
Transelliptical Graphical Modeling under A Hierarchical

Latent Variable Framework

Han Liu, Fang Han, and Cun-hui Zhang

May 28, 2013

Abstract

We advocate the use of a semiparametric distribution family—the transelliptical—

for robust inference of high dimensional graphical models. The transelliptical graphical

model has a three-layer hierarchical latent variable representation. We provide inter-

pretations of the inferred graph for variables at different layers: (i) For the first layer,

the absence of an edge between two variables means the absence of a certain rank-based

association of the pair given other variables; (ii) For the second layer, the absence of

an edge means the conditional uncorrelatedness of the pair; (iii) For the third layer,

the absence of an edge means the conditional independence of the pair. We propose a

tuning-insensitive, rank-based method that is invariant within the whole transelliptical

family and achieves parametric rates of convergence for both graph recovery and pa-

rameter estimation. This result suggests that the extra robustness and flexibility gained

by semiparametric transelliptical modeling comes with almost no cost. We also report

numerical results on synthetic and real datasets to support the theoretical analysis.

Keyword: High dimensional statistics; Multivariate analysis; Undirected graphical models;

Transelliptical family; Robust inference Semiparametric inference.

1 Introduction

We consider the problem of learning high dimensional graphical models: given independent

observations from a d-dimensional random vector X := (X1, ..., Xd)
T , we want to estimate

an undirected graph G := (V,E), where V contains nodes corresponding to the d variables

in X and the edge set E describes certain relationships between X1, . . . , Xd. In particu-

lar, (j, k) /∈ E implies the absence of a certain notion of association between Xj and Xk

conditionally on the rest of variables.

For Gaussian data X ∼ Nd(µ,Σ), this problem reduces to the covariance selection

problem (Dempster, 1972): we want to infer a graph G that encodes the conditional in-

dependence relationship between X1, ..., Xd. Let X\{j,k} := {X` : ` 6= j, k}. We say that
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the joint distribution of X is Markovian in the graph G = (V,E) when (j, k) /∈ E is equiv-

alent to the conditional independence of Xj and Xk given X\{j,k}. Under this normality

assumption, the graph G is encoded by the precision matrix Θ := Σ−1. More specifically,

no edge connects Xj and Xk if and only if Θjk = 0. In the low dimensional case of d < n,

Drton and Perlman (2007, 2008) develop a multiple testing procedure for identifying the

sparsity pattern of the precision matrix. In the high dimensional case of d � n, Mein-

shausen and Bühlmann (2006) proposes a neighborhood pursuit approach of estimating

Gaussian graphical models by solving a collection of sparse regression problems using the

Lasso (Tibshirani, 1996; Chen et al., 1998). Such an approach can be viewed as a pseudo-

likelihood approximation of the full likelihood. In contrast, Banerjee et al. (2008), Yuan

and Lin (2007) and Friedman et al. (2008) propose penalized likelihood approaches to di-

rectly estimate Θ. Lam and Fan (2009) and Shen et al. (2012) propose to maximize the

non-concave penalized likelihood to obtain an estimator with less bias than the traditional

L1-regularized estimator. Jalali et al. (2012) proposes to estimate the precision matrix via

a greedy algorithm. Under certain conditions, Ravikumar et al. (2011) and Rothman et al.

(2008) study the theoretical properties of the penalized likelihood methods. Yuan (2010)

and Cai et al. (2011) propose the graphical Dantzig selector and CLIME respectively, which

can be solved by linear programming and are more amenable to theoretical analysis than

the penalized likelihood approach. More recently, Liu and Luo (2012) and Sun and Zhang

(2012) propose the SCIO and scaled-Lasso methods, which estimate the sparse precision

matrix in a column-by-column fashion and have good theoretical properties.

For non-Gaussian data, Liu et al. (2009) proposes a semiparametric Gaussian copula

model named nonparanormal. Instead of imposing a normality condition on X, the non-

paranormal model assumes the existence of a set of monotone functions f1, . . . , fd such that

the transformed data f(X) := (f1(X1), . . . , fd(Xd))
T is Gaussian. More details about this

model can be found in Liu et al. (2012), Lafferty et al. (2012), and Xue and Zou (2012).

Zhao et al. (2012) develops a scalable software package to implement the nonparanormal

algorithms. Other nonparametric methods include forest graphical models (Liu et al.,

2011) and conditional graphical models (Liu et al., 2010a). In a different line of research,

Vogel and Fried (2011) considers the elliptical graphical models. The elliptical family

contains many multivariate distributions, including multivariate Gaussian, multivariate t-

distribution, Cauchy, logistic, Kotz, symmetric Pearson type-II and type-VII distributions.

The inferred graph is named the generalized partial correlation graph, which represents con-

ditional uncorrelatedness among variables. Conditional uncorrelatedness is a weaker notion

than conditional independence. Therefore, by extending the Gaussian to elliptical family,

the gain in modeling flexibility is traded off with a loss in the strength of inference. The

analysis and algorithm of Vogel and Fried (2011) are mainly for low dimensional settings

and are not straightforwardly extendable to high dimensional settings where d > n. In a

related work, Finegold and Drton (2009) studies the t-graphical model and propose an EM-
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type algorithm for model fitting in high dimensions. However, no asymptotic properties

are shown for this algorithm.

In this paper, we introduce a new graphical modeling strategy based on a newly defined

model family named transelliptical distribution. The transelliptical modeling strategy ex-

tends the idea of nonparanormal modeling from Liu et al. (2009): by mimicking how the

nonparanormal extends the normal family, the transelliptical extends the elliptical family

in the same way. More specifically, we say that a random vector X = (X1, . . . , Xd)
T ∈ Rd

follows a transelliptical distribution if there exists a set of strictly increasing functions

f := {fj}dj=1 such that f(X) := (f1(X1), . . . , fd(Xd))
T follows an elliptical distribution

with non-degenerate marginals (More details will be given in later sections).

Elliptical

Nonparanormal

Transelliptical

Multivariate t

Gaussian

Figure 1: The Venn diagram illustrating the relationships of the transelliptical, elliptical, and

nonparanormal families: The nonparanormal and elliptical distributions are proper subsets of the

transelliptical family, and the intersection between the nonparanomral and elliptical families is

Gaussian (More details of this diagram are provided in later sections).

Figure 1 illustrates the relationships of the transelliptical, elliptical, and nonparanor-

mal families. Both the nonparanormal and elliptical distributions are proper subsets of

the transelliptical family1, and the only distribution that simultaneously belongs to the

nonparanormal and elliptical families is Gaussian. More details about these points will be

elaborated in later sections.

In Section 3, we construct the transelliptical graphical model based on the transellipti-

cal family. In particular, as is illustrated in Figure 2, we provide a three-layer hierarchical

latent variable representation of the transelliptical graphical model. The observable vector,

denoted by X := (X1, . . . , Xd)
T and presented in the first-layer, has a transelliptical distri-

bution, and a latent random vector, Z := (Z1, . . . , Zd)
T in the second-layer, is elliptically

distributed. Variables in the first and second layers are related through the transformation

1Whenever we say the transelliptical family contains elliptical family, we only consider elliptical distri-

butions with non-degenerate marginal distributions.
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Figure 2: Hierarchal latent variable representation of the transelliptical graphical model with the

latent variables gray-colored. The first layer is composed of observed variables Xj , and the second

and third layers are composed of latent variables Zj and Yj . The solid undirected lines in the

third layer encode the conditional independence graph of Y1, . . . , Yd. The same graph is drawn

using dashed lines and dotted lines for the second layer latent variables and the first layer observed

variables. The transformation from Layer 2 to Layer 1 is through deterministic marginal monotone

transformation. The transformation from Layer 3 to Layer 2 is through stochastic scaling (with

more details in Section 3).

Zj := fj(Xj) with fj being an unknown monotone function. In the next section, we show

that the latent random vector Z can be further represented by a third-layer latent random

vector Y := (Y1, . . . , Yd)
T which has a multivariate Gaussian distribution with a correlation

matrix Σ and precision matrix Θ := Σ−1. We define the latent generalized partial correla-

tion graph G := (V,E) with the vertex set V = {1, . . . , d} and the edge set E encoding the

nonzero entries of Θ. We provide interpretations of graph G for variables in different layers:

(i) For the observed variables in the first layer, the absence of an edge between two variables

means the absence of a certain rank-based association of the pair given other variables; (ii)

For the latent variables in the second layer, the absence of an edge means the absence of

the conditional Pearson’s correlation of the pair; (iii) For the latent variables in the third

layer, the absence of an edge means the conditional independence of the pair. Therefore,

compared with the Gaussian graphical model, the transelliptical graphical model has much

richer structures and interpretations. We have the same graphical structure for all three

layers of variables. However, the interpretations of these graphs are different.

To infer the graph structure, we propose a new rank-based estimating procedure named
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scaled CLIME, which can be formulated as a linear program. This procedure is adap-

tive over the whole transelliptical family in the sense that it is invariant to the gener-

ating variable of the latent elliptical distributions. Detailed definition of the generating

variable will be introduced later. This procedure is tuning-insensitive non-asymptotically

and tuning-free asymptotically: it requires little effort to choose the tuning parameter

in finite sample settings. Moreover, it has the same computational complexity as the

CLIME estimator. Theoretically, the new procedure achieves the same parametric rates

of convergence as the CLIME does for graph recovery and parameter estimation, even

though the transelliptical family is much larger than the nonparanormal and elliptical

families. These results suggest that the transelliptical graphical model can be used as

a safe replacement of the nonparanormal and elliptical graphical models. We also pro-

vide thorough numerical results on both synthetic and real datasets to back up our theory.

Some of the results in this paper were first stated without proof in a conference version:

http://books.nips.cc/papers/files/nips25/NIPS2012_0380.pdf.

The rest of this paper is organized as follows. In Section 2, we review the elliptical

distribution. In Section 3 we introduce the transelliptical graphical model and study its

relationship with the nonparanormal graphical model. In Section 4 we discuss the invariant

property of Kendall’s tau statistic within the transelliptical family and propose our rank

based estimation procedures motivated by this result. We also propose a new rank-based

graph estimator, named scaled CLIME, which can be formulated as a linear program. In

Section 5 we present asymptotic properties of the proposed procedure in both parameter

estimation and graph recovery. In Section 6 we provide experimental results on both syn-

thetic and real-world datasets. Some discussions and conclusions are summarized in the

last section. All the proofs are put in the appendix.

2 Background

In this section, we introduce our notation and discuss the elliptical distribution family.

Let v := (v1, . . . , vd)
T ∈ Rd denote vectors, A = (Ajk) matrices, and I(·) the indicator

function. Let ‖v‖q denote the `q norm, with ‖v‖q :=
(∑d

j=1 |vj |q
)1/q

for 0 < q < ∞,

‖v‖0 :=
∑d

j=1 I(vj 6= 0) and ‖v‖∞ := maxj |vj |. For a symmetric matrix A ∈ Rd×d and

index sets I and J in {1, . . . , d}, we denote by AI,J the submatrix of A with row and

column indices in I and J , A∗j the jth column of A, and A∗\j the submatrix of A with

the jth column A∗j removed. We use the following notation for matrix norms:

‖A‖q := max
‖v‖q=1

‖Av‖q, ‖A‖max := max
jk
|Ajk|, and ‖A‖F :=

(∑

j,k

|Ajk|2
)1/2

.

It is easy to see that ‖A‖∞ = ‖A‖1 for symmetric A. We denote by Λmax(A) and Λmin(A)

the largest and smallest eigenvalues of A. For any univariate function f : R → R, let
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f(A) = [f(Ajk)] denote the d by d matrix with an application of the function f to each

individual entry of A.

2.1 Background on Elliptical Distribution

We denote byX
d
= Y if random vectorsX and Y have the same distribution. The elliptical

distribution is defined as follows.

