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Abstract

Theoretical analysis of weighted U-statistics is long-time known to be complicated. Moti-

vated from challenges on studying a new correlation measurement being popularized in evalu-

ating online ranking algorithms’ performance, this paper founds new theory for nondegenerate

weighted U-statistics. Without any commonly adopted assumption, we establish the central

limit theorem, and verify Efron’s bootstrap and a new resampling procedure’s inference validity.

Specifically, our theory allows kernels and weights asymmetric and data points not identically

distributed, which are all new issues that historically have not been addressed. For achieving

strict generalization, for example, we have to carefully control the order of the “degenerate”

term in U-statistics which are no longer degenerate under the empirical measure for non-i.i.d.

data. Our theory applies to the motivating task, giving the region at which solid statistical

inference can be made.

Keywords: weighted U-statistics, nondegeneracy, bootstrap inference, data heterogeneity, rank

correlation, average-precision correlation.

1 Introduction

This paper studies asymptotics for the following nondegenerate weighted U-statistic of degree m:

Un =
(n−m)!

n!

∑
1≤i1,i2,...,im≤n:
ij 6=ik if j 6=k

an(i1,...,im)hn(Xi1 ,...,Xim). (1.1)

Here we assume X1,...,Xn are independent but not necessarily identically distributed random

variables, taking values in a measurable space (X ,BX ) (Korolyuk and Borovskich, 2013). The

weight function an(·) and kernel function hn(·) are both possibly asymmetric, and they are both

allowed to be sample size dependent.
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Our study on asymmetric weighted U-statistics is motivated from the following new correlation

measurement popularized in the information retrieval area (Yilmaz et al., 2008). It is formulated

as a weighted U-statistic of asymmetric kernels and weights:

τAP :=
2

n−1

n∑
i=2

∑i−1
j=11(Xj >Xi)

i−1
−1. (1.2)

Here 1(·) represents the indicator function and X1,...,Xn are specified to be real-valued. For

this specific example, X1,...,Xn correspond to the scores the ranking machine gives for each online

page, aligned by the rankings of human labels. The data points X1,...,Xn are usually modeled by a

location-scale model, and are usually non-i.i.d.. The statistic in (1.2), named average-precision (AP)

correlation, aims to evaluate the performance of any given online ranking algorithm by calculating

a reweighted rank correlation measurement between the algorithm’s rankings, while “giving more

weights to the errors at high rankings”. For the AP correlation, it is desirable to derive confidence

intervals for solid inference.

Obviously, τAP is an extension to the Kendall’s tau statistic:

τKen :=
2

n(n−1)

∑
i 6=j

{
1(Xi>Xj)1(i< j)+1(Xi<Xj)1(i> j)

}
−1. (1.3)

Compared to τKen, the analysis of τAP is much more involved, but naturally falls into the application

regime of our theory.

The analysis of unweighted U-statistics (i.e., an(·)≡ 1) has a long history. There has been a vast

literature on evaluating their asymptotic behaviors since the seminal paper of Hoeffding (1948).

Specifically, regarding the simple independent and identically distributed (i.i.d.) setting, inference

results have been summarized in Lee (1990), Serfling (2009), and Korolyuk and Borovskich (2013).

For extensions, Lee (1990) showed the asymptotic normality under a Lyapunov-type non-i.i.d.

condition. Yoshihara (1976) and Dehling and Wendler (2010) derived central limit theorem and

(block) bootstrap inference validity for stationary weakly dependent time series. Csörgő and Nasari

(2013) proved the m-out-of-n bootstrap inference validity.

Weighted U-statistic is comparably less touched in the literature. Here, under the i.i.d. set-

ting, Shapiro and Hubert (1979) and O’Neil and Redner (1993) conducted asymptotic analysis for

weighted U-statistics of degree two. Major (1994) and Rifi and Utzet (2000) made extensions to

weighted U-statistics of degree m≥ 2, with focus on the degenerate cases. Hsing and Wu (2004)

relaxed the independence assumption, showing the asymptotic normality for a wide range of sta-

tionary stochastic processes. Recently, Zhou (2014) generalized the results in Hsing and Wu (2004),

proving central and noncentral limit theorems for a class of nonstationary time series.

Despite the above substantial advances, two sets of assumptions are commonly required in the

analysis of (weighted) U-statistics. First, the kernels and weights are required to be symmetric.

Allowing both of them to be asymmetric, though requiring much more involved combinatorial

analysis, is necessary for building rigorous inference for statistics like τAP1. Secondly, i.i.d. or sta-

1Of note, when a U-statistic has either kernel or weight function symmetric, it could be easily rewritten as U-

2



tionary assumption is commonly posed, especially for proving Efron’s bootstrap inference validity.

A notable exception is Zhou (2014), who established central limit theorem for nonstationary time

series. However, bootstrap inference is not discussed, and the regularity conditions therein are too

strong to include statistics like τAP.

Motivated from our study on the AP correlation, this manuscript aims to fill these gaps. In

particular, we build unified theory for analyzing nondegenerate weighted U-statistics, namely, estab-

lishing sufficient conditions for their asymptotic normality and bootstrap inference validity. Both

Efron’s bootstrap and a new resampling procedure stemmed from Politis and Romano (1994) and

Bickel et al. (1997) are considered. For this, we waive the above two sets of assumptions, allowing

researchers to analyze statistics like τAP in practical settings.

1.1 Other related work

Our results are very related to bootstrap inference under data heterogeneity. In Liu (1988), Regina

Liu pioneered the study on Efron’s bootstrap inference validity for non-i.i.d. models. Her results

showed that bootstrap is robust to these specific non-i.i.d. settings with common locations (means).

However, bootstrap is very sensitive to mean differences. The inference validity is captured by a

function of {µi :=EXi}ni=1, which she called “heterogeneity factors” (Liu, 1988; Liu and Singh,

1995). For example, for the sample mean, at the worse case, the distance between the largest

and smallest means needs to shrink to zero as n→∞ for bootstrap consistency. Mammen (2012)

summarized the existing results, providing necessary and sufficient conditions of bootstrap validity

for the sample-mean-type statistics under non-i.i.d. settings.

Politis and Romano’s subsampling (Politis et al., 1999) and many other resampling schemes

(Bickel et al., 1997) are appealing alternatives to Efron’s bootstrap. They are designed to correct

the bootstrap inference inconsistency problem in many different settings, where the data could be,

for example, dependent or heavy-tailed. In this paper, we examine a new resampling procedure’s

inference validity for weighted U-statistics.

1.2 Notation

Let R be the set of real numbers, and Z be the set of integers. For a positive integer n, we

write [n] = {a∈Z : 1≤ a≤n}. For any set A, let card(A) represent the cardinality of A. Let
d→

denote “convergence in distribution”, and
P→ denote “convergence in probability”. Let “a.s.” be the

abbreviation of “almost surely”. Let Φ(t) be the cumulative distribution function of the standard

Gaussian. For two positive integers m<n, define(
n

m

)
=

n!

(n−m)!m!
,

where n! represents the factorial of n. Let C be a generic absolute positive constant, whose actual

value may vary at different locations. For any two real sequences {an} and {bn}, we write an. bn, or

statistic of both weight and kernel functions symmetric. However, this type of argument does not apply to the

U-statistic of both weight and kernel functions asymmetric, like the AP correlation.
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equivalently bn& an, if there exists an absolute constant C such that |an| ≤C|bn| for all sufficiently

large n. We write an� bn if both an. bn and an& bn hold. We write an� bn, or equivalently

bn� an, if an& bn holds, but an. bn does not. We write an =O(bn) if an. bn, and an = o(bn) if

an =O(bn) and bn 6=O(an). We write an =OP (bn) or an = oP (bn) if an =O(bn) or an = oP (bn) holds

stochastically.

1.3 Structure of the paper

The rest of the paper is organized as follows. In Section 2 we provide the unified theory for

asymmetric weighted U-statistic, proving central limit theorem, bootstrap, and a new resampling

procedure’s inference validity under data non-i.i.d. settings. In Section 3, we apply the developed

theory to study Kendall’s tau in (1.3) and AP correlation in (1.2). Section 4 contains the main

proofs, with more relegated to the supplementary appendix.

2 Main results

Throughout the paper, we focus on the following triangular array setting: Assume we have n

independent random variables {Xn,i},n≥ 1,1≤ i≤n. Each Xn,i follows the distribution Pn,i.

{Pn,i,i∈ [n]} are not necessarily equal to each other. When n increases, Pn,i could possibly change.

For notational simplicity, in the sequel we drop n in the subscripts of Xn,i and Pn,i when no

confusion could be made. All probabilities and expectations are in the outer measure sense.

We are focused on the following weighted U-statistic of degree m, with weight function a(·) :

Zm→R and kernel h(·) :Xm→R:

Un =Un(X1,...,Xn) =
(n−m)!

n!

∑
Imn

an(i1,...,im)hn(Xi1 ,...,Xim). (2.1)

Here the summation is over all possible m elements in [n] without overlap:

Imn := {1≤ i1,i2,...,im≤n : ij 6= ik if j 6= k}.

