle mixed data
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by specifying different distributions for each outcome conditional on the latent variable. We

extended their models to allow for censored count outcomes, duration outcomes and censored

duration outcomes that often appear in tests of cognitive functioning. A hierarchical version

of the model specified the latent variable, or ability parameter in IRT terminology, as a

function of covariates.

While the parametric approach proved flexible, we observed that the specification of the

conditional distributions of the outcomes may be a nuisance in the sense that it is not a

primary inferential interest and may be just a necessary step in the parametric approach for

mixed outcomes. In many cases, our primary interest may lay in the latent variable estimates

and their relation to covariates of interest. We proposed a hierarchical semiparametric

latent variable model with bifactor structure for mixed outcomes. The model allowed us to

avoid specification of the parametric distributions for outcomes conditional on the latent

variables. Moreover, the bifactor structure enabled us to more accurately approximate the

correlations observed in the data than we could with a single factor model. We used the

extended rank likelihood, a method that relies on the partial orderings of the observed

outcomes, to estimate the semiparametric bifactor model.

In practice, applications of the semiparametric bifactor model require identification of a

suitable bifactor structure to approximate the item dependencies in the observed data. To

avoid specifying the latent structure among the outcomes while retaining the mean structure

of the hierarchical semiparametric latent variable model, we developed a semiparametric

multivariate regression model using the extended rank likelihood for estimation. In the

semiparametric multivariate regression model, we specified the latent responses as direct

functions of the covariates rather than being related to the covariates through a latent

factor. Moreover, we employed an unstructured correlation matrix for the latent responses

that we estimated directly rather than assuming a structured form as we do in the case of

the semiparametric latent variable model. Lastly, we used a reduced rank representation

for the regression coefficient matrix in the semiparametric multivariate regression model.

This reduced rank representation aided in interpretation of the coefficients and we examined

the relationship of the reduced rank regression model to the semiparametric latent variable

model.
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Given the utility of the semiparametric approach for latent variable and multivariate

regression models for mixed outcomes, we considered its application with another type of

analysis of multivariate mixed data, namely, model-based clustering. Specifically, we fo-

cused on the Bayesian partial membership model of Heller et al. (2008). We extended the

Bayesian partial membership model of Heller et al. (2008) in two ways. First, we abandoned

the Dirichlet prior for the membership scores in favor of a logistic normal prior that allowed

for the estimation of class membership correlations. Second, we applied the extended rank

likelihood to model mixed outcomes. We demonstrated the resulting semiparametric cor-

related partial membership model on NBA player data from the 2010-11 season to identify

playing styles as well as on the SIVD executive functioning data. In addition, we compared

the data generated by the Bayesian partial membership model with the mixed membership

model for continuous and discrete outcomes.

Throughout this dissertation, we relied on the Bayesian approach to estimation. We

developed several posterior predictive model checking methods that allowed us to exam-

ine model fit for multivariate mixed outcomes. We found the posterior predictive model

checks proposed in Section 2.4 to be useful in detecting model misfit. In the case of the

semiparametric latent variable model, posterior predictive model checks were also helpful

in informing specification of the latent structure in the model development process.

8.2 Future Work

8.2.1 Further Development of the Semiparametric Correlated Partial Membership Model

Relax Restrictions on Class-Specific Covariances

In Section 7.3, we demonstrated the varying patterns of data that could be generated when

the class-specific distributions were normal with class-specific covariance matrices. However,

in our initial implementation of the semiparametric correlated partial membership model

presented in Section 7.4, we restricted the covariance matrix (for the outcomes, not the class

memberships) to be equal across classes and we restricted this common covariance matrix to

be diagonal. Moving forward, there are a number of ways to relax this restriction. The most

general approach allows for class specific covariance matrices without restrictions (other than
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those required to set the scale of the latent responses). As intermediate steps to this model,

it may be useful to consider the following extensions: (a) a semiparametric correlated partial

membership model with class-specific variances, or (b) a semiparametric correlated partial

membership with the common covariance matrix that is no longer restricted to be diagonal.

In the analysis of the SIVD study data for example, the model described in (b) may be

sufficient to resolve the misfit evident in the dependence-related posterior predictive model

checks.