Definition 2.1 (Elliptical distribution (Fang et al., 1990)). Let µ ∈ Rd and Σ ∈ Rd×d with

rank(Σ) = q ≤ d. A d-dimensional random vector X has an elliptical distribution, denoted

by X ∼ ECd(µ,Σ, ξ), if it has a stochastic representation

X
d
= µ+ ξAU ,

where U is a uniform random vector on the unit sphere in Rq, ξ ≥ 0 is a scalar random

variable independent of U , A ∈ Rd×q is a deterministic matrix satisfying AAT = Σ.

An equivalent definition of the elliptical distribution is that its characteristic function

can be written as exp(itTµ)ψ(tTΣt), where ψ is a properly-defined characteristic function

uniquely determined by the generating variable ξ in Definition 2.1. When rank(Σ) = q,

ψ also uniquely determines the distribution of ξ. This justifies the alternative notation,

X ∼ ECd(µ,Σ, ψ). Another stochastic representation of a random vector X with the

elliptical distribution is provided in Theorem 3.12.

An elliptical distribution does not necessarily have a density. One example is rank-

defficient Gaussian. Another example is discrete ξ. More examples can be found in Halmos

(1974). However, when the random variable ξ is absolute continuous with respect to the

Lebesgue measure and Σ is non-singular, the joint density of X exists and has the form

p(x) = |Σ|−1/2g
(
(x− µ)TΣ−1(x− µ)

)
, (2.1)

where g(·), called the scale function, is uniquely determined by the distribution of ξ. In this

case, we also write X ∼ ECd(µ,Σ, g). Many multivariate distributions belong to the ellip-

tical family. For example, when g(x) = (2π)−d/2 exp {−x/2}, X is d-dimensional Gaussian.

Another important subclass of the elliptical family is the multivariate t-distribution with v

degrees of freedom, corresponding to

g(x) = cv
Γ
(
v+d

2

)

(vπ)
d
2 Γ(v2 )

(
1 +

c2
vx

v

)− v+d
2

,

where cv is a normalizing constant.
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2.2 Identifiability Condition

The quantities used to define the elliptical family in Definition 2.1 are not completely

identifiable. For example, given X ∼ ECd(µ,Σ, ξ) with rank(Σ) = q, there exist multiple

matrices A corresponding to the same Σ: i.e. A1 6= A2 ∈ Rd×q but A1A
T
1 = A2A

T
2 = Σ.

Therefore we parameterize the distribution by Σ instead of A. Moreover, Σ is unique only

up to a constant scaling: i.e. ξAU = ξ∗A∗U with ξ∗ = ξ/c and A∗ = cA for all c > 0. To

make the model identifiable, we impose the following condition:

Definition 2.2 (Identifiability condition). For identifiability purpose, we require the con-

dition that max1≤i≤d Σii = 1. Such Σ is called the generalized covariance matrix. Σ−1 is

called the generalized inverse covariance matrix.

More discussions about the identifiability issue can be found in Fang et al. (1990).

3 Transelliptical Graphical Models

In this paper we only consider distributions with non-degenerate marginals. We introduce

the transelliptical graphical model in analogy to the nonparanormal graphical model (Liu

et al., 2009) as follows. Let A be a symmetric positive definite matrix. We denote by

diag(A) the matrix A with off-diagonal elements replaced by zero, and by A1/2 a squared

root matrix of A, i.e., A1/2(A1/2)T = A. We also denote by Id the d-dimensional identity

matrix. In the sequel, we denote the class of correlation matrices by

R+
d := {Σ ∈ Rd×d : ΣT = Σ, diag(Σ) = Id,Λmin(Σ) > 0}.

3.1 Definition of Transelliptical Distribution

The Transelliptical distribution is defined as follows:

Definition 3.1 (Transelliptical distribution). A random vector X = (X1, . . . , Xd)
T follows

a transelliptical distribution, denoted by

X ∼ TEd(Σ, ξ; f1, . . . , fd),

if there exists a set of strictly increasing functions f1, . . . , fd and a nonnegative random

variable ξ satisfying P(ξ = 0) = 0, such that (f1(X1), . . . , fd(Xd))
T ∼ ECd(0,Σ, ξ), where

Σ, called the latent generalized correlation matrix, satisfies the identifiability condition that

diag(Σ) = Id.

Remark 3.2. From the above definition, we can easily recover any elliptical distribu-

tion with nondegenerate marginals by choosing suitable linear functions fj. Therefore, the
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transelliptical family is a strict extension of the elliptical family2. Since diag(Σ) = Id in

Definition 3.1, fj(Xj) all have marginal densities. The transelliptical family of distributions

is closed under sign change of individual variables, so that fj(Xj) with decreasing fj can be

viewed as −fj(−Xj). However, by assuming that fj are all increasing functions, we gain

the identifiability of the sign of the latent generalized correlation.

We discuss in the rest of this subsection the relationship of the transelliptical family

with the nonparanormal (Liu et al., 2012) and meta-elliptical (Fang et al., 2002) families,

which are defined as follows:

Definition 3.3 (Nonparanormal distribution). A ramdom vector X = (X1, . . . , Xd)
T fol-

lows a nonparanormal distribution, denoted by

X ∼ NPNd(Σ; f1, . . . , fd),

if there exists a set of monotone functions f1, . . . , fd such that (f1(X1), . . . , fd(Xd))
T ∼

Nd(0,Σ), where Σ ∈ R+
d is called the latent correlation matrix.

Definition 3.4 (Meta-elliptical distribution). Let X = (X1, . . . , Xd)
T be a random vec-

tor with marginal distribution functions F1, . . . , Fd and a joint density. We say that X

follows a meta-elliptical distribution, denoted by X ∼MEd(Σ;Qg, F1, . . . , Fd), if there ex-

ists a continuous elliptical random vector Z ∼ ECd(0,Σ, g) with the marginal distribution

function Qg and Σ ∈ R+
d , such that

(Q−1
g (F1(X1)), . . . , Q−1

g (Fd(Xd)))
T d

= Z.

Here, Σ is called the latent generalized correlation matrix.

From Definitions 3.1 and 3.3, we see that the transelliptical is a strict extension of the

nonparanormal. Both families assume that there exits a set of univariate transformations

such that the transformed data follow a base distribution: the nonparanormal exploits a

normal base distribution; While the transelliptical exploits an elliptical base distribution.

For nonparanormal distributions, Σ is the correlation matrix of the latent normal, therefore

it is called latent correlation matrix; For transelliptical distributions, Σ is the generalized

correlation matrix of the latent elliptical distribution, therefore it is called latent generalized

correlation matrix.

The comparison between the transelliptical and meta-elliptical families is subtler. Lemma

3.5 shows that the transelliptical family contains the meta-elliptical family. This lemma

illustrates the intrinsic connection between the transelliptical and meta-elliptical families.

One thing to note is that, even though they are equivalent when density exists, the way these

2Again, whenever we say the transelliptical family contains elliptical family, we only consider continuous

elliptical distributions.
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two families are defined are fundamentally different. The transelliptical family is defined by

characterizing varaible transformations while the meta-elliptical family is defined by char-

acterizing the density function. Later, we will show that the way we define transelliptical

family brings new insights in both theoretical analysis and model interpretation.

Lemma 3.5. Let X ∼ MEd(Σ;Qg, F1, . . . , Fd), where Σ ∈ R+
d . There exists a scalar

random variable ξ ≥ 0 whose density exists and a set of univariate monotone functions

f1, . . . , fd, such that X ∼ TEd(Σ, ξ; f1, . . . , fd). Moreover, if X ∼ TEd(Σ, ξ; f1, . . . , fd), its

joint density exists, and ξ is absolute continuous, then it is also meta-elliptically distributed.

The transelliptical family is strictly larger than the meta-elliptical family. This can be

seen from two perspectives: (i) For a transelliptical variable X ∼ TEd(Σ, ξ; f1, . . . , fd), the

generating variable ξ is not necessarily absolute continuous with respect to the Lebesgue

measure. In contrast, the meta-elliptical family requires the existence of a joint density,

which implies the absolute continuity of the underlying generating variable ξ; (ii) The

marginals of a transelliptical distribution do not necessarily possess density, while the

marginal densities of a meta-elliptical distribution must exist.

3.2 Transelliptical Graphical Models

We now define the transelliptical graphical model. Let X ∼ TEd(Σ, ξ; f1, . . . , fd), where

Σ ∈ R+
d is the latent generalized correlation matrix. We define Θ := Σ−1 to be the latent

generalized concentration matrix. Let Θjk be the element of Θ on the j-th row and k-th

column. We define the latent generalized partial correlation matrix Γ as

Γjk := − Θjk√
Θjj ·Θkk

.

It is easy to see that Γ has the same nonzero pattern as Θ := Σ−1 and

Γ = −[diag(Σ−1)]−1/2Σ−1[diag(Σ−1)]−1/2. (3.1)

We then define an undirected graph G = (V,E): the vertex set V contains nodes corre-

sponding to the d variables in X, and the edge set E satisfies

(Xj , Xk) ∈ E if and only if Γjk 6= 0 for j, k = 1, . . . , d. (3.2)

Given a graph G, we define R+
d (G) to be

R+
d (G):=

{
Σ ∈ R+

d : Λmin(Σ) > 0, G characterizes zero entries of Σ−1
}
.

In another word, Σ ∈ R+
d (G) implies that: [Σ−1]jk = 0 whenever the edge (j, k) is absent

in G. The transelliptical graphical model induced by a graph G is defined as:
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Definition 3.6 (transelliptical graphical model). The transelliptical graphical model in-

duced by a graph G, denoted by P(G), is defined to be the set of distributions:

P(G) :=
{

all the transelliptical distributions TEd(Σ, ξ; f1, . . . , fd) satisfying Σ ∈ R+
d (G)

}
.

This graph G is called latent generalized partial correlation graph.

In the rest of this section, we prove some properties of the transelliptical distribution

family and discuss the interpretation of the graph G. First, we show that the transelliptical

family is closed under marginalization and conditioning. This result suggests that the

conditional transelliptical graph given {Xj , j ∈ J} is the subgraph of the marginal graph

G with all vertices in J and edges connected to vertices not in J removed.

Lemma 3.7. Let X := (X1, . . . , Xd)
T ∼ TEd(Σ, ξ; f1, . . . , fd). For any nontrivial subset

J of {1, . . . , d}, XJ is transelliptical with the latent generalized correlation matrix ΣJ,J .

Moreover, if Σ is of full rank, then conditionally on XJc, XJ is transelliptical with the

latent generalized correlation matrix diag−1/2
(
[ΘJ,J ]−1

)
[ΘJ,J ]−1diag−1/2

(
[ΘJ,J ]−1

)
. In

particular, the marginal and conditional distributions of (X1, X2)T given the remaining

variables are still transellipitical.

From (3.1), we see that Γ and Θ have the same nonzero pattern, therefore, they encode

the same graphG. LetX ∼ TEd(Σ, ξ; f1, . . . , fd) belong to a transelliptical graphical model

P(G). The next lemma shows that the absence of an edge in the graph G is equivalent to

the pairwise conditional uncorrelatedness of the two corresponding latent variables. Note

that we do not need the second moment condition Eξ2 < ∞ to make the conditional

uncorrelatedness well-defined.

Lemma 3.8. Let X := (X1, . . . , Xd)
T ∼ TEd(Σ, ξ; f1, . . . , fd) belong to a transelliptical

graphical model P(G), and

Zj := fj(Xj) for j = 1, . . . , d.

Then, for |J | < d, ΘJ,J is diagonal if and only if {Zj , j ∈ J} are uncorrelated given

{Zk, k 6∈ J}. In particular, for d > 2, Γjk = 0 if and only if Zj and Zk are conditionally

uncorrelated given Z\{j,k}.