Such Un is usually referred to as a weighted U-statistic in the literature (Serfling, 2009). We do

not assume symmetry of an(·) or hn(·) in their arguments. For notation simplicity, in the sequel

we omit the subscript n in an(·) and hn(·).
Let’s define

θ(i1,...,im) :=E{h(Xi1 ,...,Xim)}=

∫
h(y1,...,ym)dPi1(y1)...dPim(ym) (2.2)

to be the population mean of h(Xi1 ,...,Xim). For any l∈ [m], define πl(·;·) to be a function that

takes two arguments (a scalar and a vector of length m−1), and returns a vector of length m by

inserting the first argument into the l-th position of the second argument. Formally, we define

πl(y;y1,y2,...,ym−1) := (y1,...,yl−1,y,yl,...,ym−1).
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We further define

a(l)(i;i1,i2,...,im−1) := a{πl(i;i1,i2,...,im−1)},
h(l)(x;x1,...,xm−1) :=h{πl(x;x1,...,xm−1)},
θ(l)(i;i1,i2,...,im−1) := θ{πl(i;i1,i2,...,im−1)}.

Define the first order expansion of h(·) for each Xi, regarding the specific sequence Xi1 ,...,Xim−1 ,

to be:

h1,i;i1,...,im−1(x) :=
m∑
l=1

a(l)(i;i1,...,im−1)
{
f
(l)
i1,...,im−1

(x)−θ(l)(i;i1,...,im−1)
}
,

where

f
(l)
i1,...,im−1

(x) :=Ei1,...,im−1{h(l)(x;Y1,...,Ym−1)}

=

∫
h(l)(x;y1,...,ym−1)dPi1(y1)...dPim−1(ym−1). (2.3)

Define the first order expansion of h(·) for Xi to be

h1,i(x) :=
(n−m)!

(n−1)!

∑
Im−1
n−1 (−i)

h1,i;i1,...,im−1(x), (2.4)

where the summation is over

Im−1n−1 (−i) :=
{

1≤ i1,...,im−1≤n : ij 6= ik if j 6= k, and ij 6= i for all j ∈ [m−1]
}
.

For l∈ [m], we write (i1,...,im)\il := (i1,...,il−1,il+1,...,im), and define

h2;i1,...,im(x1,...,xm) :=h(x1,...,xm)−
m∑
l=1

f
(l)
(i1,...,im)\il(xl)+(m−1)θ(i1,...,im), (2.5)

where by (2.3) we have

f
(l)
(i1,...,im)\il(x) =

∫
h(y1,...,yl−1,x,yl+1,...,ym)dPi1(y1)...dPil−1

(yl−1)dPil+1
(yl+1)...dPim(ym).

Before presenting the main theorem, we have to introduce more notation on the weight function

a(·). For K,q ∈Z with K ≥ 2 and 0≤ q≤m, let (Imn )⊗K≥q be the collection of all K-dimensional index

vectors from Imn that share at least q common indices:

(Imn )⊗K≥q :=
{

(i
(1)
1 ,...,i(1)m )∈ Imn ,...,(i

(K)
1 ,...,i(K)

m )∈ Imn : card
( K⋂
k=1

{i(k)1 ,...,i(k)m }
)
≥ q
}
,

and (Imn )⊗K=q be the collection of all K-dimensional index vectors from Imn that share exactly q

indices in common:

(Imn )⊗K=q =
{

(i
(1)
1 ,...,i(1)m )∈ Imn ,...,(i

(K)
1 ,...,i(K)

m )∈ Imn : card
( K⋂
k=1

{i(k)1 ,...,i(k)m }
)

= q
}
.
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With fixed K,q,m, it is easy to observe card{(Imn )⊗K≥q }� card{(Imn )⊗K=q } as n→∞, and

card{(Imn )⊗K=q }�
(
n

q

)(
n−q
m−q

)
···
(
n−(K−1)m−q

m−q

)
�nq+K(m−q).

In particular, we have card{(Imn )⊗2≥2}�n2m−2, card{(Imn )⊗2≥1}�n2m−1, and card{(Imn )⊗3≥1}�n3m−2.
Define the average weight, AK,q(n), as

AK,q(n) :=
1

card{(Imn )⊗K≥q }

∑
(Imn )⊗K≥q

∣∣∣a(i
(1)
1 ,...,i(1)m )···a(i

(K)
1 ,...,i(K)

m )
∣∣∣. (2.6)

The following theorem gives sufficient conditions on the weights and distributions of {Xi} for

guaranteeing Un to be asymptotically normal.

Theorem 2.1 (Sufficient condition for asymptotic normality of Un). For each n, assume there

exists a positive constant M(n)> 0 only depending on n such that

sup
(i1,...,im)∈Imn

E{h(Xi1 ,...,Xim)4}≤M(n). (2.7)

Define V (n) = Var{n−1
∑n

i=1h1,i(Xi)} with h1,i(·) defined in (2.4). Assume the following conditions

hold:

n−2V (n)−1A2,2(n)M(n)1/2→ 0, (2.8)

n−2V (n)−3/2A3,1(n)M(n)3/4→ 0. (2.9)

Then we have

Var(Un)/V (n)→ 1, (2.10)

and

Var(Un)−1/2{Un−E(Un)} d→N(0,1). (2.11)

The proof of Theorem 2.1 is very involved. However, the first step of the proof, which establishes

a von-Mises-expansion type result, is simple yet inspiring. Of note, for symmetric weighted U-

statistics under i.i.d. settings, an analogous theorem has been (inexplicitly) stated in Shapiro and

Hubert (1979).

Lemma 2.2 (Hoeffding’s decomposition). With h1,i(·) and h2;i1,...,im(·) defined in (2.4) and (2.5),

we have

Un−E(Un) =
1

n

n∑
i=1

h1,i(Xi)+Un(a,h2), (2.12)

where

Un(a,h2) :=
(n−m)!

n!

∑
Imn

a(i1,...,im)h2;i1,...,im(Xi1 ,...,Xim), (2.13)
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and for any i,k∈ [n] and (i1,...,im)∈ Imn ,

E{h1,i(Xi)}= 0, (2.14)

E{h2;i1,...,im(Xi1 ,...,Xim) |Xk}= 0 a.s.. (2.15)

For putting Theorem 2.1 appropriately in the literature, let’s first give a brief review on the most

relevant existing results. The first proof of asymptotic normality for (unweighted) nondegenerate

U-statistics was given in Hoeffding (1948). Grams and Serfling (1973) studied general unweighted

U-statistics of degree m≥ 2 and bounded their central moments . The techniques therein also play

a central role in our analysis. Shapiro and Hubert (1979) and O’Neil and Redner (1993) analyzed

the asymptotic behavior of weighted U-statistics of degree 2. They assumed weight function a(·)
symmetric. The above results all assume data i.i.d.-ness. For unweighted U-statistics, Lee (1990)

outlined an extension to non-i.i.d. data.

Theorem 2.1 is stronger than the results in the literature, allowing a(·) and h(·) asymmetric, and

the Xi’s non-i.i.d.. By examining the proof, one can also easily check that, when the corresponding

symmetry, boundedness, or i.i.d. assumptions are made, our results can reduce to the ones in

Hoeffding (1948), Shapiro and Hubert (1979), O’Neil and Redner (1993), and Lee (1990).

Remark 2.3. Condition (2.8) is added to enforce domination of n−1
∑n

i=1h1,i(Xi) over Un(a,h2)

in (2.12). Condition (2.9) evolves from the Lyapunov condition with δ= 1, which is readily weaken

to the condition of a smaller 0<δ< 1 or the Lindeberg-Feller condition. Condition (2.7) is made

and could be weakened based on the same argument. For presentation clearness, we choose the

current conditions.

Inferring the distribution of Un or approximating Var(Un) is usually challenging in practice.

Resampling procedures are hence recommended. The rest of this section gives asymptotic results

for Efron’s bootstrap (Efron, 1979) and a new resampling procedure for approximating Var(Un).

Due to the heterogeneity in Pi, it is well known that bootstrap could possibly no longer be

consistent (Liu, 1988). However, it is still possible to recover bootstrap consistency by restricting

the heterogeneity degree. But before that, let’s first provide a theoretically interesting theorem.

It states that, under very mild conditions, bootstrapped mean from the set {h1,i(Xi) : 1≤ i≤n}
approximates the distribution of n−1

∑n
i=1h1,i(Xi) consistently. This is consistent to the discovery

in Liu (1988) by noting that E{h1,i(Xi)}= 0 no matter how different {Pi}ni=1 are.

Theorem 2.4 (Sufficient condition for bootstrapping main term to work). Denote

σ2n := Var(Un). (2.16)

Consider the term n−1
∑n

i=1h1,i(Xi) with h1,i(Xi) defined in (2.4) and its bootstrapped version

n−1
∑n

i=1{h1,i(Xi)}∗, where conditional on X1,...,Xn the {h1,i(Xi)}∗’s are i.i.d. draws from the

empirical distribution of {h1,j(Xj) : 1≤ j≤n}. Assume (2.7) and (2.9) hold. In addition, assume
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for every ε> 0, we have

sup
1≤i≤n

P
{∣∣∣h1,i(Xi)

nσn

∣∣∣≥ ε}→ 0, (2.17)

n∑
i=1

[
E
{h1,i(Xi)

nσn
1
(∣∣∣h1,i(Xi)

nσn

∣∣∣≤ ε)}]2→ 0. (2.18)

Then

sup
t∈R

∣∣∣∣P ∗{ n∑
i=1

{h1,i(Xi)}∗

nσn
−

n∑
i=1

h1,i(Xi)

nσn
≤ t
}
−P

{ n∑
i=1

h1,i(Xi)

nσn
≤ t
}∣∣∣∣ P→ 0, (2.19)

where P ∗ denotes the conditional probability given X1,...,Xn. If further (2.8) holds, then

sup
t∈R

∣∣∣∣P ∗{ n∑
i=1

{h1,i(Xi)}∗

nσn
−

n∑
i=1

h1,i(Xi)

nσn
≤ t
}
−P

{
Var(Un)−1/2{Un−E(Un)}≤ t

}∣∣∣∣ P→ 0. (2.20)

Remark 2.5. Equations (2.17) and (2.18) are rather mild constraints. As we will show in Corollary

3.1, usually they can be directly deduced from the asymptotic normality of Un. However, unless

we know much about Xi, the form of h1,i(·) is unknown.