Study Association Between Class Membership and Covariates

We are also interested in understanding how class memberships vary with covariates of

interest. Currently, individual class memberships are specified as the transformed draws

from a multivariate distribution with mean class membership vector ρ. Extending the

semiparametric correlated partial membership model equations (7.35)-(7.41) hierarchically,

one way to incorporate covariates is to specify the elements of the mean class membership

vector ρ to vary by individual as a function of covariates so that

ρi1 = xTi β1

ρi2 = xTi β2 (8.1)

...

ρi(K−1) = xTi βK−1,

where xi and βk are P -length vectors. Given the often slow convergence of the semipara-

metric correlated partial membership and the addition of a potentially large number of

parameters in β1, . . . ,β(K−1), it is unclear how well we could estimate such a model.

Improving Computational Efficiency

In some of the examples of the semiparametric correlated partial membership model, we

observed that the parameter chains were very slow to mix, much more so than the standard

BPM model. In the case of the semiparametric latent variable model, we found that a

parameter expanded approach to Gibbs sampling (Liu et al., 1998) could be very helpful in
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improving the mixing of the chains. We plan to explore a similar approach in the case of the

semiparametric correlated partial membership model. We will also consider a number of

methods for improving the efficiency of HMC, many of which are discussed in Neal (2010).

8.2.2 Comparing Parametric and Semiparametric Approaches to Mixed Outcome Latent

Variable Models

In Chapters 4 and 5, we presented parametric and semiparametric approaches to latent

variable modeling for mixed outcomes. However, other than their respective applications to

the SIVD study data, we have not compared the two models to gain a better understanding

of the advantages and disadvantages of each approach. To better comprehend the differences

in the models under different data-generating scenarios, we are interested in comparing the

models in a simulation study setting. A plan for comparison of the two models could

proceed as follows. First, we generate a large number of datasets according to the IRT

model for mixed outcomes using a variety of parameter values and conditional distributions

for the outcomes. Second, we generate data in a manner that favors the semiparametric

latent variable model; that is, by the methods used in the simulated data example for the

semiparametric latent variable model detailed in Section 5.5.

We then evaluate the models’ ability to fit the data using the posterior predictive model

checks under the two data generating scenarios. Specifically, we compare the frequency

with which the 95% posterior predictive intervals for the score counts and the pairwise

rank correlations contain the corresponding value computed from the simulated data. In

addition, we can compare the average width of these 95% posterior predictive intervals as

a means of comparing efficiency under different data-generating scenarios.

Because we hesitate to compare the latent variable values across different models as the

values in one model may not be easily translated to values in the other, we will compare

whether one model produces posterior estimates for the latent variables for which the order

is more consistent with the order of the true latent variable values from the data generating

model. If data is generated using the hierarchical model, we can further compare with what

frequency the posterior credible intervals for the regression parameters lead to conclusions
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about the regression parameters that are consistent with the data generating regression

coefficients.

8.2.3 Examining Properties of Test Items with Semiparametric Latent Variable Model

Item Difficulty

One of the advantages often cited for item response theory modeling is that it allows you to

characterize both the individuals taking the test and the items composing the test. A key

parameter characterizing the questions is the difficulty parameter, b in the notation used in

Chapter 4. In the item response theory parameterization used in Chapter 4 (see equation

4.1), the probability of a response for an individual i on outcome j, yij , conditional on the

item parameters and the latent variables depends solely on the item difficulty parameter,

bj , when the latent variables are set to zero. Similarly, the expected value of a response yij

conditional on the item parameters and the latent variables is a function of only the item

difficulty parameter, bj , when the latent variables are set to zero.

This parameter sets the location of the item responses and, as its name implies, is used

to compare the difficulty of the item with other items on the test. As discussed in Chap-

ter 5, such an outcome-specific location parameter is unable to be estimated directly in the

semiparametric latent variable model. Nonetheless, we can estimate a proxy by estimating

the posterior predictive mean response for an outcome for a hypothetical individual whose

latent variables are set to 0. If the outcomes are normally distributed, the posterior predic-

tive mean response for individuals whose latent variables were set to 0 corresponds directly

to the difficulty parameter, or the outcome specific mean as it might be referred to in factor

analysis. If the outcomes are binary, the posterior predictive mean response conditional on

latent variable values of 0 corresponds to a function of only the difficulty parameter. We

can compare this posterior predictive mean conditional on latent variable values equal to 0

across items to evaluate the items’ relative difficulties.
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Differential Item Functioning

The identification of differential item functioning evaluates whether item properties are con-

sistent across different groups of examinees. The development of methods for the detection

of differential item functioning in the semiparametric latent variable model is of interest.