Let A,B,C be disjoint subsets of {1, . . . , d}. We say C separates A and B in the graph

G if any path from a node in A to a node in B goes through at least one node in C. We

denote by XA the subvector of X indexed by A. The next lemma reveals the connection

between the pairwise and global conditional uncorrelatedness of the latent variables for the

transelliptical graphical models. This theorem connects the graph theory with probability

theory.
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Theorem 3.9. Let X ∼ TEd(Σ, ξ; f1, . . . , fd) belong to a transelliptical graphical model

P(G). Let Z := (Z1, . . . , Zd)
T with Zj = fj(Xj) and A,B,C ⊂ {1, . . . , d} with |C| > 0.

Then, if C separates A and B in G, ZA and ZB are conditionally uncorrelated given ZC .

Conversely, if A∪B ∪C = {1, . . . , d} and ZA and ZB are conditionally uncorrelated given

ZC , then C separates A and B in G.

Compared with the nonparanormal graphical model, the transelliptical graphical model

gains a lot on modeling flexibility, but at the price of inferring a weaker notion of graphs:

a missing edge in the graph only represents the conditional uncorrelatedness of the latent

variables Zj = fj(Xj). The next lemma shows that the nonparanormal is the only subfamily

in which a transelliptical graph encodes the conditional independence relationships among

the observed variables X1, . . . , Xd.

Theorem 3.10. Let X ∼ TEd(Σ, ξ; f1, . . . , fd) be a member of the transelliptical graphical

model P(G). Then the graph G encodes the conditional independence relationship of X (In

other words, the distribution of X is Markov to G) if and only if X is nonparanormal.

3.3 Relationships between Different Distribution Families

In this subsection, we present Theorem 3.11, which describes the relationship among the

nonparanormal, the elliptical and the transelliptical families in detail. This theorem justifies

Figure 1 in the introduction section.

Theorem 3.11. Both the nonparanormal and elliptical families belong to the transellip-

tical family. Furthermore, if X ∼ NPNd(Σ; f1, . . . , fd) with rank(Σ) > 1 and X is also

elliptically distributed, then X has a Gaussian distribution.

Next, we present Theorem 3.12, which provides a latent Gaussian representation of

the elliptical distribution. This theorem, together with the definition of transelliptical

distribution, justifies Figure 2 in the introduction section.

Theorem 3.12. Let Z ∼ ECd(µ,Σ, ξ) be an elliptical distribution with Σ = AAT . It

takes another stochastic representation:

Z
d
= µ+ ξY /‖A†Y ‖2,

where Y ∼ Nd(0,Σ), ξ ≥ 0 is independent of Y /||A†Y ||2 and A† is the Moore-Penrose

pseudoinverse of A.

3.4 Conditional Uncorrelatedness with Respect to Rank Association

Let X̃ = (X̃1, . . . , X̃d)
T be an independent copy of X. The population version of the

Kendall’s tau statistic is

τjk := Corr
(
sign(Xj − X̃j), sign(Xk − X̃k)

)
.
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Let x1, . . . ,xn ∈ Rd be n observed data points with xi = (xi1, . . . , xid)
T . The sample

version Kendall’s tau statistic is defined as:

τ̂jk :=
2

n(n− 1)

∑

1≤i<i′≤n
sign

(
xij − xi′j

)
(xik − xi′k) ,

which is a monotone transformation-invariant measure of association between the empirical

realizations of two random variablesXj andXk. It is easy to verify that Eτ̂jk = τjk. Another

interpretation of the Kendall’s tau statistic is based on the notion of concordance. We call

two pairs of real numbers (s, t) and (u, v) concordant if (s− t)(u−v) > 0 and disconcordant

if (s− t)(u− v) < 0. Kruskal (1958) shows that

τjk = P
(
(Zj − Z̃j)(Zk − Z̃k) > 0

)
− P

(
(Zj − Z̃j)(Zk − Z̃k) < 0

)
. (3.3)

Let X ∼ TEd(Σ, ξ; f1, . . . , fd), the following theorem illustrates an important relationship

between the population Kendall’s tau statistic τjk and the latent generalized correlation

coefficient Σjk. A similar result held for the meta-elliptical distribution family can be seen

in Fang et al. (2002).

Theorem 3.13. Let X := (X1, . . . , Xd)
T ∼ TEd(Σ, ξ; f1, . . . , fd) and τjk be the population

Kendall’s tau statistic between Xj and Xk. Then, Σjk = sin
(π

2
τjk

)
.

From Lemma 3.7, we know that (Xj , Xk)
T |XC follows a transelliptical distribution

for any nontrivial subset C of {1, . . . , d}. Let τ(Xj , Xk |XC) be the population Kendall’s

tau correlation under this conditional distribution and τ(XJ |XJc) the |J | × |J | matrix

of such conditional Kendall’s tau with elements [τ(XJ |XJc)]jk = τ(XJj , XJk |XJc). The

next lemma shows that the graph G obtained in (3.2) characterizes pairwise conditional

uncorrelatedness with respect to the rank correlation graph. For such an interpretation, we

again do not need the second moment condition Eξ2 <∞.

Lemma 3.14. Let X ∼ TEd(Σ, ξ; f1, . . . , fd) belong to the transelliptical graphical model

P(G). Then, for |J | < d, ΘJ,J is diagonal if and only if τ(XJ |XJc) is diagonal. In

particular, we have Θjk = Γjk = 0 if and only if τ(Xj , Xk |X\{j,k}) = 0.

For disjoint subsets A, B and C of {1, 2, . . . , d}, we define the population Kendall’s

tau correlation matrix conditionally on XC , τ(XA,XB|XC), as the matrix with elements

τ(Xj , Xk|XC), j ∈ A, k ∈ B. The next theorem characterizes the connection between the

graph G and global conditional uncorrelatedness with respect to the rank correlation graph.

Theorem 3.15. Let X ∼ TEd(Σ, ξ; f1, . . . , fd) belong to the transelliptical graphical model

P(G). Let A,B,C be three disjoint subsets of {1, 2, . . . , d}. If C separates A and B

in the graph G, then τ(XA,XB|XC) = 0. Conversely, if A ∪ B ∪ C = {1, . . . , d} and

τ(XA,XB|XC) = 0, then C separates A and B in G.
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4 Parameter and Graph Estimations

In this section, we propose two nonparametric rank-based regularization estimators which

achieve parametric rates of convergence for both graph recovery and parameter estimation.

The main idea of our procedure is to treat the marginal transformation functions fj and

the generating variable ξ as nuisance parameters, and exploit the nonparametric Kendall’s

tau statistic to directly estimate the latent generalized correlation matrix Σ. The obtained

correlation matrix estimate is then plugged into either the CLIME estimator or its variant–

named Scaled CLIME—to estimate the sparse latent generalized concentration matrix Θ.

From the previous discussion, we know that the graph G is encoded by the nonzero pattern

of Θ. We then get a graph estimator by thresholding the estimated Θ̂. Theoretically, we

show that even though the transelliptical family is larger than the nonparanormal and ellip-

tical families, our procedures achieve the same parametric rates of convergence as CLIME

for graph recovery and parameter estimation. Moreover, the rank-based scaled CLIME

estimator can be shown to be non-asymptotically tuning-insensitive and asymptotically

tuning-free. Computationally, it has the same computational complexity as the CLIME

estimator.

4.1 Rank-based estimation of latent generalized correlation matrix

Let I(·) be the indicator function. Motivated by the explicit relationship between the

Kendall’s tau and the generalized correlation in Theorem 3.13, we define a raw estimate of

the latent generalized correlation matrix Σ as

Ŝ = [Ŝjk] ∈ Rd×d, where Ŝjk = sin
(
π
2 τ̂jk

)
· I(j 6= k) + I(j = k). (4.1)

For the transelliptical family, this Kendall’s tau-based raw estimator plays a role parallel

to that of the sample correlation matrix for the multivariate Gaussian family. For the

estimation of a fixed Σ, Ŝ is n−1/2 consistent and asymptotically normal. For large sparse

Σ, Ŝ is not sparse but it can be thresholded to produce a sparse estimator of Σ. Similar

to Bickel and Levina (2008a,b), it can be shown that such a thresholded estimator is

consistent in the spectral norm when maxj≤d
∑d

k=1 min(|Σjk|,
√

(log d)/n) → 0. When

the thresholded Ŝ is consistent in the spectral norm and the spectral norm of the latent

generalized concentration matrix Θ = Σ−1 is bounded, the thresholded estimator can

be inverted to yield a consistent estimator of Θ. However, thresholding the estimated

correlation does not guarantee consistency when the sparsity assumption is imposed on the

latent generalized concentration matrix of the transelliptical graphical model.

4.2 Rank-based CLIME Estimator

When a suitable sparsity assumption on the latent generalized concentration matrix Θ =

Σ−1 is reasonable, we propose to estimate Θ by plugging the Kendall’s tau-based raw
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estimator (4.1) into the CLIME estimator (Cai et al., 2011). More specifically, the latent

generalized concentration matrix Θ can be estimated by solving

Θ̂ = arg min
Ω

∑

j,k

|Ωjk| subject to ‖ŜΩ− Id‖max ≤ λ, (4.2)

where λ > 0 is a tuning parameter.

By Cai et al. (2011), this optimization problem can be decomposed into d vector min-

imization problems and solved in parallel. For each j, we can directly estimates the jth

column of Θ by solving

Θ̂∗j = argmin
Ω∗j

∥∥Ω∗j
∥∥

1
subject to

∥∥ŜΩ∗j − ej
∥∥
∞ ≤ λ, for j = 1, . . . , d, (4.3)

where ej is the jth canonical vector and δj is a tuning parameter. This decomposability of

the CLIME indicates its potential scalability to large problems.

Once Θ̂ is obtained, we can apply an additional thresholding step to estimate the graph

G. To this end, we define a graph estimator

Ĝ = (V, Ê), where (j, k) ∈ Ê if and only if |Θ̂jk| ≥ γ. (4.4)

Here γ is another tuning parameter. Empirically, we found the rank-based CLIME proce-

dure works very effectively in graph estimation even without this hard-thresholding step

(i.e., simply setting γ = 0 already delivers good graph estimates). Thus, this hard-

thresholding step is more of theoretical interest and may not be necessary in applications.

For all the empirical results illustrated in this paper, we set γ = 0.

4.3 Rank-based Scaled CLIME Estimator

As will be explained in Theorem 5.1, the above rank-based CLIME estimator requires a

tuning parameter λ depending on the unknown quantity ‖Θ‖1. Therefore, even though

the algorithm runs in a column-by-column fashion, all the regression subproblems in (4.3)

must use the same tuning parameter λ. Such a restriction may lead to the use of an

overly conservative tuning-parameter with the rank-based CLIME, especially in cases where

different subproblems require different levels of regularization. In this section, we propose

a new estimator named rank-based scaled CLIME which is more tuning-insensitive. In

another word, the tuning parameter λ does not depend on the unknown quantity ‖Θ‖1.

As will be reported in the experimental section, the rank-based scaled CLIME outperforms

the rank-based original CLIME in many situations in terms of graph estimation.