We now focus on bootstrapping the original U-statistic for estimating Var(Un). The follow-

ing theorem shows that Efron’s bootstrap still gives consistent variance estimate for Un under

some additional conditions on data heterogeneity. Although the bootstrap inference validity for U-

statistics under i.i.d. assumptions has been established (check, for example, Korolyuk and Borovs-

kich (2013)), the corresponding one for non-i.i.d. settings, even for the simplest unweighted U-

statistics, is still absent in the literature. Our paper fills this gap.

Theorem 2.6 (Sufficient condition for consistent bootstrap variance estimation). Given X1,...,Xn,

letX∗1 ,...,X
∗
n denote the bootstrapped sample, which are i.i.d. draws from the empirical distribution

of X1,...,Xn. Define the bootstrapped U-statistic

U∗n =
(n−m)!

n!

∑
Imn

a(i1,...,im)h(X∗i1 ,...,X
∗
im).

Assume all conditions in Theorem 2.1 are satisfied. Also assume the following conditions hold:

(i) Bounded second moment of von-Mises type kernel:

limsup
n→∞

max
1≤i1,...,im≤n

E{h(Xi1 ,...,Xim)2}<∞. (2.21)

(ii) Control of heterogeneity in the distributions of Xi:

1

n

n∑
i=1

n∑
j=1

{h1,i(Xj)

nσn

}2 P→ 1, (2.22)

1

n2

n∑
i=1

{ n∑
j=1

h1,i(Xj)

nσn

}2 P→ 0, (2.23)
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and

n−1σ−2n A2,1(n){M1(n)2+M2(n)+n−1}→ 0, (2.24)

where

M1(n) = max
(Imn )⊗2

≥0

|θ(i1,...,im)−θ(j1,...,jm)|, (2.25)

M2(n) = max
1≤p,q≤m

max
r,s∈(Imn )⊗2

=1
r∩s=rp=sq

max
k∈Imn

k∩s=kp=sq

∣∣∣E[E{h(Xr1 ,...,Xrm)h(Xs1 ...Xsm) |Xkp}]

−E[E{h(Xk1 ,...,Xkm)h(Xs1 ,...,Xsm) |Xkp}]
∣∣∣. (2.26)

Here we define r := (r1,...,rm), and similarly for s,k.

Then we have ∣∣Var∗(σ−1n U∗n)−Var(σ−1n Un)
∣∣ P→ 0, (2.27)

where the operator Var∗(·) denotes the conditional variance given X1,...,Xn.

The detailed proof of Theorem 2.6 is very involved and highly combinatorial. We defer it to

Section 4. Of note, in the theorem, (2.21) comes from Bickel and Freedman (1981), ensuring that the

bootstrapped U-statistic won’t explode. Equations (2.22) and (2.23) ensure that the conditional

variance of n−1
∑n

i=1h1,i(X
∗
i ) approximates Var(Un). Equation (2.24) ensures that U∗n(a,h2) is

negligible compared to n−1
∑n

i=1h1,i(X
∗
i ).

Remark 2.7. Although Un(a,h2) in the decomposition (2.12) is degenerate and hence negligible

under the conditions of Theorem 2.1, its bootstrapped version U∗n(a,h2) is not necessarily degen-

erate. This makes U∗n(a,h2) not necessarily negligible compared to the bootstrapped version of

the main term, n−1
∑n

i=1h1,i(X
∗
i ). The reason for the blown-up U∗n(a,h2) is the heterogeneity in

{Pi,i∈ [n]}. Therefore, bootstrap may fail without careful control on both the main term and

the remainder U∗n(a,h2). We developed delicate analysis to bound U∗n(a,h2) and showed that it is

negligible under the constraint (2.24).

Remark 2.8. Condition (2.24) puts homogeneity conditions mainly on the means. This is consis-

tent to Theorem 2.4 and the discoveries in Liu (1988), who showed that bootstrap is most sensitive

to mean differences. To illustrate, assume a(·)≡ 1 and the kernel h(·) to be a bounded function.

Assume the assumptions in Theorem 2.1 hold, so that we have asymptotic normality of Un. Equa-

tion (2.9) requires σ2n�n−4/3. Therefore, for (2.24) to hold, it is necessary that M1(n)2�n−1/3 and

M2(n)�n−1/3. The space to improve our requirements, if existing, is relatively small. This is by

noting that, even for the simplest sample-mean-type statistics, for most cases, Liu (1988) required

the mean differences shrink to zero as n→∞ for bootstrap consistency.

An immediate implication of Theorem 2.6 proves the validity of bootstrapping weighted U-

statistics for i.i.d. data.
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Corollary 2.1. Assume that X1,...,Xn are i.i.d., and that (2.7), (2.8), (2.9), and (2.21) hold. In

addition, assume n−2σ−2n A2,1(n)→ 0. Then (2.22), (2.23), and (2.24) hold, and we have∣∣Var∗(σ−1n U∗n)−Var(σ−1n Un)
∣∣ P→ 0.

Remark 2.9. The assumption n−2σ−2n A2,1(n)→ 0 is mild. Actually it follows immediately from

(2.8) if we have A2,1(n).A2,2(n). It is reasonable to expect A2,1(n) and A2,2(n) to be of similar

order because of their definitions in (2.6). Indeed, for the two applications in Section 3, we have

A2,1(n)�A2,2(n) for UKen
n and A2,1(n).A2,2(n).A2,1(n)logn for UAP

n .

In many cases, although the data are in general non-i.i.d., they possess some locally sta-

tionary property. For example, consider the following nonparametric regression model. Assume

Xi∼N(µi,1) with µi = gn(i/n) for i= 1,...,n. If the function gn(·) is smooth enough (e.g., ε(n)-

Lipschitz), then, although max|gn(1)−gn(0)| could increase to infinity, the subsample {Xi,Xi+1,...,Xi+b−1},
for each i∈ 1,...,n−b+1, can be approximately i.i.d..

Adopting this thinking, we consider the following revised resampling procedure whose idea

comes from Politis and Romano (1994) and Bickel et al. (1997), but is tailored for non-i.i.d. data.

In detail, for m<b→∞, we consider the following statistic:

V ∗n =
1

hn(n−b+1)

n−b+1∑
i=1

Var∗(U∗b,i), where U∗b,i :=
(b−m)!

b!

∑
Imb

a(i1,...,im)h(X∗i1,b,i,...,X
∗
im,b,i),

and for each i∈ [n−b+1], X∗i1,b,i,...,X
∗
im,b,i

are independently drawn from the empirical distribution

of {Xi,...,Xi+b−1} with replacement. The tuning parameter hn regulates the scale.

The following theorem verifies the new resampling procedure’s inference consistency for V ∗n ,

showing that the procedure tends to give conservative variance estimate under non-i.i.d. settings.

It also shows that the inference is more tractable compared to Efron’s bootstrap when we have

more prior information on the heterogeneity degree, reflected in the consistency rate of Un and the

choice of hn. We also refer the readers to Remark 3.4 and discussions therein for the order of σn

in a specific example.

Theorem 2.10. Assume that all conditions in Theorem 2.6 hold for each “moving block” {Xi,...,Xi+b−1}
of i∈ [n−b+1] as n,b→∞. Assume Var(Ub(Xi,...,Xi+b−1)) =σ2b (1+o(1)) for any i∈ [n−b+1],

and σ2b/σ
2
n = ζn,b ·(1+o(1)) for some ζn,b> 0. We then have

σ−2n V ∗n −Var(σ−1n Un) =
ζn,b
hn
·(1+oP (1))−1.

The proof is a simple consequence of the Rao-Blackwell theorem combined with the proofs in

Theorem 2.6. The details are hence omitted.
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3 Application

This section studies our motivating statistics, the Kendall’s tau (denoted as τKen) (Kendall, 1938)

and average-precision (AP) correlation (denoted as τAP) (Yilmaz et al., 2008):

τKen =
2

n(n−1)

∑
i 6=j
{1(Xi>Xj)1(i< j)+1(Xj >Xi)1(j < i)}−1,

τAP =
2

n−1

n∑
i=2

∑i−1
j=11(Xj >Xi)

i−1
−1.

Without loss of generality, we focus on the transformed versions of these two statistics:

UKen
n =

τKen+1

4
=

1

n(n−1)

∑
i 6=j

1(j < i)1(Xj >Xi),

UAP
n :=

τAP+1

2
=

1

n(n−1)

∑
i 6=j

n1(j < i)

i−1
1(Xj >Xi).