One approach to detect differential item functioning is to extend the semiparametric vari-

able model hierarchically by allowing the loadings and an item-specific mean to vary by

group membership. For example, to examine whether the loadings on the primary factor

vary by gender, we specify the mean of the product, λj1ηi1, as

E [λj1ηi1] = (α0j + α1jGenderi) ηi1. (8.2)

If we wanted to simultaneously evaluate differences in item-specific mean by gender, we

could specify

E [µj + λj1ηi1] = (γ0j + γ1jGenderi) + (α0j + α1jGenderi) ηi1. (8.3)

Recall that the outcome-specific means are not identifiable for the semiparametric latent

variable model. As a result, we need to fix a parameter to obtain identifiability; for instance,

we might set γ0j = 0.

8.2.4 Extensions for Longitudinal Data

Latent Variable Models

In recent decades, the methods for analyzing longitudinal data and the number of publi-

cations using longitudinal data have steadily increased (van Montfort, Oud, and Satorra,

2010). Studies of cognition often follow participants longitudinally to investigate the evolu-

tion of cognition in individuals and study the factors influencing this evolution. Our motivat-

ing example, the SIVD study, follows participants longitudinally. Similarly, the Alzheimer’s

Disease Neuroimaging Study collects brain imaging, biomarker and neuropsychological test-

ing results from elderly participants on a longitudinal basis. To model longitudinal data,

we consider longitudinal extensions of the latent variable models presented in Chapters 4

and 5.
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Recent literature on longitudinal latent variable models includes Dunson (2003), An-

drade and Tavares (2005), Cagnone, Moustaki, and Vasdekis (2009), Liu and Hedeker

(2006), te Marvelde, Glas, Van Landeghem, and Van Damme (2006) and van Montfort

et al. (2010). A common theme of these models is that the latent variable(s) is allowed to

vary across time, often as a function of time-varying covariates and with some autoregressive

error dependence structure. Many of the models, although not all, assume that the individ-

uals are observed at the same time points for the same number of occasions. Although not

specifically designed for longitudinal data, Fox and Glas (2001) present a comprehensive

formulation of a Bayesian multilevel IRT model. We suggest the formulation of Fox and

Glas (2001) as the template for the longitudinal latent variable model for mixed outcomes

in order to accommodate irregularly observed outcomes and induce within-individual de-

pendence over time through individual-specific coefficients. In this model, we additionally

include a random effect particular to the individual and outcome as a means of inducing ad-

ditional dependence between responses to the same item by the same individual at different

time points.

As our proposed longitudinal data extensions for the parametric and semiparametric

latent variable models for mixed outcomes are very similar, we focus on the longitudinal

data extension for the semiparametric model. Let i = 1, . . . , I denote the ith participant,

j = 1, . . . , J denote the jth item and let t denote time. Age of the individual would be one

measure of time that we would likely consider. The response for individual i on item j at

time t is denoted as yijt. Covariates for participant i at time t are denoted as xit. Finally

let gj(·) be an unspecified monotone transformation particular to item j of a normally

distributed random variable zijt so that yijt = gj(zijt).

We propose the following semiparametric longitudinal latent variable model:

yijt = gj(zijt), (8.4)

zijt ∼ N(λTj ηit + bij , 1), (8.5)

ηitq ∼ N(xTitβiq, 1), (8.6)

bij ∼ N(bj , σ
2
b ), (8.7)

βi ∼MVN(µβi ,Σ
2
β), (8.8)
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µβiq = wT
iqγq. (8.9)

This model has a number of useful features. First, the latent variables (indexed by q =

1, . . . , Q) vary across time. Second, the responses for the same individual are correlated

across time. Moreover, the model allows for responses to the same item for the same

individual to be more correlated than responses to different items across time for the same

individual. Finally, the model allows the number of longitudinal observations to vary across

individuals and to be unequally spaced.

Now consider the specific elements of the model. Equation (8.5) for the mean of zijt re-

sembles the common 2PL linear predictor with a couple of exceptions. The latent variables,

ηit, will vary over time as suggested by the index t affixed to it. Furthermore, there is a

outcome- and individual-specific random effect, bij , that did not exist in our cross-sectional

model. In the longitudinal model, we include this parameter to induce dependence over time

between responses for the same item by the same individual. As for the outcome-specific

mean in the cross-sectional model, there would again be identifiability issues but these may

be alleviated by incorporating a restriction on one of the values.