Recall that any real number a takes the decomposition a = a+−a−, where a+ = a·I(a ≥
0) and a− = −a · I(a < 0). For any vector v = (v1, . . . , vd)

T ∈ Rd, let v+ := (v+
1 , . . . , v

+
d )T

and v− = (v−1 , . . . , v
−
d ). We have v = v+ − v− and ||v||1 = 1Td (v+ + v−), where 1d :=

(1, . . . , 1)T . We say that v ≥ 0 if minj≤d vj ≥ 0, v1 ≥ v2 if v1 − v2 ≥ 0, and v1 ≤ v2
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if v2 − v1 ≥ 0. Letting Rd0+ represent the d dimensional real space where each entry is

nonnegative, the scaled CLIME estimator is defined as the following convex program which

can be efficiently computed by a linear program solver:

Rank-based Scaled CLIME Estimator

For j = 1, . . . , d, we calculate Θ̂∗j := β̂+
j − β̂−j where β̂+

j and β̂−j are solved by the following

convex program

{β̂+
j , β̂

−
j } = argmin

β+
j ,β
−
j ∈Rd

0+

1Td (β+
j + β−j ), (4.5)

subject to
∥∥Ŝ(β+

j − β−j )− ej
∥∥
∞ ≤ λ01

T
d (β+

j + β−j ). (4.6)

We next present more insights on the formulation of the rank-based scaled CLIME estima-

tor. Motivated by the rank-based CLIME estimator (4.3), we consider the modification:

Θ̂∗j = argmin
Ω∗j

∥∥Ω∗j
∥∥

1
subject to

∥∥ŜΩ∗j − ej
∥∥
∞ ≤ λ0

∥∥Ω∗j
∥∥

1
, for j = 1, . . . , d, (4.7)

The main difference between (4.7) and (4.3) is the replacement of the penalty level λ by

λ0

∥∥Ω∗j
∥∥

1
, which leads to a non-convex problem. However, (4.5) and (4.6) provide a convex

relaxation of (4.7) in a linear programming form. More specifically, letting C = [λ0] ∈ Rd×d,
we may write (4.5) and (4.6) as:

{β̂+
j , β̂

−
j } = argmin

β+
j ,β
−
j

1Td (β+
j + β−j ) (4.8)

subject to





Ŝβ+
j − Ŝβ−j − ej ≤ C(β+

j + β−j ),

−Ŝβ+
j + Ŝβ−j + ej ≤ C(β+

j + β−j ),

β+
j ≥ 0

β−j ≥ 0.

Letting R = Ŝ + C and W = Ŝ−C, we write (4.8) as

ω = argmin
ω

1T2d ω subject to θ + Aω ≥ 0, and ω ≥ 0, (4.9)

where

ω =

(
β+
j

β−j

)
,θ =

(
ej

−ej

)
, and A =

[
−W R

R −W

]
.

Equation (4.9), however, is a linear programming problem. In this paper, we use the

simplex algorithm to compute both the rank-based CLIME and rank-based scaled CLIME

estimators.
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5 Theoretical Properties

In this section we analyze the theoretical properties of the rank-based original CLIME and

scaled CLIME estimators proposed in Section 4. Our main results show that: under the

same conditions on Σ that ensure the parameter estimation and graph recovery consistency

of the original CLIME estimator under Gaussian graphical models, our rank-based regu-

larization procedures achieve exactly the same parametric rates of convergence for both

parameter estimation and graph recovery for the much larger transelliptical family. This

result suggests that the transelliptical graphical model can be used as a safe replacement

of the Gaussian graphical models, the nonparanormal graphical models, and the elliptical

graphical models.

We start with some additional notation. Let Md be a quantity which may scale with

the dimensionality d, we define

Sd(q, s,Md) :=
{

Θ : ‖Θ‖1 ≤Md and ‖Θ‖q ≤ s
}
. (5.1)

For q = 0, the class Sd(0, s,M) contains all the s-sparse matrices.

Theorem 5.1 presents the parameter estimation and graph estimation consistency results

for the rank-based CLIME estimator defined in (4.2).

Theorem 5.1. Let X ∼ TEd(Σ, ξ; f1, . . . , fd) with Σ ∈ R+
d and Θ := Σ−1 ∈ Sd(q, s,Md)

with 0 ≤ q < 1. Let Θ̂ be defined in (4.2). There exist constants C0 and C1 only depending

on q, such that, whenever we choose the tuning parameter

λ = C0Md

√
log d

n
, (5.2)

with probability no less than 1− d−2, we have

(Parameter estimation) ‖Θ̂−Θ‖2 ≤ C1M
2−2q
d · s ·

(
log d

n

)(1−q)/2
.

Let Ĝ be the graph estimator defined in (4.4) with the second step tuning parameter γ =

4Mdλ. If we further assume Θ ∈ Sd(0, s,Md) and minj,k:|Θjk|6=0 |Θjk| ≥ 2γ, then

(Graph recovery) P
(
Ĝ 6= G

)
≥ 1− o(1),

where G is the graph determined by the nonzero pattern of Θ.

Similar rank-based procedures have been discussed in Liu et al. (2009, 2012). Unlike our

work, they focus on the more restrictive nonparanormal family and discuss several rank-

based procedures using the normal-score, Spearman’s rho, and Kendall’s tau. Moreover,

they advocate the use of the Spearman’s rho and normal-score correlation coefficients. Their

main concern is that, within the more restrictive nonparanormal family, the Spearman’s rho
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and normal-score correlations are slightly easier to compute and have smaller asymptotic

variance. In contrast to their line of thinking, the new insight here is the invariance property

of the Kendall’s tau within the much larger transelliptical family, which has led to our

advocate of using the Kendall’s tau. In fact, it can be shown that the Spearman’s rho is

not invariant within the transelliptical family unless the true distribution is nonparanormal.

More details on this issue can be found in Fang et al. (1990).

An important issue arising from Theroem 5.1 is the dependence of the tuning parameter

λ in (5.3) on Md. Since Md is an upper bound of ‖Θ‖1 and the tuning parameter λ

is uniformly set for all the regression subproblems in (4.3), such a choice of the tuning

parameter tends to be overly conservative. In particular, it is not adaptive to cases where

different subproblems require different levels of regularization. Theorem 5.2 presents the

parameter estimation and graph estimation consistency results for the rank-based scaled

CLIME estimator defined in (4.5) and (4.6). The result shows that the rank-based scaled

CLIME achieves the same theoretical results as the rank-based CLIME estimator with a

tuning parameter λ0 not dependent on the knowledge of ‖Θ‖1.

Theorem 5.2. Let X ∼ TEd(Σ, ξ; f1, . . . , fd) with Σ ∈ R+
d and Θ := Σ−1 ∈ Sd(q, s,Md)

with 0 ≤ q < 1. Let Θ̂ be the rank-based scaled CLIME estimator defined in (4.5) and

(4.6). When we choose the tuning parameter

λ0 = 2.45π

√
log d

n
, (5.3)

with probability no less than 1− d−2 − d−1, we have

(Parameter estimation) ‖Θ̂−Θ‖2 ≤
8

2q
·M2−2q

d · s ·
(

log d

n

)(1−q)/2
.

Let Ĝ be the graph estimator defined in Section 4 with the second step tuning parameter

γ = 4M2
dλ0. If we further assume Θ ∈ Sd(0, s,Md) and minj,k:|Θjk|6=0 |Θjk| ≥ 2γ, then

(Graph recovery) P
(
Ĝ 6= G

)
≥ 1− o(1),

where G is the graph determined by the nonzero pattern of Θ.

From (5.3), we see that the tuning parameter λ0 for the rank-based scaled CLIME is

asymptotically tuning free. However, the default value λ0 = 2.45π

√
log d

n
could be overly

conservative to achieve the best finite sample performance. To achieve the best empirical

performance, we still need to find a better tuning parameter λ0 within the same order.

6 Numerical Experiments

We investigate the empirical performance of the proposed rank-based regularization esti-

mators. We compare them with the following methods: (1) Pearson: the CLIME/scaled
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CLIME using the Pearson sample correlation; (2) Kendall: the CLIME/scaled CLIME using

the Kendall’s tau; (3) Spearman: the CLIME/scaled CLIME using the Spearman’s rho; (4)

NPN: the CLIME/scaled CLIME using the original nonparanormal correlation estimator

proposed by Liu et al. (2009); (5) NS: the CLIME/scaled CLIME using the normal score

correlation. The later three methods are discussed under the nonparanormal graphical

model and we refer to Liu et al. (2012) for more detailed descriptions.

6.1 Simulation Studies

We adopt the same data generating procedure as in Liu et al. (2012). To generate a

d dimensional sparse graph G = (V,E) where V = {1, . . . , d} correspond to variables

X = (X1, . . . , Xd)
T , we associate each index j ∈ {1, . . . , d} with a bivariate data point

(Y
(1)
j , Y

(2)
j ) ∈ [0, 1]2 where Y

(k)
1 , . . . , Y

(k)
n ∼ Uniform[0, 1] for k = 1, 2. Each pair of ver-

tices (i, j) is included in the edge set E with probability P((i, j) ∈ E) = exp(−‖yi −
yj‖22/0.25)/

√
2π, where yi := (y

(1)
i , y

(2)
i ) is the empirical observation of (Y

(1)
i , Y

(2)
i ) and

‖ · ‖2 represents the Euclidean distance. We restrict the maximum degree of the graph to

be 4 and build the inverse correlation matrix Ω according to Ωjk = 1 if j = k, Ωjk = 0.145

if (j, k) ∈ E, and Ωjk = 0 otherwise. The value 0.145 guarantees the positive definiteness of

Ω because the diagonal values dominate. Let Σ = Ω−1. To obtain the correlation matrix,

we rescale Σ so that all its diagonal elements are 1.

In the simulated study we randomly sample n data points from a certain transelliptical

distribution X ∼ TEd(Σ, ξ; f1, . . . , fd). We set d = 100. To determine the transelliptical

distribution, we first generate Σ as discussed in the previous paragraph. Secondly, three

types of ξ are considered. Here we remind that χd denotes the chi-distribution: For any

random variable Y ∈ R+, Y ∼ χd if and only if Y 2 ∼ χ2
d. (1) ξ(1) ∼ χd, i.e., ξ follows a chi-

distribution with degree of freedom d; (2) ξ(2) d
= ξ∗1/ξ

∗
2 , ξ∗1 ∼ χd, ξ∗2 ∼ χ1, ξ∗1 is independent

of ξ∗2 ; (3) ξ(3) ∼ F (d, 1), i.e., ξ follows an F -distribution with degree of freedom d and

1. Thirdly, two type of transformation functions f = {fj}dj=1 are considered: (1) linear

transformation: f (1) = {f0, . . . , f0} with f0(x) = x; (2) nonlinear transformation:

f (2) = {f1, . . . , fd} = {h1, h2, h3, h4, h5, h1, h2, h3, h4, h5, . . .}, where

h−1
1 (x) := x, h−1

2 (x) :=
sign(x)|x|1/2√∫

|t|φ(t)dt

, h−1
3 (x) :=

x3

√∫
t6φ(t)dt

,

h−1
4 (x) :=

Φ(x)−
∫

Φ(t)φ(t)dt
√∫ (

Φ(y)−
∫

Φ(t)φ(t)dt

)2

φ(y)dy

,
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h−1
5 (x) :=

exp(x)−
∫

exp(t)φ(t)dt
√∫ (

exp(y)−
∫

exp(t)φ(t)dt

)2

φ(y)dy

. (6.1)

Here φ and Φ are the density and distribution functions of a standard Gaussian distribution.

We then consider the following four data generating models:

• Model 1: X ∼ TEd(Σ, ξ(1); f (1)), i.e., X ∼ Nd(0,Σ).

• Model 2: X ∼ TEd(Σ, ξ(2); f (1)), i.e., X follows the multivariate Cauchy.

•Model 3: X ∼ TEd(Σ, ξ(3); f (1)), i.e., the distribution is highly related to the multivari-

ate t.

• Model 4: X ∼ TEd(Σ, ξ(3); f (2)).