We assume {Pi,i∈ [n]} to be absolutely continuous with regard to the Lebesgue measure. Obviously,

both UKen
n and UAP

n enjoy the distribution-free property (Kendall and Stuart, 1973) when the data

are i.i.d..

3.1 Asymptotic theory

Note that the statistics UKen
n and UAP

n have the same kernel h(x,y) =1(y >x). Using the definition

in (2.2), we have θ(i,j) =E{h(Xi,Xj)}=P (Xj >Xi). The forms of h1,i(·) and h2;i,j(·) for UKen
n

and UAP
n are then summarized in the following two lemmas.

Lemma 3.1 (Hoeffding’s decomposition of UKen
n ). We have

UKen
n −E(UKen

n ) =
1

n

n∑
i=1

hKen
1,i (Xi)+

1

n(n−1)

∑
i 6=j

1(j < i)hKen
2;i,j(Xi,Xj),

where

hKen
1,i (x) =

1

n−1

n∑
j=1

{1(j < i)−1(j > i)}{P (Xj >x)−θ(i,j)} (3.1)

and

hKen
2;i,j(x,y) =1(y >x)−P (Xj >x)−P (y >Xi)+θ(i,j).

Lemma 3.2 (Hoeffding’s Decomposition of UAPn ). We have

UAP
n −E(UAP

n ) =
1

n

n∑
i=1

hAP
1,i (Xi)+

1

n(n−1)

∑
i 6=j

n1(j < i)

i−1
hAP
2;i,j(Xi,Xj),

where

hAP
1,i (x) =

1

n−1

n∑
j=1

{n1(j < i)

i−1
− n1(j > i)

j−1

}
{P (Xj >x)−θ(i,j)}, (3.2)

11



and

hAP
2;i,j(x,y) =1(y >x)−P (Xj >x)−P (y >Xi)+θ(i,j).

In (3.2), by convention, we have 0/0 := 0.

The next theorem characterizes sufficient distributional conditions for UKen
n and UAP

n to be

asymptotically normal, allowing for data non-i.i.d.-ness.

Theorem 3.3 (Sufficient conditions for asymptotic normality of UKen
n and UAP

n ). Assume a se-

quence {δn ∈ (0,1)}∞n=1 and a sequence {pn ∈ (0,1)}∞n=1 such that for any sufficiently large n and for

each i∈ [n], one of the following two conditions holds:

(i) P{P (Xj >Xi |Xi)−P (Xj >Xi)∈ [δn,1],∀j ∈ [n]\{i}}≥ pn;

(ii) P{P (Xj >Xi |Xi)−P (Xj >Xi)∈ [−1,−δn],∀j ∈ [n]\{i}}≥ pn.

In addition, if

δ3npn�n−1/3, (3.3)

then UKen
n is asymptotically normal,

Var(UKen
n )−1/2{UKen

n −E(UKen
n )} d→N(0,1).

If we have

δ3npn�n−1/3(logn)2, (3.4)

then UAP
n is asymptotically normal,

Var(UAP
n )−1/2{UAP

n −E(UAP
n )} d→N(0,1).

The proof of Theorem 3.3 exploits Theorem 2.1. A key step in the proof is to bound V (n) :=

n−2
∑

iVar{h1,i(Xi)} from below. The magnitude of Var{h1,i(Xi)} varies greatly with different

i, making it a challenging task to bound the entire summation. To tackle this, we break V (n)

into summations over multiple subsets of [n]. Within each of these summations, the magnitude of

Var{h1,i(Xi)} is stable. Then we develop bounds on the summations for i with large Var{h1,i(Xi)}.
The detailed proof is put in Section 4.

The sequences {δn} and {pn} in Conditions (i) and (ii) of Theorem 3.3 characterize the hetero-

geneity degree among the Pi’s. If all Pi’s are identical, it is easy to check that there exist absolute

constants δn and pn not depending on n such that Condition (i) or (ii) holds. Equations (3.3) and

(3.4) allow δn and pn to decay to zero as n→∞. The legitimate decaying rate of δ3npn depends on

the average weight of each of the two statistics. The conditions for asymptotic normality of UAP
n

(3.4) are slightly stronger than that for UKen
n (3.3), because for UAP

n the weight is more asymmetric.

Remark 3.4. In the literature about Kendall’s tau, the classical result gives root-n convergence

rate (Sen, 1968). Theorem 3.3 gives a more general result regarding the convergence rate due to the

non-i.i.d.-ness of {X1,...,Xn}. In the proof of Theorem 3.3, we show that the Var(UKen
n )�n−1δ3npn.
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As we vary the distribution of Xi from i.i.d. to the more heterogeneous ones, δ3npn changes from

O(1) to O(n−1/3+ε) for some small ε> 0. Therefore, the upper bound on the order of Var(UKen
n )−1/2

can vary from n1/2 to n2/3−ε/2.

Motivated by the studies in Yilmaz et al. (2008), in the sequel we consider the following specific

location-scale model. In particular, given two sets of real values µi with µ1≥µ2≥ ...≥µn and

σ21,...,σ
2
n> 0, let’s consider absolute continuous (with respect to Lebesgue measure) probability

distribution Pi with mean µi and variance σ2i for i∈ [n]. Assume X1,...,Xn are independent draws

from P1,...,Pn. The following theorem characterizes the explicit sufficient conditions on {(µi,σi),i∈
[n]} for Kendall’s tau and AP correlation to be asymptotically normal.

Theorem 3.5 (Sufficient condition for asymptotic normality of UKen
n and UAP

n under two tail

conditions). For each i∈ [n], assume Xi follows distribution Pi with mean µi and variance σ2i .

Define

rij := (µi−µj)/σi, Rn := max
1≤i 6=j≤n

|rij |, ρij :=σi/σj , and ρn := max
1≤i 6=j≤n

ρij .

For n,i,j such that 1≤ i 6= j≤n, define

F cj (t) =P
(Xj−µj

σj
>t
)

and F cji(t) =P
{Xj−Xi−(µj−µi)

(σ2i +σ2j )
1/2

>t
}
. (3.5)

Then the following results hold.

(i) Assume there exist absolute constants c1,c2> 0, b1>b2> 0, and t0> 0, such that for any n,i,j

with 1≤ i 6= j≤n and for any t≥ t0,

c1t
−b1 ≤F cj (t)≤ c2t−b2 , (3.6)

c1t
−b1 ≤F cji(t)≤ c2t−b2 . (3.7)

Then the sufficient condition for asymptotic normality of UKen
n is

R
(3b1b2+b21)/b2
n ρb1n �n1/3, (3.8)

and the sufficient condition for asymptotic normality of UAP
n is

R
(3b1b2+b21)/b2
n ρb1n �n1/3(logn)−2. (3.9)

(ii) Assume there exist absolute constants c1,c2> 0, b1>b2> 0, and t0> 0, such that for any n,i,j

with 1≤ i 6= j≤n and for any t≥ t0,

c1exp(−b1tλ)≤F cj (t)≤ c2exp(−b2tλ), (3.10)

c1exp(−b1tλ)≤F cji(t)≤ c2exp(−b2tλ). (3.11)

Then the sufficient condition for asymptotic normality of UKen
n is

3b1R
λ
n+b1(Rn+K3ρn+K4ρnRn)λ�

1

3
logn, (3.12)

and the sufficient condition for asymptotic normality of UAP
n is

3b1R
λ
n+b1(Rn+K3ρn+K4ρnRn)λ�

1

3
logn−2loglogn, (3.13)
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where

K3 := t0+
(
− 1

b2
log

c1
2c2

+
b1
b2
tλ0

)1/λ
+ξ(λ−1)

(
− 1

b2
log

c1
2c2

)1/λ
,

K4 := ξ(λ−1)
(b1
b2

)1/λ
, (3.14)

and ξ(p) :=1(p≤ 1)+2p−11(p> 1).

Remark 3.6. It is worth noting that distributions satisfying (3.6) in Theorem 3.5(i) are commonly

referred to as“heavy-tailed” distributions, whereas distributions satisfying (3.10) in Theorem 3.5(ii)

are considered to be “light-tailed” (Mikosch, 1999; Resnick, 2007).

We compare Condition (3.8) in (i) and Condition (3.12) in (ii) for UKen
n . Assume σi = 1 for

all i∈ [n]. In this case, we have ρn = 1, and Rn = max1≤i 6=j≤n |µi−µj | becomes the spread of the

means. Equation (3.8) becomes

Rn�n
b2

3(3b1b2+b
2
1) . (3.15)

Equation (3.12) becomes

3b1R
λ
n+b1(Rn+K3+K4Rn)λ�

1

3
logn. (3.16)

Lemma A.14 yields (Rn+K3+K4Rn)λ≤ ξ(λ)(1+K4)
λRλn+ξ(λ)Kλ

3 . So for (3.16) to hold, it suf-

fices to have ξ(λ)(1+K4)
λRλn+3b1R

λ
n� (logn)/3. Rearranging terms, we obtain a sufficient condi-

tion for (3.16) to hold:

Rn�
[ logn

3b1{3+ξ(λ)(1+K4)λ}

]1/λ
. (3.17)

For heavy-tailed distributions in (i), (3.15) implies that the spread of means should not grow faster

than a polynomial of n. For light-tailed distributions in (ii), (3.17) implies that the spread of means

should not grow faster than the logarithm of n (up to some constant scaling factor). Of note, under

both tail conditions, Rn is allowed to increase to infinity at proper rates.