Although the latent variables in equation (8.5) are allowed to vary with time, we would

like to induce dependence in these variables across time within the individual. This then

would also be a source of dependence between responses within an individual over time.

This is achieved in equation (8.6) for the latent variables where xit is a P length vector of

time-varying covariates at time t for individual i. The individual-specific coefficient vector

βi induces dependence across time in the latent abilities for an individual. The vector βi is

specified by equation (8.8) where Σβ is a covariance matrix for the random coefficients and

µβi is the mean vector.

We specify the means of the individual-specific coefficients βi as functions of non time-

varying covariates denoted by wip. The mean function for the pth of the P individual-specific

coefficients is then set in equation (8.9) where γp is a vector of population-level coefficients.
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Semiparametric Multivariate Regression

Although this type of model has not been applied using the semiparametric approach, it

has been applied to latent variable models using the parametric approach to mixed out-

comes (Dunson, 2003). A more novel development might then be the application of the

semiparametric multivariate regression model to longitudinal multivariate data. Although

multivariate regression models have been applied to longitudinal data, these applications

typically model repeated univariate measurements. In our case, we seek to model repeated

multivariate measurements. We can take advantage of the reduced rank representation used

in our semiparametric regression model and incorporate individual-specific coefficients as in

equation (8.8) for the semiparametric multivariate regression model. Assuming such a model

can be estimated, this development would enable the modeling of irregularly-spaced repeated

multivariate measurements using the semiparametric multivariate regression model.

In conclusion, we feel that the work in this dissertation not only introduces useful new

models for the analysis of multivariate mixed data but also provides plenty of interest-

ing directions for future research and developments. We look forward to pursuing these

directions.
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Appendix A

INDUCED PRIORS

In applying parameter expansion (PX) techniques to improve MCMC convergence , one

may induce priors for the identified parameters that differ from those in the original model

(non parameter expanded model). Liu and Wu (1999) note that the marginal posterior for

a parameter will be the same under the parameter expanded and original models if and only

if the marginal prior from the parameter expanded approach is the same as that specified

in the working model. In the model of Ghosh and Dunson (2009), the parameter expansion

induces t prior distributions and folded-t prior distributions for the elements of the factor

loading matrix, Λ. In the case of the semiparametric model where the variances of the

factors denoted by the diagonal Q × Q matrix Ψ are allowed to vary but the variances

of the latent responses, Σ, are restricted, the induced prior on the factor loadings is a

t-distribution. We show this here to help understand how the induced prior is obtained.

We will then discuss the prior induced by the PX algorithm where both Ψ and Σ are

unrestricted during the MCMC sampling.

Under the original model,

p (Λ,H|Z ∈ D(Y)) ∝ p(Λ)p(H)×
∫
D(Y)

p(Z|Λ,H). (A.1)

Under the working model in the parameter expanded approach,

p (Λ∗,H∗,Σ,Ψ|Z∗ ∈ D(Y)) ∝ pΛ∗(Λ
∗)pH∗(H

∗)p(Σ)p(Ψ)×
∫
D(Y)

p (Z∗|Λ∗,H∗,Σ,Ψ)

(A.2)

=
∏
j

∏
q

pλ∗jq(λ
∗
jq) ·

∏
i

∏
q

pη∗iq(η
∗
iq) ·

∏
j

p(σ−2
j ) ·

∏
q

p(ψ−2
q )

×
∫
D(Y)

p (Z∗|Λ∗,H∗,Σ,Ψ) . (A.3)

where pΛ∗(·), pH∗(·) are used to distinguish the prior densities in the parameter expanded

model from those in the original model for the parameters Λ and H.
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Because ∫
D(Y)

p(Z|Λ,H) =

∫
D(Y)

p (Z∗|Λ∗,H∗,Σ,Ψ) , (A.4)

the marginal posteriors for Λ and H will be the same under the two models if

p(Λ)p(H) =

∫
pΛ∗(tΨ,Σ(Λ))|JΣ,Ψ(Λ)|pH∗(tΨ(H))|JΨ(H)|p(Σ)p(Ψ) dΣdΨ (A.5)

where tΣ(·), tΨ,Σ(·) are the transformations for the parameters in the inferential model to

the working model and |JΣ,Ψ(·)|, |JΨ(·)| are respectively the determinants of the Jacobians

of these transformations.