To evaluate the robustness of different methods, let r ∈ [0, 1) represent the proportion

of samples being contaminated. For each component of X, we randomly select bnrc entries

and replace them with either 5 or -5 with equal probability. The final data matrix we

obtained is X ∈ Rn×d. Here we pick r = 0, 0.02 or 0.05. Let Ĝλ = (V, Êλ) be an estimated

graph using the regularization parameter λ and γ. We further define the false negative rate

(FNR) and false positive rate (FPR) as

FNR(λ) :=
the number of edges in Êλ but not in E

|E| and (6.2)

FPR(λ) :=
the number of edges in E but not in Êλ(

d
2

)
− |E|

. (6.3)

Under Model 1 to Model 4 with different levels of contamination (r = 0, 0.02 or 0.05), we

repeatedly generate the data matrix X 100 times and compute the averaged False Positive

Rates FPR(λ) and averaged False Negative Rates FNR(λ) using a path of tuning parameters

λ from 0.01 to 0.5 and γ = 0. The feature selection performances of different methods are

evaluated by plotting (FPR(λ), 1−FNR(λ)). The corresponding ROC curves are presented

in Figures 3 and 4.

To further evaluate the performance of different methods, we define the oracle regular-

ization parameter λ∗ to be:

λ∗ := arg minλ∈Λ {FNR(λ) + FPR(λ)} ,

Here Λ denotes by a full path of regularization parameters we use. We define FPR and

FNR to be:

FPR = FPR(λ∗) and FNR = FNR(λ∗).

Table 1 provides numerical comparisons of the five methods on datasets with different

models, where we repeat the experiments 100 times and report the average FPR and FNR

values with the corresponding standard errors in the parenthesis.
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Table 1: Quantitative comparison of the five methods on simulated datasets with different

models. The graphs are estimated using the CLIME algorithm with random data contam-

ination.

Pearson Kendall Spearman NPN NS

Model r n FPR(%) FNR FPR FNR FPR FNR FPR FNR FPR FNR

Model1 0.00 200 14(2.0) 26(3.0) 17(2.0) 27(1.8) 15(2.0) 30(1.4) 15(3.6) 26(4.1) 14(2.3) 26(3.2)

400 9(1.5) 10(1.9) 10(1.6) 12(2.1) 10(1.6) 11(1.9) 10(1.8) 10(2.2) 9(1.4) 10(1.9)

800 2(0.6) 2(0.8) 3(0.8) 3(1.1) 3(0.7) 3(1.1) 3(0.8) 2(0.7) 3(0.7) 2(0.7)

0.02 200 23(5.0) 44(5.8) 20(3.7) 30(2.2) 20(2.9) 30(3.2) 18(2.6) 32(3.1) 16(2.4) 35(3.3)

400 19(3.0) 27(3.4) 11(2.0) 15(2.2) 11(1.8) 15(2.3) 11(1.7) 15(2.7) 12(1.9) 17(2.6)

800 10(1.4) 14(2.1) 4(1.0) 4(1.2) 4(1.0) 4(1.3) 5(0.9) 5(1.4) 5(1) 6(1.5)

0.05 200 30(7.7) 53(7.2) 21(4.9) 37(5.4) 18(5.2) 41(5.7) 20(4.3) 42(4.1) 21(3.6) 44(3.7)

400 27(5.2) 45(5.5) 14(2.3) 21(3.4) 14(2.5) 21(3.5) 16(2.4) 24(3.3) 18(3.2) 27(3.9)

800 19(3.2) 33(4.2) 7(1.5) 8(1.5) 7(1.5) 8(1.6) 9(1.8) 10(1.8) 11(1.8) 14(2.3)

Model2 0.00 200 25(3.6) 61(3.6) 21(3.4) 42(2.8) 18(2.0) 46(1.8) 24(2.4) 43(2.3) 23(2.5) 44(2.1)

400 28(3.5) 59(3.7) 15(1.4) 24(1.8) 17(1.3) 23(1.5) 22(1.9) 26(1.9) 22(1.7) 27(1.9)

800 28(4.0) 58(4.0) 8(0.9) 10(1.0) 9(0.9) 11(1.0) 13(1.2) 15(1.3) 14(1.3) 16(1.6)

0.02 200 27(3.9) 62(3.3) 19(1.6) 47(1.9) 20(2.0) 48(2.9) 25(1.7) 45(2.9) 27(1.5) 43(2.3)

400 25(2.9) 63(3.4) 16(1.2) 27(1.7) 18(1.5) 25(1.5) 22(2.0) 28(2.2) 24(2.2) 28(2.5)

800 29(5.1) 59(4.7) 10(1.1) 12(1.2) 10(1.1) 13(1.3) 14(1.3) 17(1.5) 16(1.4) 18(1.7)

0.05 200 22(3.9) 68(4.3) 18(2.1) 50(2.1) 16(2.0) 52(2.6) 28(3.3) 42(3.4) 26(2.1) 45(2.5)

400 23(2.9) 65(3.2) 17(1.3) 31(1.6) 19(1.9) 30(2.1) 23(1.7) 32(1.9) 25(2.0) 32(2.2)

800 26(3.2) 62(3.6) 11(1.1) 14(1.4) 12(1.1) 16(1.2) 18(1.5) 19(1.8) 18(1.8) 20(2)

Model3 0.00 200 28(5.7) 65(6.2) 25(3.5) 44(3) 23(3.3) 48(3.6) 32(2.3) 43(2.5) 28(2.0) 46(2.0)

400 29(8.2) 65(8.8) 15(1.1) 31(1.6) 18(1.3) 32(1.5) 22(1.7) 35(2.0) 25(2.4) 34(2.7)

800 24(6.1) 70(6.6) 11(1.0) 13(1.1) 13(1.3) 15(1.3) 17(1.5) 21(1.9) 19(1.6) 21(1.7)

0.02 200 24(6.6) 70(7.2) 24(3.4) 44(2.6) 28(3.4) 44(3.1) 25(2.7) 48(3.3) 27(2.6) 47(2.7)

400 25(6.3) 69(6.4) 17(1.5) 33(1.6) 20(1.6) 33(1.8) 23(1.9) 37(2.2) 25(2.0) 37(2.2)

800 22(7.1) 73(7.6) 12(1.2) 15(1.5) 14(1.1) 17(1.5) 18(1.3) 24(1.7) 20(1.5) 24(1.9)

0.05 200 25(4.9) 69(5.8) 26(3.3) 47(2.6) 28(4.4) 47(3.4) 21(3.8) 58(4.7) 29(3.5) 50(4.2)

400 24(6.1) 70(6.5) 18(2.3) 38(2.5) 20(2.1) 38(2.3) 27(2.7) 39(3.1) 27(2.6) 40(3.0)

800 23(6.5) 72(7.0) 14(1.2) 19(1.4) 15(1.2) 22(1.6) 21(1.8) 27(1.9) 21(1.7) 28(1.8)

Model4 0.00 200 21(3.8) 75(4) 20(2.6) 49(3.2) 23(2.0) 49(2.8) 34(2.9) 40(2.4) 30(3.4) 44(3.4)

400 21(5.6) 74(6.0) 16(1.7) 31(2.0) 20(1.7) 30(2.1) 23(1.9) 34(2.2) 23(1.9) 35(2.3)

800 21(6.0) 74(6.6) 10(0.8) 13(1.3) 13(1.0) 15(1.4) 17(1.1) 21(1.5) 17(1.1) 23(1.4)

0.02 200 11(3.7) 85(4.3) 22(3.3) 49(3.3) 22(3.0) 53(3.7) 31(4.4) 48(5.0) 28(3.9) 51(4.5)

400 11(3.3) 86(3.7) 17(1.6) 33(1.8) 21(1.8) 32(2.0) 22(2.2) 39(2.6) 24(2.5) 38(2.6)

800 14(3.9) 82(4.4) 12(1.3) 14(1.5) 14(1.3) 17(1.5) 17(1.5) 25(1.7) 18(1.6) 25(1.7)

0.05 200 12(3.9) 84(4.5) 29(2.7) 45(3.1) 28(3.8) 50(4.4) 27(2.9) 54(2.4) 26(3.0) 56(3.4)

400 9(2.8) 87(3.3) 19(1.8) 35(2.1) 21(2.0) 37(1.9) 25(2.3) 41(2.8) 26(2.6) 42(3.2)

800 11(3.4) 86(4.2) 14(1.1) 18(1.3) 16(1.3) 22(1.5) 20(1.7) 28(1.9) 21(1.9) 30(2.0)
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Figure 3: ROC curves for different methods in models 1 to 4 and different contamination

level r = 0, 0.02, 0.05 (top, middle, bottom) using the CLIME. Here n = 400 and d = 100.

Here TPR and FPR stand for the true positive rate and false positive rate.

Next we proceed to show the results for the scaled CLIME. To best visualize the dif-

ference between CLIME and scaled CLIME, a slightly different graph structure, called

Erdös-Rényi random graph, are utilized. In other words, we add an edge between each

pair of codes with probability 0.02 independently. We are still using the same four models

as discussed before. We set d = 100, n = 400 to best illustrate the comparisons among

different methods. The corresponding ROC curves are shown in Figures 5 and numerical

comparisons are presented in Table 2. It can be observed that the scaled CLIME has a

better performance than the CLIME in most settings.

We summarize our discovery as follows: (1) when the data are perfectly Gaussian with-

out contamination, all five methods perform well; (2) when the data are Gaussian, but

contaminated by outliers, rank-based methods (Kendall, Spearman, NPN, NS) perform bet-

ter than Pearson; (3) when the data are non-Gaussian, outliers existing or not, rank-based

methods perform better than Pearson; (5) when the data are non-Gaussian, outliers exist-

ing or not, Kendall performs the best; (6) the scaled CLIME can have a generally better

performance than the CLIME.
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Table 2: Quantitative comparison of the six methods on simulated datasets with different

models. The Erdös-Rènry random graph are estimated using the scaled CLIME and CLIME

algorithms with random data contamination. Note: “CLIME-K” applies the CLIME and

Kendall’s tau matrix. All the others use the scaled CLIME.

Pearson Kendall CLIME-K

Model d n r FPR(%) FNR FPR FNR FPR FNR

Model1 100 400 0.00 0.4(0.23) 0.0(0.00) 0.6(0.37) 0.1(0.20) 0.9(0.40) 0.0(0.00)

100 400 0.02 5.7(1.11) 4.1(1.45) 0.8(0.36) 0.3(0.40) 0.9(0.31) 0.4(0.44)

100 400 0.05 14.5(2.13) 20.3(2.97) 2.2(0.57) 1.3(0.79) 2.6(0.65) 0.9(0.65)

Model2 100 400 0.00 14.3(1.47) 61.8(3.58) 4.2(0.37) 4.3(0.50) 6.3(0.54) 4.9(0.66)

100 400 0.02 17.8(1.79) 57.1(3.17) 5.3(0.39) 4.9(0.62) 6.3(0.50) 5.7(0.68)

100 400 0.05 16.2(1.75) 61.2(3.77) 6.7(0.66) 8.3(0.78) 7.2(0.69) 9.4(0.90)

Model3 100 400 0.00 16.0(3.50) 73.3(3.55) 3.3(0.28) 3.2(0.43) 3.7(0.33) 3.2(0.46)

100 400 0.02 9.2(0.98) 79.6(1.89) 4.2(0.43) 4.5(0.51) 4.9(0.46) 4.4(0.57)

100 400 0.05 12.2(3.11) 76.8(3.39) 4.4(0.36) 6.3(0.74) 4.7(0.45) 5.8(0.71)

Model4 100 400 0.00 45.6(5.15) 47.2(4.71) 3.3(0.28) 3.2(0.43) 3.7(0.33) 3.2(0.46)

100 400 0.02 12.2(1.67) 80.6(2.23) 4.0(0.40) 4.3(0.57) 5.0(0.51) 3.9(0.52)

100 400 0.05 19.4(2.06) 72.2(2.39) 4.9(0.47) 5.6(0.72) 4.8(0.41) 5.6(0.63)

Spearman NPN NS

Model d n r FPR(%) FNR FPR FNR FPR FNR

Model1 100 400 0.00 0.9(0.39) 0.0(0.00) 0.5(0.27) 0.0(0.00) 0.5(0.23) 0.0(0.00)