Example 3.1. A special distribution satisfying the conditions in Theorem 3.5(ii) is the Gaussian.

Again, consider UKen
n and assume σi = 1 for all i∈ [n]. Note in this case F cj (·) is the survival function

for Gaussian with variance 1, whereas F cji(·) is for Gaussian with variance 2. Let λ= 2, b1 = 1/2+ε,

b2 = 1/4−ε for arbitrarily small ε> 0, and c1,c2,t0 be properly chosen constants (whose value does

not affect the rate in (3.17)). Equations (3.6) and (3.7) are satisfied due to Lemma A.16. It then

follows from (3.17) that

Rn�
( 2logn

27+12
√

2

)1/2
is sufficient for UKen

n to be asymptotically normal.

Remark 3.7. We comment on a modified version of Theorem 3.5(i), with a condition alternative to

(3.6) (A similar modification applies to Theorem 3.5(ii)). In detail, define Fj(t) =P{(Xj−µj)/σj ≤
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t} to be the standardized cumulative distribution function that is complement to the survival

function F cj (t). The conclusion in Theorem 3.5(i) still holds if we replace the condition (3.6) by

c1t
−b1 ≤Fj(−t)≤ c2t−b2 . (3.18)

For comparison, (3.6) regulates the upper-tail behavior of Xj , whereas (3.18) regulates the lower-

tail of Xj . Technically speaking, the proof of Theorem 3.5(i) examines Condition (ii) in Theorem

3.5, whereas the alternative version examines Condition (i) in Theorem 3.5. Note that (3.7) is

required in both versions, which regulates both the upper- and lower-tail behaviors of Xj−Xi.

The following three corollaries give asymptotic results for bootstrapping UKen
n and UAP

n . The

first of them states that bootstrapping the main term is very insensitive to data non-i.i.d.-ness.

This is as expected by the results in Liu (1988).

Corollary 3.1 (Bootstrap of main term works for UKen
n and UAP

n ). If (3.3) holds, we have that

(2.17) and (2.18) hold for hKen
1,i . If (3.4) holds, we have that (2.17) and (2.18) hold for hAP

1,i .

As has been shown in Section 2, bootstrapping the whole U-statistic requires much stronger

assumptions for guaranteeing its consistency. The following two corollaries provide sufficient con-

ditions for bootstrap inference validity of the two considered U-statistics.

Corollary 3.2 (Sufficient condition for consistent bootstrap variance estimation of UKen
n ). Assume

(3.3) holds. Assume there exist θ > 0 and an absolute constant C > 0 such that for all (i,j)∈ I2n,

|P (Xi>Xj)−θ| ≤Cn−1/6. (3.19)

In addition, assume there exist η2> 0 and an absolute constant C > 0 such that for all i∈ [n] and

all 1≤ j,k≤n such that j 6= i and k 6= i,

|E{P (Xj >Xi |Xi)P (Xk>Xi |Xi)}−η2| ≤Cn−1/3. (3.20)

Assume η2 6= θ2. Then we have

|Var∗(σ−1n UKen∗
n )−Var(σ−1n UKen

n )| P→ 0.

Corollary 3.3 (Sufficient condition for consistent bootstrap variance estimation of UAP
n ). Assume

(3.4) holds. Assume there exist θ > 0 and an absolute constant C > 0 such that for all (i,j)∈ I2n,

|P (Xi>Xj)−θ| ≤Cn−1/6 logn. (3.21)

In addition, assume there exist η2> 0 and an absolute constant C > 0 such that for all 1≤ i≤n
and all 1≤ j,k≤n such that j 6= i and k 6= i,

|E{P (Xj >Xi |Xi)P (Xk>Xi |Xi)}−η2| ≤Cn−1/3(logn)2. (3.22)

Assume η2 6= θ2. Then we have

|Var∗(σ−1n UAP∗
n )−Var(σ−1n UAP

n )| P→ 0.

In the proof of Corollaries 3.2 and 3.3, for verifying (2.22), we exploit the weak law of large

numbers for independent but not identically distributed variables. For verifying (2.23), we break
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Table 1: Testing for normality of UKen
n and UAP

n with n= 100 under different values of Rn :=

max|θi−θj |. This table gives the p-values under three normality tests: CvM, L, and SF. CvM

stands for Cramer-von Mises test. L stands for Lilliefors test. SF stands for Shapiro-Francia test.

p-values of the three tests are calculated using R package “Rnortest”. For each Rn, {θi : 1≤ i≤n}
are equally spaced between Rn and 0, and we simulate Xi∼N(θi,1).

Rn 0 10 30 50

UKen
n

CvM 0.17 0.28 0.002 < 0.001

L 0.15 0.10 < 0.001 < 0.001

SF 0.60 0.025 0.003 < 0.001

UAP
n

CvM 0.25 0.14 < 0.001 < 0.001

L 0.23 0.32 < 0.001 < 0.001

SF 0.69 0.003 < 0.001 < 0.001

the left-hand side into the sum of an unweighted U-statistic and a negligible term, and apply the law

of large numbers for unweighted U-statistics. The detailed proof is very lengthy, and is relegated

to Section 4.

Remark 3.8. The condition η2 6= θ2 in Corollaries 3.2 and 3.3 is mild. Under the i.i.d. case, it

essentially requires that the Xi’s are not degenerate random variables. To see this, let θ :=P (X1>

X2) and η2 :=E{P (X1>X2 |X1)
2}. Since the Xi’s are i.i.d., it follows that

|P (Xi>Xj)−θ|= 0 and |E{P (Xj >Xi |Xi)P (Xk>Xi |Xi)}−η2|= 0.

Jensen’s inequality implies that η2≥ θ2, with equality only if Xi is a degenerate random variable.

3.2 Numerical experiments

In this section, we evaluate the developed theory and examine the finite sample behavior of Kendall’s

tau and AP correlation via synthetic data analysis. Both central limit theorem and bootstrap

inference validity are checked under different data heterogeneity degree.

First, we examine the validity of central limit theorem for Kendall’s tau and AP correlation.

For this, each time, we generate the data sequence X1,...,Xn with Xi∼N(θi,1) for i∈ [n]. Here the

sample size n is picked to be 100, and the means {θi,i∈ [n]} are assigned equally spaced between Rn

and 0, with Rn = max|θi−θj | representing the heterogeneity degree, taking values from 0 to 50. We

repeat the simulation for 5,000 times, and use three goodness-of-fit tests to examine the normality

of the considered statistics: Cramer-von Mises test (CvM), Lilliefors test (L), and Shapiro-Francia

test (SF). All three tests are implemented in the R package “Rnortest”, and we refer the readers to

Thode (2002) for detailed descriptions on these tests.
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Figure 1: Illustration of the distribution of standardized UKen
n with n= 100 under different values

of Rn := max|θi−θj |. For each Rn, {θi : 1≤ i≤n} are equally spaced between Rn and 0, and we

simulate Xi∼N(θi,1). Each histogram is based on 5,000 simulations.

Table 1 illustrates the p-values of three tests for normality. For both UKen
n and UAP

n , normality

is plausible for Rn as large as 10, where two of the three tests fail to reject at significance level 0.1.

Figures 1 and 2 give the histograms of simulated statistics (standardized) under the above settings,

which also support the results in Table 1. More simulations show that, for fixed Rn as n becomes

larger, the two considered statistics are closer to the normal.

In the second simulation study, we examine the bootstrap variance estimation consistency of the

following three approaches: (i) bootstrapping the main term of the U-statistic (as in Theorem 2.4);

17



0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4
standardized statistic

de
ns

ity

(a) Rn=0

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2
standardized statistic

de
ns

ity

(b) Rn=10

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2
standardized statistic

de
ns

ity

(c) Rn=30

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2
standardized statistic

de
ns

ity

(d) Rn=50

Figure 2: Illustration of the distribution of standardized UAP
n with n= 100 under different values

of Rn := max|θi−θj |. For each Rn, {θi : 1≤ i≤n} are equally spaced between Rn and 0, and we

simulate Xi∼N(θi,1). Each histogram is based on 5,000 simulations.
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Table 2: Three bootstrap variance estimates for UKen
n and UAP

n with n= 1,000 under different values

of Rn := max|θi−θj |. The three considered estimates are: (i) variance estimated by bootstrapping

the main term {h1,i(Xi)}, as in Theorem 2.4; (ii) variance estimated by bootstrapping the original

U-statistic, as in Theorem 2.6; (iii) variance estimated by the “moving-block” bootstrap, as in

Theorem 2.10 by picking hn =n/b and b= 200. The number listed is the averaged bootstrap

variance estimates, scaled by multiplying by σ−2n , the inverse of the variance of the U-statistic. For

each Rn, {θi : 1≤ i≤n} are equally spaced between Rn and 0, and we simulate Xi∼N(θi,1). Each

value is based on 5,000 simulations, and the number of bootstrap replicates within each simulation

is 1,000 in (i) and (ii), 100 for each block in (iii).