In the case where only Ψ is unrestricted, the PX algorithm uses the priors

ψ−2
q ∼ Gamma(νψ, φψ), (A.6)

λ∗′j ∼ N
(
mλ∗′j

,Sλ∗′j

)
(A.7)

η∗i ∼ N (0,Ψ) . (A.8)

We further set mλ∗′j
to 0. The transformations from the working model to the inferential

model are

ηi = Ψ−1/2η∗i , (A.9)

Λ = Λ∗Ψ1/2. (A.10)

The prior distribution of ηi is then

Ψ−1/2η∗i ∼ Ψ−1/2N (0,Ψ) (A.11)

=d N (0, IQ) . (A.12)

In the above notation,

pη∗iq(tψq(ηiq))|Jψq(ηiq)| = (2π)−1/2(ψ−2
q )1/2 exp

(
−
ψ−2
q

2
(ψqηiq)

2

)
· ψq (A.13)

= (2π)−1/2 exp

(
−1

2
η2
iq

)
(A.14)

which does not depend on ψ−2
q and is therefore the prior density p(ηiq).
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The prior distribution for λjq is

p(λjq) =

∫
pλ∗jq(tψq(λjq))|Jψq(λjq)|p(ψ

−2
q ) dψ−2

q (A.15)

=

∫
(2πs2

λjq
)−1/2 exp

(
− 1

2sλjq
(ψ−1

q λjq)
2

)
· ψ−1

q · (A.16)

φ
νψq
ψq

Γ(νψq)
(ψ−2

q )νψq−1 exp(−φψqψ−2
q ) dψ−2

q

=
1

(2πs2
λjq

)1/2Γ(νψq)
φ
νψq
ψq

∫
(ψ−2

q )νψq−1/2 exp

(
−

(
λ2
jq

2s2
λjq

+ φψq

)
ψ−2
q

)
dψ−2

q

(A.17)

=
Γ(νψq + 1

2)

(2πs2
λjq

)1/2Γ(νψq)

φ
νψq
ψq(

λ2jq
2s2λjq

+ φψq

)νψq+1/2
(A.18)

·
∫ (

λ2jq
2s2λjq

+ φψq

)νψq+1/2

Γ(νψq + 1
2)

(ψ−2
q )νψq−1/2 exp

(
−

(
λ2
jq

2s2
λjq

+ φψq

)
ψ−2
q

)
dψ−2

q

=
Γ
(

2νψq+1

2

)
Γ
(

2νψq
2

) (
1

2πs2
λjq
φψq

)1/2(
1 +

λ2
jq

2s2
λjq
φψq

)− 2νψq
+1

2

. (A.19)

Thus, λjq is distributed according to a three-parameter t distribution with degrees of freedom

equal to 2νψq , location equal to 0, and scale set to
√
s2
λjq
φψq/νψq .

In the case where Ψ and Σ are unrestricted (or rather their diagonals are unrestricted),

p(λjq) =

∫
pλ∗jq

(
tψq ,σj (λjq)

)
|Jψq ,σj (λjq)|p(ψ

−2
q )p(σ−2

j ) dψ−2
q dσ−2

j (A.20)

=

∫
pλ∗jq

(
ψ−1
q

σ−1
j

λjq

)
ψ−1
q

σ−1
j

p(ψ−2
q , σ−2

j ) dψ−2
q dσ−2

j . (A.21)

Let w = σ−2
j /ψ−2

q , v = ψ−2
q so that λ∗jq = w−1/2λjq. Then,

p(w) =

∫
vpσ−2

j ,ψ−2
q

(wv, v) dv (A.22)

=

∫
v
φ
νσj
σj

Γ(νσj )
(wv)νσj−1 exp

(
−φσjwv

) φ
νψq
ψq

Γ(νψq)
(v)νψq−1 exp

(
−φψqv

)
dv (A.23)

=
φ
νσj
σj

Γ(νσj )

φ
νψq
ψq

Γ(νψq)
wνσj−1

∫
vνσj+νψq−1 exp

(
−
(
φσjw + φψq

)
v
)
dv (A.24)
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=
Γ
(
νσj + νψq

)
Γ
(
νσj
)

