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This note summarizes ideas presented in a lecture for the Bernoulli New Researcher Award 2021.
Rank correlations for measuring and testing against dependence of two random scalars are among the
oldest and best-known topics in nonparametric statistics. This note reviews recent progress towards
understanding and extending rank correlations to multivariate spaces through building connections
to optimal transport and graph-based statistics.

Measuring the strength of dependence and
testing independence for a pair of random
scalars/vectors (X,Y ) based on n independent re-
alizations {(Xi, Yi)}ni=1 is a century-old problem.
In the univariate case, many correlation coefficients
have been proposed and our interest is in those that
meet (most of) the following four criteria.

(a) Distribution-freeness: the (limiting) distri-
bution of the correlation coefficient under the
hypothesis of independence should not depend
on the marginal distributions of X and Y ;

(b) Consistency: the correlation coefficient
should consistently estimate a measure of de-
pendence that is 0 if and only if X is inde-
pendent of Y within a fairly large distribution
family of (X,Y );

(c) Statistical efficiency: the test of inde-
pendence based on the correlation coefficient
should have nontrivial power over root-n neigh-
borhoods of “smooth” parametric models;

(d) Computational efficiency: there should ex-
ist a nearly linear-time algorithm to compute
the correlation coefficient.

In the above four criteria, we are particularly
insistent on the first that was prescribed as the
genesis of all rank tests (Hájek et al., 1999, Page
1). Our attention is thus restricted to rank cor-
relation coefficients. A rank correlation coefficient
estimates a certain measure of dependence only us-
ing the ranks of univariate margins. Distribution-
freeness is then immediate given that the probabil-
ity measure is continuous. Hoeffding (1948) intro-
duced the first rank correlation coefficient that, in
contrast to other popular ones, satisfies the consis-
tency criterion. In addition, this rank correlation
coefficient, ofter referred to as Hoeffding’s D, can be
computed in O(n log n) time. In this note we first
present some recent results on Hoeffding’s D and
its variants and in particular, an identity between
Hoeffding’s D, Blum-Kiefer-Rosenblatt’s R (Blum
et al., 1961), and Bergsma-Dassios-Yanagimoto’s τ∗

(Bergsma and Dassios, 2014; Yanagimoto, 1970) that
raises interesting connections to local structures in
combinatorics (Even-Zohar and Leng, 2021).

Extending the aforementioned rank correlation
coefficients to a multivariate setting when X and
Y are multidimensional is a long-studied problem.
Componentwise rank-based methods that simply
rank univariate margins cannot eliminate within-
group dependence and thus fail to be distribution-
free in multivariate spaces, neither could other al-
ternatives such as spatial, Mahalanobis, and cone
ordering-based ranks (Hallin, 2021, Section 3.2). A
recent breakthrough due to Chernozhukov et al.
(2017) and Hallin et al. (2021) paved an ingenious
path towards a solution. It relates multivariate ranks
to an optimal transport (OT) problem that studies
mappings between the data generating probability
to a preset reference measure that is known to the
user – noticing that the cumulative distribution func-
tion (CDF) is a univariate transport function to the
Lebesgue measure over [0, 1]. In the second part of
this note we will reveal that the corresponding no-
tion of multivariate rank can lead to correlation coef-
ficients that achieve the first three goals, yet are not
computationally efficient.

In addition to the OT-based extension of rank
correlations to higher dimensions, in recent years
there has been a growing interest in connecting rank
correlations to graph-based statistics. Some rather
remarkable results are due to Mona Azadkia and
Sourav Chatterjee in their two recent papers (Chat-
terjee, 2021; Azadkia and Chatterjee, 2021). Notic-
ing that the univariate ranks could also be under-
stood as a correspondence to a 1-nearest neighbor
(1-NN) graph — although NN graphs are metric-
based but not the univariate ranks — they built a
measure of dependence and its estimates over 1-NN
graphs. In the third part of this note we will show
their proposal leads to multivariate rank correlation
coefficients that successfully achieve the goals of (a),
(b), (d), but are not statistically efficient, though
ways to boost efficiency were recently proposed.