100 400 0.02 0.9(0.31) 0.4(0.44) 0.6(0.20) 0.6(0.51) 1.0(0.33) 0.6(0.51)

100 400 0.05 2.5(0.60) 1.1(0.71) 3.8(0.93) 1.5(0.86) 4.4(1.01) 2.9(1.33)

Model2 100 400 0.00 4.3(0.53) 4.3(0.56) 8.7(0.65) 7.0(0.84) 9.6(0.60) 7.7(0.88)

100 400 0.02 5.6(0.48) 4.9(0.75) 9.6(0.70) 9.0(1.01) 10.7(0.70) 9.3(0.87)

100 400 0.05 7.1(0.71) 9.0(0.90) 11(0.79) 12.4(1.21) 10.9(0.83) 13.7(1.16)

Model3 100 400 0.00 4.8(0.40) 3.6(0.47) 7.3(0.54) 7.2(0.87) 7.9(0.63) 8.2(0.87)

100 400 0.02 5.1(0.44) 5.5(0.64) 7.5(0.50) 9.4(0.86) 8.5(0.64) 9.7(0.90)

100 400 0.05 6.3(0.50) 6.9(0.78) 10.0(0.60) 11.3(0.89) 10(0.52) 12.3(0.96)

Model4 100 400 0.00 4.8(0.40) 3.6(0.47) 7.3(0.54) 7.2(0.87) 7.9(0.63) 8.2(0.87)

100 400 0.02 5.2(0.51) 5.4(0.69) 7.2(0.58) 10.1(0.94) 7.9(0.64) 10.4(0.95)

100 400 0.05 6.3(0.55) 7.5(0.76) 9.9(0.80) 11.9(0.94) 10.2(0.70) 13.8(0.99)
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Figure 4: ROC curves for different methods in models 1 to 4 and different contamination

level r = 0, 0.02, 0.05 (top, middle, bottom) using the CLIME. Here n = 800 and d = 100.

Here TPR and FPR stand for the true positive rate and false positive rate.

6.2 Equities Data

We compare different methods on the stock price data from Yahoo! Finance (finance.

yahoo.com). We collect the daily closing prices for 452 stocks that are consistently in the

S&P 500 index between January 1, 2003 through January 1, 2008. This gives us altogether

1,257 data points, each data point corresponding to the vector of closing prices on a trading

day. With St,j denoting the closing price of stock j on day t, we consider the variables

Xtj = log (St,j/St−1,j) and build graphs over the indices j. Though this is a time series, we

treat the instances Xt as independent replicates.

The 452 stocks are categorized into 10 Global Industry Classification Standard (GICS)

sectors, including Consumer Discretionary (70 stocks), Consumer Staples (35 stocks),

Energy (37 stocks), Financials (74 stocks), Health Care (46 stocks), Industrials (59

stocks), Materials (29 stocks), Information Technology (64 stocks) Telecommunications

Services (6 stocks), and Utilities (32 stocks).

Figure 6(a) shows the histogram and qq-norm plot of the 25th stock. Here we observe

that the marginal distribution is quite non-Gaussian. We plot the data points for the first
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Figure 5: ROC curves for different methods in models 1 to 4 and different contamination

level r = 0, 0.02, 0.05 (top, middle, bottom). “CLIME-K” applies the CLIME on Kendall’s

tau matrix. All the others are using the scaled CLIME. Here n = 400 and d = 100 and the

generating graph model is Erdos-Renyi random graph. Here TPR and FPR stand for the

true positive rate and false positive rate.

100 stocks in Figure 6(b). Here we highlight data points in red if their absolute values are

greater than 3. We can see that there is non-Gaussian issue and a large number of potential

outliers exist. Both of them may affect the quality of the estimated graph.

In this section we evaluate different variants of the scale CLIME algorithm. Since

Kendall, Spearman, NPN, NS are rank-based, they are much more robust to outliers. More-

over, Kendall is more adaptive to model assumptions than all the other methods. The tuning

parameter is selected such that there are near 1% of the edges remained. Moreover, the

numbers of edges obtained by using different methods are close to each other. We find that

the estimated graphs are similar with the graphs learnt by using a stability based approach

named StARS (Liu et al., 2010b). Some summary statistics of the estimated graphs are

presented in Table 3. From Table 3, we see that the estimated graph of Pearson is signif-

icantly different from the other rank-based methods, suggesting that the data are highly

non-Gaussian. We further compare the Kendall with NPN and NS and find that there are
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(b) Outlier Plot

Figure 6: Stock Market Dataset. (a) We can see that the marginal distribution is away from the

Gaussian; (b) We can see a large amounted of the outliers (Red dots). The existence of outliers and

non-Gaussian data greatly affect the quality of the estimated graph

around 10% edges that are not present in the Kendall graph, suggesting that this data may

contain high levels of outliers. Finally, we find that around 5% edges present in the Spear-

man graph but not in the Kendall graph, suggesting that the data are not nonparanormal.

This conclusion is consistent with common finance theory, in which the log-return data are

heavy tailed and have tail dependency. Since the nonparnormal is a subfamily of Gaussian

copula, it is well known that a non-degenerate Gaussian copula can not capture any tail

dependency.

For better visualization, we plot the five different graphs in Figure 7. Figure 7 illustrates

the estimated graphs using different methods (Pearson, Kendall, Spearman, NPN and NS).

The nodes are colored according to the GICS sectors of the stocks. Here the common layout

is drawn by a force-based algorithm using the estimated graph from the Kendall. We see

that different methods deliver slightly different graphs. We see the stocks from the same

GICS sector tends to be grouped with each other in the Kendall graph, pink and red points
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Table 3: Summary statistics of the stock data networks estimated. Note: In the edge

difference part, the number corresponding to the method A(row) and method B(column)

represents the number of edges appears in the estimated graph of A, but not in that of B

Edge diff

Method Edge No. Pearson Kendall Spearman NPN NS

Pearson 1015 Pearson 0 519 519 467 457

Kendall 1008 Kendall 512 0 48 96 111

Spearman 1008 Spearman 512 48 0 93 109

NPN 1059 NPN 511 147 144 0 37

NS 1052 NS 494 155 153 30 0

Pearson Kendall Spearman

(a) Pearson (b) Kendall (c) Spearman
NPN NS

(d) Nonparanomral (e) Normal-score

Figure 7: The graph estimated from the S&P 500 stock data from Jan. 1, 2003 to Jan. 1, 2008

using Pearson, Kendall, Spearman, NPN, NS (left to right). The nodes are colored according to their

GICS sector categories.

in particular. This result suggests that Kendall delivers an informative graph estimate.
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7 Dicussion

In this paper, we advocate the use of a new distribution family, named transelliptical, for

robust estimation of high dimensional semiparametric graphical models. The main con-

tributions of this paper include the following: (i) We generalize the nonparanormal and

elliptical distribution families to the larger transelliptical family; (ii) We construct the

transelliptical graphical model and provide a three-layer hierarchical latent variable inter-

pretation of the inferred graph; (iii) We provide sharp characterization of the relationships

between nonparnaormal, elliptical, meta-elliptical, and transelliptical families; (iv) We pro-

pose a new rank-based scaled CLIME method which is simultaneously tuning-insensitive

and adaptive over the whole transelliptical family; (v) Theoretically, our method achieves

parametric rates in both graph and latent generalized concentration matrix estimation.

These results suggest that the extra robustness and flexibility gained by the semiparamet-

ric transelliptical modeling come with little cost. We also provide numerical experiments on

synthetic and real datasets. By Lemma 3.5, our method also works for the meta-elliptical

family. To the best of our knowledge, no effective method has been proposed to estimate

high dimensional graphical models for the meta-elliptical family.

A Proof of the Results in Section 5

In this appendix we present the technical proofs.

A.1 Proof of Lemma 3.5

Proof. If X ∼ MEd(Σ;Qg, F1, . . . , Fd), we know that X has density and there exist con-

tinuous marginal distribution functions F1, . . . , Fd of X. In addition, there exists a a

continuous random vector Z ∼ ECd(0,Σ, g) such that

(Q−1
g (F1(X1)), . . . , Q−1

g (Fd(Xd)))
T d

= Z.

We define fj(x) = Q−1
g (Fj(x)) for j = 1, . . . , d. It is obvious that fj is monotone. There-

fore, by the definition of elliptical distribution, there must exist a ξ such that X ∼
TEd(Σ, ξ;Q

−1
g (F1), . . . , Q−1

g (Fd)). The absolute continuousness of ξ has been proved by

Theorem 2.9 in the page 35 of Fang et al. (1990). Also, ξ must be nondegenerate due to

the continuity of X.

On the other hand, ifX ∼ TEd(Σ, ξ; f1, . . . , fd) and its joint density exists, then Σ must

be positive definite. Combining with the fact that ξ is absolute continuous, we have that

Z := (f1(X1), . . . , fd(Xd))
T possesses density and can be represented as Z ∼ ECd(0,Σ, g)

for some g. From the definition of the transelliptical distribution and Theorem 2.16 of Fang

et al. (1990), we know that the marginal distributions of Z1, . . . , Zd are exactly the same.

We denote this common marginal cumulative distribution function to be Qg where g(·) is
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the scale function uniquely determined by the distribution of ξ (See (2.1) for more details).

Recalling that Fj is the cumulative distribution function of Xj and using the fact that fj

is strictly increasing, we have for any z ∈ R,

fj(Xj) = Zj ⇒ P(fj(Xj) < z) = P(Zj < z)⇒ Fj(f
−1
j (z)) = Qg(z).

Since the last equality holds for any z ∈ R, we have fj = Q−1
g (Fj). Thus,

(Q−1
g (F1(X1)), . . . , Q−1

g (Fd(Xd)))
T ∼ ECd(0,Σ, g).

Using Definition 3.4, we have X is meta-elliptically distributed.

A.2 Proof of Lemma 3.7

To prove Lemma 3.7, we need the following lemma, which states the independence property

of Gaussian distributions.

Lemma A.1. Let Z ∼ Nd(0, Id) and A be any matrix with d columns, we have ||Z||2 is

independent of AZ/||AZ||2. In particular, ||Z||2 is independent of Z/||Z||2.

Proof. It is easy to see that Z is spherically distributed. Therefore, Z has the stochastic

representation Z
d
= ξ∗U∗ for some random variable ξ∗ ∈ R and random vector U∗ uniformly

distributed on a unit sphere. Here ξ∗ andU∗ are independent and P(ξ∗ = 0) = 0. Therefore,

(
||Z||2

AZ/||AZ||2

)
d
=

(
ξ∗

AU∗/||AU∗||2

)

are independent of each other. This completes the proof.

With lemma begging, we now proceed to prove Lemma 3.7.

Proof of Lemma 3.7. Since X ∼ TEd(Σ, ξ; f1, . . . , fd), we have (f1(X1), . . . , fd(Xd))
T ∼

ECd(0,Σ, ξ). Let Zj := fj(Xj) for j = 1, . . . , d. By Definition 2.1, we can write Z :=

(Z1, . . . , Zd)
T d

= ξAε/||ε||2 with a certain ε ∼ Nq(0, Iq), reminding that q := rank(Σ). Let

P = A†J∗AJ∗, where A†J∗ is the the Moore-Penrose pseudoinverse of AJ∗. We rewrite

ZJ
d
= ξAJ∗ε/||ε||2 = (ξ‖Pε‖2/‖ε‖2)(AJ∗P)(Pε/‖Pε‖2). (A.1)

Because P is a symmetric projection matrix, its singular value decomposition can be written

as P = HHT , where H ∈ Rq×r has r orthonormal columns and r := rank(AJ∗) = rank(P).