Γ
(
νψq
) φ

νσj
σj φ

νψq
ψq(

φσjw + φψq
)νσj+νψq

wνσj−1 (A.25)

·
∫ (

φσjw + φψq
)νσj+νψq

Γ
(
νσj + νψq

) vνσj+νψq−1 exp
(
−
(
φσjw + φψq

)
v
)
dv (A.26)

=
Γ
(
νσj + νψq

)
Γ
(
νσj
)

Γ
(
νψj
) φ

νσj
σj

φ
νσj
ψq

(
1 + w

φψq/φσj

)νσj+νψq
wνσj−1 (A.27)

=
Γ
(
νσj + νψq

)
Γ
(
νσj
)

Γ
(
νψq
) ( w

φψq/φσj

)νσj−1(
1 +

w

φψq/φσj

)−νσj−νψq φσj
φψq

. (A.28)

As a result, w is distributed as a generalized beta prime random variable with second shape

parameter set to 1, or equivalently a compound gamma random variable (Johnson, Kotz,

and Balakrishnan, 1994a,b; Dubey, 1970).

Returning to the induced prior for λjq, we now have

p(λjq) =

∫
pλ∗jq

(
w−1/2λjq

)
w−1/2p(w) dw (A.29)

=

∫ (
2πs2

λjq
w
)−1/2

exp

(
− 1

2s2
λjq
w
λ2
jq

)
p(w) dw. (A.30)

The induced prior for λjq takes the form of a scale mixture of normals with a compound

gamma mixing density.



192

Appendix B

COMPARISON OF CORRELATION MATRIX DISTANCE
MEASURES

This section details an informal and heuristic comparison of the correlation distance

measures considered in Section 2.4 for posterior predictive model checks. To gain some

better intuition about these measures, we consider an example with the following matrices,

A =


1 0.4 0.3

0.4 1 0.2

0.3 0.2 1

 , B =


1 0.6 0.3

0.6 1 0

0.3 0 1

 , C =


1 0.4 0.3

0.4 1 0.48

0.3 0.48 1

 . (B.1)

We compare matrix A to matrices B and C using the Euclidean, symmetric LogDet and

CMD measures. The matrices were selected so that dE(A,B) = dE(A,C). Qualitatively,

however, the relationship between A and B seems different than that between A and C.

A and B differ in two unique off-diagonal elements with one of the elements greater in B

and one greater in A. A and C on the other hand differ only in one unique off-diagonal

element with that off-diagonal element in matrix C greater than the corresponding element

in matrix A and closer in value to one of the other off-diagonal elements in matrix C.

Table B.1 shows the results of the comparison. The Symmetric LogDet measure appears

to be the only measure where there is a noticeable difference between d(A,B) and d(A,C),

indicating greater similarity between A and C than between A and B. To see if the

differences in the matrices would manifest themselves in data generated under a multivariate

normal with the matrices A, B, and C as the covariance matrices, we employed the following

procedure. We generated 10,000 random vectors of length 3 from a multivariate normal

distribution with zero mean and covariance set as the identity matrix. We transform each

vector three times so that the first transformation results in a randomly drawn vector

from a multivariate normal with covariance matrix set to matrix A above, the second

transformation results in a similar vector but with covariance matrix B, and the third with
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Table B.1: Comparison of dissimilarity measures for matrices A, B and C.

d·(A,B) d·(A,C)

Euclidean 0.2828 0.2828

Symmetric LogDet 0.4301 0.2647

CMD 0.0205 0.0199

covariance matrix C. We then have three sets of 10,000 multivariate normal vectors with

covariances set to matrices A, B, and C respectively. We calculated the Euclidean distance

between each vector in the set with covariance matrix A and the set with covariance matrix

B. We also did the same with sets of vectors produced by covariance matrices A and C.

The average Euclidean distance between the sets of vectors with covariance matrix A and

covariance matrix B was 0.3373 whereas the average Euclidean distance between the sets

of vectors with covariance matrix A and covariance matrix C is 0.2552. The standard

error for each of these means is approximately 0.0019. These results appear to support

the notion that A and C are closer together than A and B in that vectors generated from

a multivariate normal distribution with A and C as the specified covariances are closer

together (according to Euclidean distance) than multivariate normal vectors generated with

A and B as the covariances. Moreover, these results suggest that there are differences in

correlation matrices to which Euclidean distance and CMD may not be sensitive and to

which symmetric LogDet may be sensitive.
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