§1. Univariate rank correlation coefficients

Spearman’s ρ and Kendall’s τ , like Pearson’s cor-
relation coefficient, do not satisfy the consistency
property; a canonical example is the bivariate-t dis-
tribution which cannot admit independent compo-
nents. Letting F (·, ·), FX(·), FY (·) be the bivariate
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and marginal CDFs of (X,Y ), X, and Y , respec-
tively, Hoeffding (Hoeffding, 1948) introduced the
following correlation measure,

D =

∫ {
F (x, y)− FX(x)FY (y)

}2

dF (x, y);

assuming F is absolutely continuous, D is zero if and
only F corresponds to a product measure. Further-
more, noticing that D is equal to E1(X1 ≤ X3, Y1 ≤
Y3)1(X2 ≤ X3, Y2 ≤ Y3) − 2E1(X1 ≤ X4, Y1 ≤
Y4)1(X2 ≤ X4)1(Y3 ≤ Y4) + E

∏2
j=1 1(Xj ≤

X5)
∏4
k=3 1(Yk ≤ Y5), an unbiased estimator of D

could then be constructed as

D̂n =

(
n

5

)−1 ∑
i1<...<i5

hD{(Xi1 , Yi1), . . . , (Xi5 , Yi5)},

which constitutes a U-statistic of order 5. Since the
kernel function hD(·) only involves ordinal compar-

isons of the inputs, D̂n is a rank correlation coeffi-
cient. Two more such rank correlation coefficients
were later proposed by Blum et al. (1961) (denoted

as R̂n) and Bergsma and Dassios (2014) (denoted
as τ̂∗n); they are U-statistics of orders 6 and 4 sepa-
rately, and are both rank-based. The following items
document their advantages.

(1) All three rank correlation coefficients are
rank-based and hence satisfy the criterion
(a). As a matter of fact, under indepen-
dence they all weakly converge to a convo-
lution of weighted chi-square distributions of
distribution-free weights; cf. Shi et al. (2021c,
Proposition 4).

(2) All three satisfy the criterion (b) for absolutely
continuous measures; cf. Shi et al. (2021c,
Propositions 2 and 3).

(3) All three lead to tests of independence admit-
ing nontrivial power over root-n neighborhoods
within the class of quadratic mean differen-
tiable alternatives and thus satisfy the criterion
(c); cf. Shi et al. (2021c, Theorem 1).

(4) All three can be computed in O(n log n) time,
which is via Hoeffding (1948, Section 5), Even-
Zohar and Leng (2021, Corollary 4), and the
following identity

3D̂n + 2R̂n = 5τ̂∗n

that is due to Drton et al. (2020, Equ. (6.1)),
who traced it back to Yanagimoto (1970,
Proposition 9).

(5) Technically speaking, under independence all
three rank correlations are degenerate U-
statistics. Our recent works have established
Cramér-type moderate deviation theorems and
Bernstein-type tail bounds in complex stochas-
tic systems for such statistics; cf. Drton et al.
(2020, Theorem 4.1) and Shen et al. (2020,
Theorem 2.1).

§2. OT-based correlation coefficients

Starting from this section, let’s consider either X or
Y or both of them are multivariate. Since a canonical
ordering in general does not exist in a multidimen-
sional space, extending rank correlation coefficients
to higher dimensions is non-trivial and all existing
extensions available into the 2000s are either lacking
distribution-freeness in general or hard to compute
(Hallin, 2021, Section 3.2). A major breakthrough
was made in 2017, when Chernozhukov, Galichon,
Hallin, and Henry (Chernozhukov et al., 2017) suc-
cessfully connected the notion of multivariate CDF,
and accordingly the notion of multivariate rank, to
optimal transport.