Rn 0 1 2 3

UKen
n

main term 1.029 1.032 1.031 1.030

original U-stat 1.032 1.155 1.557 2.331

moving-block 1.045 1.171 1.580 2.366

UAP
n

main term 1.033 1.031 1.026 1.019

original U-stat 1.043 1.116 1.328 1.653

moving-block 1.093 1.169 1.392 1.733

(ii) bootstrapping the original U-statistic (as in Theorem 2.6); (iii) the new resampling strategy,

termed as “moving-block” bootstrap (as in Theorem 2.10 by picking hn =n/b and b= 200). For

this, we simulate Xi∼N(θi,1) for 1≤ i≤n. We set the sample size n to be 1,000. The means

{θi,i∈ [n]} are equally spaced between Rn and 0, and the degree of heterogeneity Rn is set to be

0, 1, 2, and 3. We set the number of bootstrap replicates within each simulation to be 1,000 in

bootstrap approaches (i) and (ii), 100 for each block in bootstrap approach (iii). We repeat the

simulation for 5,000 times.

Table 2 shows the averaged bootstrap variance estimates using the three approaches. The

value is scaled by multiplying σ−2n , inverse of the variance of the U-statistic. Consistent bootstrap

variance estimates would concentrate around 1.

The observations are three-fold. First, we observe that bootstrapping the main term gives

consistent variance estimate for all the Rn we considered. This is as expected due to Corollary 3.1

and the asymptotic normality of UKen
n and UAP

n . Secondly, bootstrapping the original U-statistic

gives consistent variance estimate when Rn = 0, i.e., when the Xi’s are i.i.d.. It becomes more

conservative as the data sequence becomes more heterogeneous. Similar phenomena occur to the

moving-block bootstrap. Lastly, by comparing the results derived from the two simulation studies,

it is easy to observe that the central limit theorem for our considered statistics holds under much

weaker homogeneity conditions than the resampling procedures. This is as expected.
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4 Proofs

This section contains the proof of main results. More proofs and technical lemmas are provided in

the supplementary appendix.

4.1 Proof of Theorem 2.1

Proof. By Lemma 2.2, we have{
Var(Un)

V (n)

}1/2 Un−E(Un)

Var(Un)1/2
=
n−1

∑n
i=1h1,i(Xi)

V (n)1/2
+
Un(a,h2)

V (n)1/2
. (4.1)

For proving Theorem 2.1, by Slutsky’s theorem it suffices to establish the following results:

V (n)−1/2n−1
n∑
i=1

h1,i(Xi)
d→N(0,1), (4.2)

V (n)−1/2Un(a,h2)
P→ 0, (4.3)

and

Var(Un)/V (n)→ 1. (4.4)

First we show (4.2) using Lyapunov’s Central Limit Theorem (Lemma A.9). The following

lemma gives bound on
∑n

i=1E|h1,i(Xi)|3.

Lemma 4.1. For A3,1(n) defined in (2.6) and M(n) defined in (2.7), we have

n∑
i=1

E|h1,i(Xi)|3≤CnA3,1(n)M(n)3/4,

where C is some absolute constant.

By Lemma 4.1 and the fact that E{h1,i(Xi)}= 0, we deduce

n∑
i=1

E|h1,i(Xi)−E{h1,i(Xi)}|3≤CnA3,1(n)M(n)3/4. (4.5)

Since V (n) :=n−2
∑n

i=1Var{h1,i(Xi)}, it follows from (4.5) and (2.9) that∑n
i=1E|h1,i(Xi)−E{h1,i(Xi)}|3[∑n

i=1E|h1,i(Xi)−E{h1,i(Xi)}|2
]3/2 ≤ CnA3,1(n)M(n)3/4

n3V (n)3/2
→ 0. (4.6)

Equation (4.6) and Lemma A.9 with δ= 1 yield (4.2).

Next we show (4.3). To simplify notation, let i denote the index vector (i1,...,im) and Xi denote

(Xi1 ,...,Xim). Consider two index vectors i,j from Imn . If i∩j = ∅, by independence of the Xi’s

we have Cov{h2;i(Xi),h2;j(Xj)}= 0. If i∩j = ip = jq for some p,q ∈ [n] (i.e., the two vectors only

share one common index), Lemma A.7 and (2.15) imply that

Cov{h2;i(Xi),h2;j(Xj)}= Cov[E{h2;i(Xi) |Xip},E{h2;j(Xj) |Xjq}] = 0.
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Therefore, we have

Var{Un(a,h2)}=
{(n−m)!

n!

}2 ∑
i,j∈(Imn )⊗2

≥2

a(i)a(j)Cov{h2;i(Xi),h2;j(Xj)}. (4.7)

By Lemma A.6(i) and Cauchy-Schwarz inequality, the right-hand side of (4.7) is bounded by

Cn−2A2,2(n)M(n)1/2 for some absolute constant C, where A2,2(n) is defined in (2.6). This com-

bined with (2.8) yields that

V (n)−1Var{Un(a,h2)}≤CV (n)−1n−2A2,2(n)M(n)→ 0. (4.8)

Equation (4.3) follows from (4.8) and Lemma A.8.

Lastly, we establish (4.4). Taking variance on both sides of (4.1) gives

Var(Un)

V (n)
= 1+

Var{Un(a,h2)}
V (n)

+Cov
{∑n

i=1h1,i(Xi)

nV (n)1/2
,
Un(a,h2)

V (n)1/2

}
. (4.9)

By Cauchy-Schwarz inequality and (4.8), we have∣∣∣Cov
{∑n

i=1h1,i(Xi)

nV (n)1/2
,
Un(a,h2)

V (n)1/2

}∣∣∣≤Var
{∑n

i=1h1,i(Xi)

nV (n)1/2

}1/2Var{Un(a,h2)}1/2

V (n)1/2
→ 0. (4.10)

Equations (4.8), (4.9), and (4.10) imply that

Var(Un)/V (n)→ 1.

This completes the proof.

4.2 Proof of Theorem 2.6

Proof. By the definition of σ2n, we have Var(σ−1n Un) = 1. For proving Theorem 2.6 it suffices to

show that

Var∗(σ−1n U∗n)
P→ 1. (4.11)

In Lemma 2.2, replacing Xi by X∗i yields

U∗n−E(Un) =
1

n

n∑
i=1

h1,i(X
∗
i )+U∗n(a,h2), (4.12)

where

U∗n(a,h2) :=
(n−m)!

n!

∑
Imn

a(i1,...,im)h2;i1,...,im(X∗i1 ,...,X
∗
im). (4.13)

Multiplying σ−1n and then taking Var∗ on both sides of (4.12) yields

Var∗(σ−1n U∗n) = Var∗
{ n∑
i=1

h1,i(X
∗
i )

nσn

}
+Var∗

{U∗n(a,h2)

σn

}
+Cov∗

{ n∑
i=1

h1,i(X
∗
i )

nσn
,
U∗n(a,h2)

σn

}
, (4.14)
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where Cov∗(·) denotes the covariance operator on the empirical measure. By (4.14) and Slutsky’s

theorem, for proving (4.11) it suffices to show the following:

Var∗
{ n∑
i=1

h1,i(X
∗
i )

nσn

}
P→ 1, (4.15)

Var∗
{U∗n(a,h2)

σn

}
P→ 0, (4.16)

and

Cov∗
{ n∑
i=1

h1,i(X
∗
i )

nσn
,
U∗n(a,h2)

σn

}
P→ 0, (4.17)

First we prove (4.15). Since conditional onX1,...,Xn theX∗i ’s are i.i.d. draws from the empirical

distribution of X1,...,Xn, we have

E∗
[{ n∑

i=1

h1,i(X
∗
i )

nσn

}2]
=

1

n

n∑
i=1

n∑
j=1

{h1,i(Xj)

nσn

}2
+

1

n2

∑
i1 6=i2

n∑
j1=1

n∑
j2=1

h1,i1(Xj1)

nσn

h1,i2(Xj2)

nσn
, (4.18)

and [
E∗
{ n∑
i=1

h1,i(X
∗
i )

nσn

}]2
=

1

n2

{ n∑
i1=1

n∑
j1=1

h1,i1(Xj1)

nσn

}{ n∑
i2=1

n∑
j2=1

h1,i2(Xj2)

nσn

}
=

1

n2

n∑
i=1

{ n∑
j1=1

h1,i(Xj1)

nσn

}{ n∑
j2=1

h1,i(Xj2)

nσn

}
+

1

n2

∑
i1 6=i2

n∑
j1=1

n∑
j2=1

h1,i1(Xj1)

nσn

h1,i2(Xj2)

nσn
. (4.19)

Equations (4.18) and (4.19) yield

Var∗
{ n∑
i=1

h1,i(X
∗
i )

nσn

}
=E∗

[{ n∑
i=1

h1,i(X
∗
i )

nσn

}2]
−
[
E∗
{ n∑
i=1

h1,i(X
∗
i )

nσn

}]2
=

1

n

n∑
i=1

n∑
j=1

{h1,i(Xj)

nσn

}2
− 1

n2

n∑
i=1

{ n∑
j=1

h1,i(Xj)

nσn

}2
. (4.20)

Equation (4.15) follows from (4.20), (2.22), (2.23), and Slutsky’s theorem.

The following lemma establishes (4.16).

Lemma 4.2. Under conditions of Theorem 2.6, we have Var∗{U∗n(a,h2)/σn}
P→ 0, where U∗n(a,h2)

is defined in (4.13).

Equation (4.17) follows from (4.15), (4.16), and Cauchy-Schwarz inequality. This completes the

proof.