By algebra, we have

ZJ
d
= (ξ||Pε||2/||ε||2)(AJ∗P)(Pε/||Pε||2)

= (ξ||HT ε||2/||ε||2)(AJ∗H)(HT ε/||HT ε||2).
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Because HT ε ∼ Nr(0, Ir), HT ε/||HT ε||2 is uniformly distributed on the unit sphere in Rr.
Moreover, ||ε||22 − ||HT ε||22 = ||P⊥ε||22 is independent of HT ε = HTPε. Therefore, the

independence of {||ε||2, ||HT ε||2} and HT ε/||HT ε||2 follows from Lemma A.1 in Appendix

A.2. Accordingly, letting |J | be the cardinality of J , we have

ZJ ∼ EC|J |(0, (AJ∗H)(AJ∗H)T , ξ||HT ε||2/||ε||2).

This can be written as

ZJ ∼ EC|J |(0,ΣJ,J , ξ‖Pε‖2/‖ε‖2) (A.2)

due to ||HT ε||2 = ||Pε||2 and (AJ∗H)(AJ∗H)T = AJ∗AT
J∗ = ΣJ,J . By definition, the

marginal distribution of XJ is transelliptically distributed.

Now consider the conditional distribution of XJ . Let Q = A†Jc∗AJc∗, Q⊥ be the

projection matrix perpendicular to Q, µ̃ = AJ∗A
†
Jc∗ZJc and ξ̃ = ξ||Q⊥ε||2/||ε||2. By

algebra,

ZJ
d
= AJ∗(Q⊥ + Q)(ξε/‖ε‖2)

= AJ∗A
†
Jc∗ZJc + ξ(‖Q⊥ε‖2/‖ε‖2)(AJ∗Q⊥)Q⊥ε/‖Q⊥ε‖2

= µ̃+ ξ̃(AJ∗Q⊥)Q⊥ε/‖Q⊥ε‖2.

Accordingly, by a similar argument as in the proof of the first part, we find that ZJ |ZJc

is transelliptical distributed. In particular, it follows from the independence of Q⊥ε/‖Q⊥ε‖2
and {ZJc , ξ, ‖ε‖2, ‖Q⊥ε} that Q⊥ε/‖Q⊥ε‖2 is independent of ZJc and ξ̃. Since Σ is of full

rank and (AJ∗Q⊥)(AJ∗Q⊥)T = [ΘJ,J ]−1 (thinking about the Gaussian case), we have

ZJ |ZJc ∼ EC|J |(µ̃, [ΘJ,J ]−1, ξ̃).

Since Zj = fj(Xj) with strictly increasing fj , conditioning on XJc is the same as condi-

tioning on ZJc . Thus, XJ |XJc follows a transelliptical distribution.

A.3 Proof of Lemma 3.8

Proof. LetZ := (Z1, . . . , Zd)
T . SinceX ∼ TEd(Σ, ξ; f1, . . . , fd), we haveZ ∼ ECd(0,Σ, ξ).

Using the proof of Lemma 3.7, we have

ZJ |ZJc ∼ EC|J |(µ̃, [ΘJ,J ]−1, ξ̃),

where µ̃ = AJ∗A
†
Jc∗ZJc and ξ̃ = ξ||Q⊥ε||2/||ε||2. Therefore, when E(ξ̃2|ZJc) < ∞, ΘJ,J

is diagonal if and only if Cov(ZJ |ZJc) =
(
E(ξ̃2|ZJc)

)
[ΘJ,J ]−1 is diagonal, or equivalently

ZJ are pairwise uncorrelated given ZJc .

It remains to prove that conditioning on ZJc = v for any vector v, E(ξ̃2|ZJc = v) <∞
or equivalently E(ξ2|ZJc = v) < ∞. We note that if this holds, then for any j, k ∈ J , the
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correlation between Zj and Zk given ZJc is well-defined even if Eξ2 is unbounded. Using

the proof of Lemma 3.7 again, we have A†Jc∗ZJc = (ξ||Qε||2/||ε||2) Qε/||Qε||22. Therefore,

Y0 := ξ2‖Qε‖22/‖ε‖22 = ||A†Jc∗ZJc ||22

is a constant conditionally on ZJc . Let Fξ2 be the marginal distribution function of ξ2,

α1 = (d − |J |)/2, and α2 = |J |/2. Since ‖Qε‖22/‖ε‖22 ∼ beta(α1, α2) distribution, the

marginal distribution of Y0 can be derived as:

P(Y0 ≤ c0) = P(ξ2||Qε||22/||ε||22 ≤ c0)

=

∫ ∞

0
P(ξ2||Qε||22/||ε||22 ≤ c0 | ξ2 = t)Fξ2(dt)

=

∫ ∞

0

∫ c0/t

0
beta(z;α1, α2)dzFξ2(dt) (letting y = zt)

=

∫ c0

0

(∫ ∞

y
t−1beta(y/t;α1, α2)Fξ2(dt)

)
dy.

Accordingly, the marginal density of Y0 is

∫ ∞

y
t−1beta(y/t;α1, α2)Fξ2(dt). Thus, the con-

ditional expectation of ξ2 given ξ2‖Qε‖22/‖ε‖22 = c0 > 0 is

E(ξ2 |Y = c0) =

∫ ∞

c0

beta(c0/t;α1, α2) Fξ2(dt)

∫ ∞

c0

t−1beta(c0/t;α1, α2) Fξ2(dt)

<∞. (A.3)

The proof is complete since ξ̃2 = ξ2||Q⊥ε||22/||ε||22 ≤ ξ2.

A.4 Proof of Theorem 3.9

Proof. Let J = {1, . . . , d} \ C and Ã, B̃ be two disjoint subsets of J and form a partition

of J . Let GJ = (J, VJ) be the subgraph of G composed of vertices J and all edges in G

connecting vertices in J .

Using Lemma 3.7, we have ZJ |ZC ∼ EC|J |(µ̃, [ΘJ,J ]−1, ξ̃) and GJ is the graph of

ZJ |ZC . Accordingly, by definition, the following statements are equivalent: (i) C separates

Ã and B̃ in G; (ii) Ã and B̃ are not connected in GJ ; (iii) ΘJ,J is composed of diagonal

blocks Θ
Ã,Ã

and Θ
B̃,B̃

; (iv) [ΘJ,J ]−1 is composed of diagonal blocks [Θ
Ã,Ã

]−1 and [Θ
B̃,B̃

]−1;

(v) For any j ∈ Ã and k ∈ B̃, [[ΘJ,J ]−1]jk = Cov(Zj , Zk |ZC) = 0.

Suppose C separates A and B. Then let Ã be all vertices in J connected to A, and let

B̃ = J \ Ã. Since A and B are not connected, we have A ⊂ Ã and B ⊂ B̃. Moreover, C

must separate Ã and B̃ in G by the definition of Ã and the fact that Ã, B̃ form a partition

of J . Therefore, by the equivalence relationship stated in the previous paragraph, Z
Ã

and
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Z
B̃

are conditionally uncorrelated given ZC . Consequently, ZA and ZB are conditionally

uncorrelated given ZC .

Conversely, let {A,B,C} form a partition of {1, . . . , d}. Set Ã = A and B̃ = B. Then,

by the same argument, Z
Ã

and Z
B̃

are conditionally uncorrelated given ZC if and only if

C separates Ã and B̃.

A.5 Proof of Theorem 3.10

Proof. Let Z := (Z1, . . . , Zd)
T = (f1(X1), . . . , fd(Xd))

T . If X is nonparanormal, then Z is

Gaussian distributed and the zero entries in Θ encode the conditional independence of Z.

Because {fj}dj=1 are marginal monotone transformations, G also encodes the conditional

independence of X.

On the other hand, if G encodes the conditional independence of X, then it also

encodes the conditional independence of Z. Suppose that Zj and Zk are condition-

ally independent given Z\{j,k}. Then using the proof of Lemma 3.7, letting J = {j, k},
ZJ |ZJc ∼ EC|J |(µ̃, [ΘJ,J ]−1, ξ̃). However, using a similar argument as in the proof of case

2 in Theorem 3.11, we have ZJ |ZJc ∈ R2 must be Gaussian distributed. It then can be

proved that Z is Gaussian distributed using a similar argument as in the proof of case 3 in

Theorem 3.11.

A.6 Proof of Theorem 3.11

Proof. The first part of this lemma is obvious. For the second part, since X is simulta-

neously elliptical and nonparanormal, there must exist ξ ≥ 0, A ∈ Rd×d, and µ ∈ Rd,
such that X := (X1, . . . , Xd)

T d
= µ + ξAU ∼ NPNd(Σ; f1, . . . , fd) where U is a uniform

random vector on the d-dimensional unit sphere and is independent of ξ. Since X has a

nonparanormal distribution, diag(Σ) = Id. Since fj ’s are strictly increasing, by Theorem

3.13 we know that the Kendall’s tau correlation matrices of f(X) := (f1(X1), . . . , fd(Xd))
T

and X := (X1, . . . , Xd)
T are exactly the same. Therefore, without loss of generality, we as-

sume µ = 0 and AAT = ATA = Σ. Since diag(Σ) = Id, it follows from (A.2) that X has

identical marginal distributions. Thus, f1, . . . , fd are identical to some strictly increasing

function f0. The desired result follows by considering the following three cases.

Case 1: d = 2 and Σ12 6= 0. Let ρ = Σ12. Since rank(Σ) > 1, |ρ| ∈ (0, 1). Let

Aj∗ be the jth row of A, Zj := Aj∗U and δ = I{Z2 > ρZ1}. Since Σ11 = Σ22 =

1, max‖u‖2=1(±A1∗u) = 1 is attained when u = ±A1∗ and A2∗u = ±ρ. Similarly

max‖u‖2=1(±A2∗u) = 1 is attained when u = ±A2∗ and A1∗u = ±ρ. Thus, A : u→ z =

Au maps the unit circle {u : ‖u‖2 = 1} to the ellipse inscribing the square {z : ‖z‖∞ = 1}
at four points (1, ρ), (−1,−ρ), (ρ, 1), (−ρ,−1) in the z-space. Let t ∈ (−1, 1), we consider

three lines `1 = {z : z1 = 1}, `2 = {z : z1 = t} and `3 = {z : z2 = ρz1}. Let A−1`k be

corresponding lines in the u-space as the set
{
A−1z | z ∈ `k

}
, k = 1, 2, 3. Let us say that
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u lies “above” A−1`3 when Au lies above `3. Since `1 and `2 are parallel and the ellipse is

tangent to `1 at their intersection with `3, A−1`1 and A−1`2 are parallel and perpendicular

to A−1`3. Since A−1`3 passes (0, 0) and U is uniformly distributed in the unit circle, we

have

P
(
δ = 1

∣∣t ≤ Z1 ≤ 1
)

= P(U lies “above”A−1`3
∣∣U lies between A−1`1 and A−1`2

)

= 1/2.

Since t is arbitrary, δ is independent of Z1. Consequently,

P
(
X2 > ρX1|X1 = x1

)
= E

[
P
(
δ = 1|Z1, ξ

)∣∣∣Z1ξ = x1

]
= 1/2,

where we have used the identity X = ξZ and the independence of Z and ξ. This implies

that the conditional median of X2 is ρX1 given X1 = x1. Since f(X) ∼ N(0,Σ), the

conditional median of f2(X2) given f1(X1) = f1(x1) is ρf(x1). Since f1 and f2 are both

strictly increasing and f1 = f2 = f0, comparison of the conditional medians yield ρf0(x1) =

f0(ρx1) for all real x1, so that f0(x) = a0x for a constant a0 6= 0. This implies that

X = f(X)/a0 ∼ N(0,Σ/a2
0).

Case 2: d = 2 and Σ12 = 0. In this case X1 and X2 are i.i.d.. Recall that X is

elliptically distributed. Suppose µ = 0, so that X has the characteristic function ψ(tTΣt)

for some properly defined function ψ. Let i =
√
−1. Since X ∼ NPN2(Σ; f1, f2) and

Σ12 = 0, X1 and X2 are independent. Thus,

ψ(tTΣt) = E exp(itTX) = E exp(it1X1)E exp(it2X2) = ψ(t21Σ11)ψ(t22Σ22).