Thinking about the univariate CDF as a mapping
or transport from the data generating probability to
the Lebesgue measure over [0, 1], their idea can be
briefly described as follows. For any probability mea-
sure P in Rd, set up a reference probability measure
ν in Rd and then define the “multivariate CDF” FP,ν

as a transport from P to ν. As when d ≥ 2 there gen-
erally exist multiple such mappings, define FP,ν to be
the optimal transport that minimizes the transporta-
tion cost under the squared Euclidean loss (analyti-
cally) or, more generally, is the gradient of a convex
function ψ : Rd → R (geometrically). The celebrated
McCann’s theorem (McCann, 1995) guarantees the
existence and uniqueness of such an FP,ν as long as
both P and ν are absolutely continuous (w.r.t the
Lebesgue measure). Cafarelli-type regularity prop-
erties of FP,ν (e.g., Lipschitz-ness and higher-order
smoothness) further exist and were developed in,
e.g., Figalli (2018, Theorem 1.1) and Hallin et al.
(2021, Proposition 2.3), among many others.

Turning to statistical estimation of FP,ν , given
that an empirical measure Pn of P has been observed,
a natural idea is to “discretize” the reference distri-
bution to some νn that will weakly converge to ν,
and then define F̂P,ν

n to be the corresponding optimal
transport pushing Pn to νn. This is called plug-in es-
timation in optimal transport literature; the estima-
tors’ stochastic behavior (e.g., distribution-freeness
and maximal ancillarity), uniform consistency as well

as the rate of convergence for F̂P,ν
n to estimate FP,ν

have already been established (Chernozhukov et al.,
2017; Ghosal and Sen, 2019; Hallin et al., 2021; Deb
et al., 2021; Manole et al., 2021).

Now let’s set up two regular reference distribu-
tions νX and νY as “couples” of PX and PY (the
marginal probability measures of X and Y ), respec-
tively. We are then ready to define OT-based corre-
lation coefficients as extensions to rank-based ones.
Think about a generic multivariate correlation coeffi-
cient such as a U-statistic of order m and kernel H(·);
one canonical example is the distance covariance
with more to be found in Shi et al. (2020, Section 2).
We then introduce OT-based correlation coefficients
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as those that admit the same U-statistic form but
with the input changed from the original data to its
multivariate ranks, {(F̂PX,νX

n (Xi), F̂
PY,νY
n (Yi))}ni=1.

The following items summarize the proposal’s prop-
erties.

(1) OT-based correlation coefficients satisfies the
distribution-freeness criterion, and their lim-
iting null distributions are only dependent on
νX , νY that are known to the user; cf. Shi et al.
(2021a, Theorem 3.1) and Deb and Sen (2021,
Theorem 4.1) for a special example of distance
covariance, and Shi et al. (2020, Corollary 5.1)
for a general one.

(2) As long as the original multivariate correlation
coefficient is consistent, the corresponding OT-
based extension is consistent. This is due to
the measure-preserving nature of the optimal
transport; cf. Shi et al. (2020, Proposition 5.3).

(3) Tests of independence built on OT-based cor-
relation coefficients are statistically efficient,
namely, they have nontrivial power over root-
n neighborhoods within the class of quadratic
mean differentiable alternatives; cf. Shi et al.
(2020, Theorem 5.3).

(4) As long as one of X and Y is multidimen-
sional, there does not exist an algorithm to
compute any considered OT-based correlation
coefficient in nearly linear time; the time com-
plexity is normally between O(n2) and O(n4);
cf. Shi et al. (2020, Section B.3).

(5) Technically speaking, the weak convergence re-
sults could be established using the permuta-
tion uniformity nature of OT-induced ranks
and thus combinatorial inference tools; this
route was explored in Shi et al. (2021a, Theo-
rems 4.1 and 4.2). Different from that, we em-
ployed Hájek representation theorems, which
facilitate local power analyses via invoking Le
Cam’s third lemma (Shi et al., 2020). Using ei-
ther way, the limiting null distribution can be
established without resorting to any sort of rate
of convergence for F̂P,ν

n but only consistency.