4.3 Proof of Theorem 3.3

Proof. Here we present the proof for UAP
n . The proof for UKen

n is similar and can be found in the

appendix.
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By Theorem 2.1, for proving asymptotic normality of UAP
n , it suffices to show that (2.7), (2.8),

and (2.9) hold under the assumption of Theorem 3.1. Equation (2.7) holds trivially with M(n) = 1

due to boundedness of the kernel function h(·). In the following, we establish (2.8) and (2.9) by

calculating the orders of A2,2(n), A3,1(n), and V (n).

First we derive upper bound on A2,2(n) and A3,1(n). We will repeatedly use Lemma A.13 to

bound the partial sum of harmonic series. By the definition of A2,2(n) in (2.6), we have

A2,2(n) :=
1

n2

∑
(I2n)

⊗2
≥2

|a(i1,j1)a(i2,j2)|=
1

n2

∑
(i,j)∈I2n

∣∣a(i,j)2+a(i,j)a(j,i)
∣∣. (4.21)

Since a(i,j) =n(i−1)−11(j < i), we have a(i,j)a(j,i) = 0 and a(i,i) = 0. It then follows from (4.21)

that

A2,2(n) =
1

n2

n∑
i=2

i−1∑
j=1

(
n

i−1
)2 =

n∑
i=2

1

i−1
≤ 1+log(n−1). (4.22)

By the definition of A3,1(n) in (2.6), we have

A3,1(n) =
1

n4

n∑
i=1

n∑
j1,j2,j3=1

{
|a(i,j1)a(i,j2)a(i,j3)|+3|a(i,j1)a(i,j2)a(j3,i)|

+3|a(i,j1)a(j2,i)a(j3,i)|+ |a(j1,i)a(j2,i)a(j3,i)|
}
. (4.23)

The term |a(i,j1)a(i,j2)a(i,j3)| is nonzero only if j1,j2,j3<i, so the corresponding summation in

(4.23) equals

1

n4

n∑
i=2

i−1∑
j1,j2,j3=1

n

i−1
· n

i−1
· n

i−1
≤ 1

n

n−1∑
i=1

(i−1)3(
1

i−1
)3 =

n−1

n
. (4.24)

The term |a(i,j1)a(i,j2)a(j3,i)| is nonzero only if j1,j2<i< j3, so the corresponding summation in

(4.23) equals

3

n4

n−1∑
i=2

i−1∑
j1,j2=1

n∑
j3=i+1

(
n

i−1
)2(

n

j3−1
) =

3

n

n−1∑
i=2

n∑
j3=i+1

1

j3−1
≤ 3

n

n−1∑
i=2

log
n−1

i−1
≤ 3logn. (4.25)

The term |a(i,j1)a(j2,i)a(j3,i)| is nonzero only if j1<i< j2,j3, so the corresponding summation in

(4.23) equals

3

n4

n−1∑
i=2

i−1∑
j1=1

n∑
j2,j3=i+1

(
n

i−1
)(

n

j2−1
)(

n

j3−1
)≤ 3

n

n−1∑
i=2

(
log

n−1

i−1

)2

≤ 3(logn)2. (4.26)

The term |a(j1,i)a(j2,i)a(j3,i)| is nonzero only if j1,j2,j3>i, so the corresponding summation in

(4.23) equals

1

n4

n−1∑
i=1

n∑
j1,j2,j3=i+1

n

j1−1
· n

j2−1
· n

j3−1
≤ 1

n

n−1∑
i=1

(
log

n−1

i−1

)3

≤ (logn)3. (4.27)

By (4.24)-(4.27), it follows from (4.23) that

A3,1(n)≤C(logn)3. (4.28)

23



Next we establish lower bound on V (n) :=n−2
∑n

i=1Var{hAP
1,i (Xi)}. The following lemma gives

lower bound on |hAP
1,i (Xi)|.

Lemma 4.3. Consider a fixed i with 2≤ i≤n. If δn/2≥ log{(n−1)/(i−1)}, either Condition (i)

or Condition (ii) in Theorem 3.3 implies

P{|hAP
1,i (Xi)| ≥ δn/2}≥ pn. (4.29)

If δn log(n/i)≥ 2, either Condition (i) or Condition (ii) in Theorem 3.3 implies

P{|hAP
1,i (Xi)| ≥ 1}≥ pn. (4.30)

If i≥ 1+(n−1)exp(−δn/2), we have δn/2≥ log{(n−1)/(i−1)}. Lemma 4.3 implies that (4.29)

holds. By Chebyshev’s inequality we deduce

Var{hAP
1,i (Xi)}≥

1

4
δ2npn. (4.31)

If 2≤ i≤nexp(−2/δn), we have δn log(n/i)≥ 2. Lemma 4.3 implies that (4.30) holds. By Cheby-

shev’s inequality we deduce

Var{hAP
1,i (Xi)}≥ pn. (4.32)

By (4.31) and (4.32), we have

n∑
i=1

Var{hAP
1,i (Xi)}≥

bnexp(− 2
δn

)c∑
i=2

pn+

n∑
i=b1+(n−1)exp(− δn

2
)c+1

1

4
δ2npn

≥
{
nexp

(
− 2

δn

)
−2
}
pn+

1

4

{
n−(n−1)exp

(
− δn

2

)
−1
}
δ2npn

=nexp
(
− 2

δn

)
pn+

nδ2npn
4

{
1−exp

(
− δn

2

)}
+
δ2npn

4

{
exp

(
− δn

2

)
−1
}
−2pn. (4.33)

By (3.4) we have

nδ2npn

{
1−exp

(
− δn

2

)}
�nδ3npn�n2/3(logn)2. (4.34)

Note that

nexp
(
− 2

δn

)
pn≥ 0 and

δ2npn
4

{
exp

(
− δn

2

)
−1
}
−2pn =O(1). (4.35)

Combining (4.33) with (4.34) and (4.35) gives
n∑
i=1

Var{hAP
1,i (Xi)}�n2/3(logn)2.

This implies

V (n) :=
1

n2

n∑
i=1

Var{hAP
1,i (Xi)}�n−4/3(logn)2. (4.36)

Equations (4.22), (4.28), and (4.36) yield (2.8) and (2.9). The asymptotic normality of UAP
n

then follows from Theorem 2.1. This completes the proof for Part I.
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4.4 Proof of Theorem 3.5

Proof. Define

fij(x) :=P (Xj >x)−P (Xj >Xi), (4.37)

and

zi = zi(x) := (x−µi)/σi. (4.38)

Using the definitions of F cj and F cji in (3.5), we have

fij(x) =P
{Xj−µj

σj
>

(x−µi)+(µi−µj)
σi

· σi
σj

}
−P

{Xj−Xi−(µj−µi)
(σ2i +σ2j )

1/2
>
µi−µj
σi

· σi

(σ2i +σ2j )
1/2

}
=F cj {ρij(zi+rij)}−F cji{rij(1+ρ−2ij )−1/2}. (4.39)

For proving Theorem 3.5, it suffices to show the existence of δn and pn satisfying the conditions in

Theorem 3.3. Because the proofs for UKen
n and UAP

n are almost identical, we give detailed proof

for UKen
n and comment on the proof for UAP

n at the end. We divide the proof for UKen
n into two

parts. In Part I we construct such δn and pn under conditions (3.6), (3.7), and (3.8). In Part II we

construct such δn and pn under conditions (3.10), (3.11), and (3.12).

Part I: Assume (3.6), (3.7), and (3.8) hold. The following lemma gives bound on fij(x).

Lemma 4.4. Define

K1 = t0+
(
t−b10

c1
2c2

)−1/b2
and K2 =

( c1
2c2

)−1/b2
.

Consider a fixed i∈ [n]. If x satisfies

zi(x)≥Rn+K1ρn+K2ρnR
b1/b2
n , (4.40)

then for all j ∈ [n]\{i} we have

fij(x)≤−min
{c1

2
R−b1n ,

c1
2
t−b10 ,

1

2

}
. (4.41)

Define δn := min{ c12 R
−b1
n , c12 t

−b1
0 , 12}., Zi := (Xi−µi)/σi, and

pn :=P{Zi≥Rn+K1ρn+K2ρnR
b1/b2
n }. (4.42)

Lemma 4.4 yields that

P{fij(x)≤−δn,∀j ∈ [n]\{i}}≥ pn.

Since ρn≥ 1, by the definition of K1 we have

Rn+K1ρn+K2ρnR
b1/b2
n ≥K1ρn≥ t0. (4.43)

Combining (4.42), (4.43) and (3.6) yields

pn≥ c1(Rn+K1ρn+K2ρnR
b1/b2
n )−b1 .
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Thus by dropping constants we obtain

δ3npn& (Rn+ρn+ρnR
b1/b2
n )−b1 min(R−3b1n ,1). (4.44)

In the following we show that (4.44) and (3.8) imply

δ3npn�n−1/3. (4.45)

If limsupn→∞Rn =∞, the fact that ρn≥ 1 and b1>b2> 0 yields

(Rn+ρn+ρnR
b1/b2
n )−b1 � ρ−b1n R

−b21/b2
n (4.46)

and

min(R−3b1n ,1)�R−3b1n . (4.47)

Equation (4.44) together with (4.46) and (4.47) gives

δ3npn& ρ−b1n R
−b21/b2
n R−3b1n . (4.48)

By (4.48) and (3.8), we deduce (4.45). If limsupn→∞Rn<∞, by (4.44) we have

δ3npn& ρ−b1n . (4.49)

Equation (3.8) implies

ρ−b1n �n−1/3. (4.50)

Combining (4.49) and (4.50) yields (4.45). Therefore, the asymptotic normality of UKen
n follows

from Theorem 3.3.