Accordingly, since Σ11 = Σ22 = 1, we have

ψ(t21 + t22) = ψ(t21)ψ(t22).

This equation is known as Hamel’s equation and has the solution ψ(t2) = exp(kt2) for some

constant k (Kuczma, 2008). Since ψ(t2) is a characteristic function, it is bounded in t and

ψ(t2)→ 0 as t2 →∞. Consequently, k < 0 and X is Gaussian.

Case 3: d > 2. Since rank(Σ) > 1, one of the off-diagonal elements of Σ is in (−1, 1).

Assume Σ12 ∈ (−1, 1) without loss of generality. Let J = {1, 2}. It follows from (A.2) in

the proof of Lemma 3.7 that

XJ ∼ EC2

(
0,ΣJ,J ,

ξ‖Pε‖2
‖ε‖2

)

with a standard normal ε independent of ξ and a projection matrix P of rank two. Moreover,

since the conclusion holds for d = 2, the membership of the distribution of XJ in both

the elliptical and nonparanormal families implies that XJ follows a Gaussian distribution.
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Thus, (ξ||Pε||2/||ε||2)2 = ‖Σ−1/2
J,J XJ‖22 has the chi-square distribution with two degrees of

freedom, χ2
2. Since ε ∼ N(0, Id), ‖Pε‖22/‖ε‖22 has the beta(1, (d − 2)/2) distribution and

is independent of ‖ε‖22. By the definition of the elliptical distribution, ‖Pε‖22/‖ε‖22 is also

independent of ξ2. It follows that

Eξ2kE
(‖Pε‖22
‖ε‖22

)k
= E

(
ξ2 ‖Pε‖22
‖ε‖22

)k
= Eχ2k

2 = E‖Pε‖2k2 = E‖ε‖2k2 E
(‖Pε‖22
‖ε‖22

)k
.

Canceling E(‖Pε‖22/‖ε‖22)k from both sides above, we find E(ξ2)k = E(‖ε‖22)k for all positive

integers k. Since ‖ε‖22 ∼ χ2
d and the chi-square distributions are uniquely identified by

moments, ξ2 must have the χ2
d distribution. This gives the normality of X and completes

the proof.

A.7 Proof of Theorem 3.12

Proof. Let Z = µ + ξAU and q := rank(Σ) = rank(A) as in Definition 2.1. Let U =

ε/‖ε‖2 with a standard normal vector ε in Rq. Note that if A = V1DVT
2 is the singular

value decomposition of A, then A† = V2D
−1VT

1 . Since rank(A) = q, A†A = Iq. Let

Y = Aε ∼ N(0,Σ). It follows that

Z − µ = ξAU = ξY /‖ε‖2 = ξY /‖A†Y ‖2.

The proof is complete.

A.8 Proof of Theorem 3.13

Proof. We define Zj := fj(Xj) and Zk := fk(Xk). Using Lemma 3.7, we have (Zj , Zk)
T ∼

EC2(0,Σ
′
, ξ), where Σ

′
11 = Σ

′
22 = 1 and Σ

′
12 = Σ

′
21 = Σjk. Since the Kendall’s tau

statistic is monotone transformation-invariant, we have τjk := τ(Xj , Xk) = τ(Zj , Zk). Let

(Z̃j , Z̃k)
T be an independent copy of (Zj , Zk)

T . By the equivalent definition, there ex-

ists a characteristic function ψ uniquely determined by ξ, such that Z ∼ ECd(0,Σ, ψ)

and Z̃ ∼ ECd(0,Σ, ψ). Since Z and Z̃ are independent, we have E exp(itT (Z − Z̃)) =

E exp(itTZ)E exp(itT Z̃) = ψ2(tTΣt), which implies Z − Z̃ ∼ ECd(0,Σ, ψ
2). Again, by

definition, there exists a nonnegative random variable ξ
′

uniquely determined by ψ2, such

that Z − Z̃ ∼ ECd(0,Σ, ξ′). Since Z − Z̃ is continuous, we have P(ξ
′

= 0) = 0. Using the

stochastic representation of an elliptical random variable, we further have Z − Z̃ d
= ξ

′
AU ,

where A and U are only determined by Σ. Then

P((Zj − Z̃j)(Zk − Z̃k) > 0) = P((ξ
′
)2(AU)j(AU)k > 0) = P((AU)j(AU)k > 0)

is invariant to ξ
′
. From (3.3), we know that τ(Zj , Zk) is invariant to ξ. To prove the final

result, we first verify that it holds for the trivial cases where Σjk = 1 or Σjk = −1. For

other cases, we define (Yj , Yk)
T ∼ N2(0,Σ

′
), where Σ

′ � 0. We have

τjk := τ(Xj , Xk) = τ(Zj , Zk) = τ(Yj , Yk)
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=
2

π
arcsin(Σ

′
12) =

2

π
arcsin(Σjk).

The second to last equality is due to the relationship between the Kendall’s tau and Pear-

son’s correlation coefficient in Gaussian distributions (Kruskal, 1958). The last equality

holds since Σ
′
12 = Σjk.

A.9 Proof of Lemma 3.14

Proof. Using Lemma 3.7, we have XJ |XJc ∼ ECd(µ̃, [ΘJ,J ]−1, ξ̃). Accordingly, using

Theorem 3.13, τ(XJ |XJc) = 2
π arcsin([ΘJ,J ]−1). Because arcsin(x) = 0 if and only if

x = 0, we have ΘJ,J is diagonal if and only if τ(XJ |XJc) = diag(τ(XJ |XJc)).

A.10 Proof of Theorem 3.15

Proof. Let D := A ∪ B and Σ∗ := ΣD,D − ΣD,CΣ−1
C,CΣC,D. Using Lemma 3.7, we have

(XA,XB |XC) is transelliptically distributed with generalized latent correlation matrix Σ∗.

Using Theorem 3.13, τ(XA,XB |XC) =
2

π
arcsin(Σ∗A,B), here the arcsin(·) transformation

is applied on each element of the matrix Σ∗A,B. On the other hand, by the proof of Theorem

3.9, if C separates A andB inG, Σ∗A,B = 0, or equivalently τ(XA,XB |XC) = 0. Moreover,

if A ∪B ∪C = {1, . . . , d}, then using Theorem 3.9 again, C separates A and B if and only

if Σ∗A,B = 0, or equivalently τ(XA,XB |XC) = 0.

A.11 Proof of Theorem 5.1

Proof. The only difference between the rank-based CLIME and the original CLIME is that

we replace the Pearson correlation coefficient matrix R̂ by the Kendall’s tau matrix Ŝ. By

examining the proofs of Theorem 1 and Theorem 7 in Cai et al. (2011), the only property

needed of the Pearson correlation matrix R̂ is an exponential concentration inequality

P
(
|R̂jk −Σjk| > t

)
≤ c1 exp(−c2nt

2).

Therefore, it suffices if we can prove a similar concentration inequality for |Ŝjk−Σjk|. Since

Ŝ = sin
(π

2
τ̂jk

)
and Σjk = sin

(π
2
τjk

)
, we have |Ŝjk −Σjk| ≤ |τ̂jk − τ |. Therefore, we only

need to prove

P (|τ̂jk − τjk| > t) ≤ exp
(
−nt2/(2π)

)
. (A.4)

This result has been proved in Theorem 4.2 of Liu et al. (2012) using the Hoeffding’s

inequality for U-statistic Hoeffding (1963).
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A.12 Proof of Theorem 5.2

Proof. Let Ŝ be defined in (4.1) and Θ̂ be the rank-based scaled CLIME estimator defined in

(4.5) and (4.6). First, from Theorem 4.2 of Liu et al. (2012), we have that, with probability

at least 1− 1/d,

∥∥Ŝ−Σ
∥∥

max
≤ λ0.

Let θ+
j ≥ 0 and θ−j ≥ 0 be the positive and negative parts of Θ∗j such that Θ∗j = θ+

j −θ−j
and ‖Θ∗j‖1 = 1Td (θ+

j + θ−j ) . Suppose, for any j ∈ {1, . . . , d}, θ+
j and θ−j are feasible in

the sense of satisfying the constraint (4.6). Then,

1Td (β̂+
j + β̂−j ) ≤ 1Td (θ+

j + θ−j ) for all j = 1, . . . , d.

We then have

‖Θ− Θ̂‖max = ‖Θ(ŜΘ̂− Id) + (Id −ΘŜ)Θ̂‖max

≤ ‖Θ‖1‖ŜΘ̂− Id‖max + ‖Id −ΘŜ‖max max
j
‖Θ̂∗j‖1

≤ λ0 · 1Td (β̂+
j + β̂−j ) · ‖Θ‖1 + λ0‖Θ‖1 ·max

j
‖Θ̂∗j‖1

≤ 2λ0 · 1Td (β̂+
j + β̂−j ) · ‖Θ‖1

≤ 2λ0‖Θ‖21. (A.5)

Let λ1 be a threshold level and we define

s1 = max
1≤j≤d

∑

1≤i≤d
min

{
|Θij |/λ1, 1

}
,

Tj =
{
i : |Θij | ≥ λ1

}
.

Since ‖Θ̂∗j‖1 ≤ 1Td (β̂+
j + β̂−j ) ≤ 1Td (θ+

j + θ−j ) = ‖Θ∗j‖1, we have

‖Θ̂∗j −Θ∗j‖1 ≤ ‖Θ̂T c
j ,j
‖1 + ‖ΘT c

j ,j
‖1 + ‖Θ̂Tj ,j −ΘTj ,j‖1

= ‖Θ̂∗j‖1 − ‖Θ̂Tj ,j‖1 + ‖ΘT c
j ,j
‖1 + ‖Θ̂Tj ,j −ΘTj ,j‖1

≤ ‖Θ∗j‖1 − ‖Θ̂Tj ,j‖1 + ‖ΘT c
j ,j
‖1 + ‖Θ̂Tj ,j −ΘTj ,j‖1

≤ 2‖ΘT c
j ,j
‖1 + 2‖Θ̂Tj ,j −ΘTj ,j‖1

≤ 2‖ΘT c
j ,j
‖1 + 4λ0‖Θ‖21|Tj |

≤
(
2λ1 + 4λ0‖Θ‖21

)
s1,

where the second to last inequality follows from (A.5) and the last inequality follows from

the definition of λ1. Suppose maxj
∑

i |Θij |q ≤ s and λ1 = 2λ0‖Θ‖21. Then,

λ1s1 = max
1≤j≤d

∑

1≤i≤d
min

{
|Θij |, λ1

}
≤ λ1−q

1 s.
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It follows that

‖Θ̂∗j −Θ∗j‖1 ≤ 4λ1s1 ≤ 4(2λ0‖Θ‖21)1−qs.

Recall that we still need to prove the feasibility of θ+
j and θ−j , i.e., we need to show that

∥∥Ŝ(θ+
j − θ−j )− ej

∥∥
∞ ≤ λ01

T
d (θ+

j + θ−j ) for all j = 1, . . . , d,

with high probability. This is true since θj = θ+
j − θ−j and Σθj = ej,

‖Ŝθj − ej‖∞ = ‖(Ŝ−Σ)θj‖∞ ≤ ‖Ŝ−Σ‖max‖θ‖1.

Accordingly, the feasibility condition is satisfied with large probability following the fact

that ||Ŝ−Σ|| ≤ λ0 with large probability. Thus, we have ‖Θ̂∗j−Θ∗j‖1 ≤ 23−q‖Θ‖2−2q
1 λ1−q

0 s.

The desired results then follow from the same analysis as in Theorem 1 and Theorem 7

in Cai et al. (2011).
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