§3. Graph-based correlation coefficients

Graph-based inference encompasses a long and rich
literature in nonparametric statistics and has been
applied to test independence by, for example, draw-
ing a data-driven (e.g., tree-structured) partition and
then summarizing information across bins; cf. Heller
et al. (2016). Chatterjee (2021) and later Azadkia
and Chatterjee (2021) recently introduced an inge-
nious way to estimate the following measure of de-
pendence between a random scalar Y and a random
vector X whose format was first proposed in Dette
et al. (2013):

ξ =

∫
Var
{

E
[
1
(
Y ≥ y

)
| X
]}

dFY (y)∫
Var
{
1
(
Y ≥ y

)}
dFY (y)

.

This dependence measure has some rather appealing
properties including, in particular, the capability of
being both consistent (i.e. ξ = 0 if and only if Y is
independent of X) and able to detect perfect de-
pendence (i.e., ξ = 1 if and only if Y is a measurable
function of X).

To estimate ξ, let Ri represent the rank of Yi
among Y1, . . . , Yn and N(i) index the nearest neigh-
bor of Xi; the following graph-based correlation co-
efficient can be shown to be a strongly consistent
estimator of ξ:

ξn =

∑n
i=1 min(Ri, RN(i))− (n+ 1)(2n+ 1)/6

(n2 − 1)/6
.

To understand it, let’s recall the law of total variance
for ξ and that

E[Var{1(Y ≥ t) |X}] ≈
E
{
1(Y1≥ t)−1(YN(1)≥ t)

}2
2

with

1

2

∫
E
{
1(Y1 ≥ t)− 1(YN(1) ≥ t)

}2
dPY (t)

≈
∫

E
{

1(Y1 ≥ t)− 1(Y1 ≥ t)1(YN(1) ≥ t)
}

dPY (t)

= E
[
FY (Y1)−min{FY (Y1), FY (YN(1))}

]
≈ E[R1/n−min(R1, RN(1))/n],

so that Eξn is approximately ξ.
Azadkia and Chatterjee conjectured that under

independence
√
nξn is asymptotically normal. In Shi

et al. (2021b) we resolved this conjecture based on
an elegant prior work of Deb et al. (2020).

Theorem [Distribution-freeness of ξn]. Assume Y in
R is continuous and independent of X in Rp, which
is absolutely continuous. We then have, as n→∞,

√
nξn −→ N

(
0,

2

5
+

2

5
qp +

4

5
op

)
in distribution,

where qp and op are explicitly defined in Shi et al.
(2021b, Equ. (3.2) and (3.3)) and, in particular, are
independent of PX and PY .

The following items summarize ξn’s properties.

(1) Azadkia-Chatterjee’s graph-based correlation
coefficient satisfies the criterion (a) and a test
of independence built on it is directly imple-
mentable without recurring to permutational
critical values; cf. Theorem 1 above.

(2) It is further consistent in view of ξ’s property;
cf. Shi et al. (2021b, Proposition 2.3).

(3) Tests of independence built on Azadkia-
Chatterjee’s graph-based correlation coefficient
are statistically inefficient. In the case p = 1,
this is proved in Cao and Bickel (2020) and Shi
et al. (2021c) and the critical detection bound-
ary is shown to be at the order of n−1/4 in a
regular model (Auddy et al., 2021); the higher
dimensional result is first derived in Shi et al.
(2021b, Theorem 4.1).
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(4) For p = 1, we recently devised a revision
of Azadkia-Chatterjee’s original proposal that
provably boosts the power to be nearly para-
metrically efficient; cf. Lin and Han (2021).

(5) The correlation coefficient can be computed in
O(n log n) time due to the fast speed to con-
duct a nearest neighbor search.

(6) Technically speaking, the theoretical results
are built on large-sample properties of nearest
neighbor graphs, central limit theorems under
local dependence, conditional central limit the-
orem, and Le Cam’s third lemma.

Figure 1 gives a summary of the results.

Figure 1: Summary of discussed correlation coeffi-
cients’ properties.
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