This completes the proof of Part I for UKen
n . For UAP

n the proof is almost the same, except that

(3.8) is replaced by (3.9), and the right-hand side of (4.45) and (4.50) is replaced by n−1/3(logn)2.

Part II: Assume (3.9), (3.10), and (3.11) hold. The following lemma gives bound on fij(x).

Lemma 4.5. For a fixed i∈ [n], assume that

zi≥Rn+K3ρn+K4ρnRn, (4.51)

where K3,K4 are defind in (3.14). Then for all j ∈ [n]\{i} we have

fij(x)≤−min
{c1

2
exp(−b1Rλn),

c1
2

exp(−b1tλ0),
1

2

}
. (4.52)

Define δn = min
{
c1
2 exp(−b1Rλn), c12 exp(−b1tλ0), 12

}
, Zi = (Xi−µi)/σi, and

pn =P{Zi≥Rn+K3ρn+K4ρnRn}. (4.53)

Lemma 4.5 yields that

P{fij(x)≤−δn,∀j ∈ [n]\{i}}≥ pn.

Since ρn≥ 1, by the definition of K3, we have

Rn+K3ρn+K4ρnRn≥K3ρn≥ t0. (4.54)
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Combining (4.53), (4.54), and (3.10) yields

pn≥ c1exp{−b1(Rn+K3ρn+K4ρnRn)λ}.

Thus by dropping constants we obtain

δ3npn& exp{−b1(Rn+K3ρn+K4ρnRn)λ}min{exp(−3b1R
λ
n),1}.

�min
[
exp{−3b1R

λ
n−b1(Rn+K3ρn+K4ρnRn)λ},exp{−b1(Rn+K3ρn+K4ρnRn)λ}

]
(4.55)

With an argument similar to (4.46)-(4.50), it follows from (4.55) and (3.12) that

δ3npn�n−1/3. (4.56)

This completes the proof of Part II for UKen
n . For UAP

n the proof is almost the same, except

that (3.12) is replaced by (3.13), and the right-hand side of (4.56) is replaced by n−1/3(logn)2.

4.5 Proof of Corollary 3.3

Proof. By Theorem 2.6, for proving Corollary 3.3, it suffices to show that (2.21), (2.22), (2.23), and

(2.24) hold. For UAP
n we have |h(x,y)| ≤ 1 for any x,y. This implies (2.21).

Now we establish (2.24). For UAP
n , we have a(i,j) =1(j < i)n/(i−1). It follows that a(i,j)a(j,i) =

0 and a(i,i) = 0. By the definition in (2.6), we have

A2,1(n) =n−3
∑

(i,j)∈I2n

n∑
k=1,k 6=i

{|a(i,j)a(i,k)|+ |a(i,j)a(k,i)|}.

=n−3
{ n∑
i=2

i−1∑
j=1

i−1∑
k=1

n

i−1
· n

i−1
+

n−1∑
i=2

i−1∑
j=1

n∑
k=i+1

n

i−1
· n

k−1

}
. (4.57)

By algebra, we have

n∑
i=2

i−1∑
j=1

i−1∑
k=1

n

i−1
· n

i−1
=n2(n−1), (4.58)

and
n−1∑
i=2

i−1∑
j=1

n∑
k=i+1

n

i−1
· n

k−1
=n2

n∑
k=3

k−1∑
i=2

1

k−1
=n2

n∑
k=3

k−2

k−1
=O(n3). (4.59)

Combining (4.57) with (4.58) and (4.59) yields

A2,1(n) =O(1). (4.60)

By (2.25) and (3.21) we have

M1(n).n−1/6 logn. (4.61)

By (2.26) and (3.22) we have

M2(n).n−1/3(logn)2. (4.62)
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Equation (3.4) implies (4.36) by Theorem 3.3. Combining (4.36) and (2.10) yields

σ2n�n−4/3(logn)2. (4.63)

Equation (2.24) follows from (4.60), (4.61), (4.62), and (4.63).

Next we establish (2.22). The following lemma gives useful bounds.

Lemma 4.6. Under the assumptions of Corollary 3.3, we have
n∑
i=1

E{hAP
1,i (Xj)

2}=
n2

n−1
(η2−θ2)+O(n5/6 logn), (4.64)

and
n∑
i=1

E{hAP
1,i (Xi)

2}=
n2

n−1
(η2−θ2)+O(n5/6 logn). (4.65)

By (2.10) we have

σ2n =n−2
n∑
i=1

E{hAP
1,i (Xi)

2}{1+o(1)}. (4.66)

Using (4.66) and (4.65) we obtain

n2σ2n = {1+o(1)}
{ n2

n−1
(η2−θ2)+O(n5/6 logn)

}
. (4.67)

Note that

1

n

n∑
i=1

n∑
j=1

E
[{hAP

1,i (Xj)

nσn

}2]
=
n−1

∑n
i=1

∑n
j=1E{hAP

1,i (Xj)
2}

n2σ2n
. (4.68)

Combining (4.68) with (4.64), (4.67), and the fact that η2 6= θ2 yields

1

n

n∑
i=1

n∑
j=1

E
[{hAP

1,i (Xj)

nσn

}2]
=

n2(n−1)−1(η2−θ2)+O(n5/6 logn)

{1+o(1)}
{
n2(n−1)−1(η2−θ2)+O(n5/6 logn)

}→ 1. (4.69)

By (3.2) we have |hAP
1,i (x)| ≤ 1+ϕ(n−1)−ϕ(i−1) for all x. This combined with Lemma A.13 yields

|hAP
1,i (x)| ≤ 1+log

n

i
≤ 1+logn. (4.70)

It then follows from (4.70) that∣∣∣ n∑
i=1

{hAP
1,i (x)

nσn

}2∣∣∣= ∣∣∣∑n
i=1h

AP
1,i (x)2

n2σ2n

∣∣∣≤ (1+logn)2

nσ2n
. (4.71)

Equations (4.67) and (4.71) imply that
n∑
j=1

Var
[ n∑
i=1

{hAP
1,i (Xj)

nσn

}2]
≤

n∑
j=1

(1+logn)4

n2σ4n
=O{n(logn)4}= o(n2).

It then follows from Lemma A.12 that

1

n

n∑
j=1

[ n∑
i=1

{hAP
1,i (Xj)

nσn

}2
−E

{ n∑
i=1

(hAP
1,i (Xj)

nσn

)2}] P→ 0. (4.72)
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Equation (2.22) follows from (4.69) and (4.72).

Lastly, we prove (2.23). By algebra we have

1

n2

n∑
i=1

{ n∑
j=1

hAP
1,i (Xj)

nσn

}2
=

1

n2

n∑
j=1

n∑
i=1

{hAP
1,i (Xj)

nσn

}2
+

1

n2

∑
j1 6=j2

n∑
i=1

hAP
1,i (Xj1)hAP

1,i (Xj2)

n2σ2n
. (4.73)

By (2.22) we have

1

n2

n∑
j=1

n∑
i=1

{hAP
1,i (Xj)

nσn

}2 P→ 0. (4.74)

The second term on the right-hand side of (4.73) is (n−1)/n times a U-statistic with symmetric

kernel g(x,y) =n−2σ−2n
∑n

i=1h
AP
1,i (x)hAP

1,i (y). By (4.70) and (3.21) we have

E{hAP
1,i (Xj)}=

1

n−1

n∑
k=1

{n1(j < i)

i−1
− n1(j > i)

j−1

}
O(n−1/6 logn).

This combined with Lemma A.13 yields

E{hAP
1,i (Xj)}=O{n−1/6(logn)2}. (4.75)

It follows from (4.75) and (4.67) that

E{g(Xj1 ,Xj2)}=n−2σ−2n

n∑
i=1

E{hAP
1,i (Xj1)}E{hAP

1,i (Xj2)}→ 0. (4.76)

By (4.76) and Theorem 1 in Lee (1990, Section 3.7.2), we deduce

1

n2

∑
j1 6=j2

n∑
i=1

hAP
1,i (Xj1)hAP

1,i (Xj2)

n2σ2n

P→ 0. (4.77)

Equation (2.23) follows from (4.73), (4.74), and (4.77).

This completes the proof.
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Supplement to “Asymptotics for Asymmetric Weighted U-Statistics:
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A Appendix

This supplementary appendix contains the rest of technical proofs.

A.1 Proof of the rest of main results

A.1.1 Proof of Lemma 2.2

Proof. We have

Un−E(Un) =

n∑
i=1

{E(Un |Xi)−E(Un)}+
[
Un−E(Un)−

n∑
i=1

{E(Un |Xi)−E(Un)}
]
.

For proving Lemma 2.2, it suffices to show
n∑
i=1

{E(Un |Xi)−E(Un)}=
1

n

n∑
i=1

h1,i(Xi) (A.1)

and

Un−E(Un)−
n∑
i=1

{E(Un |Xi)−E(Un)}=
(n−m)!

n!

∑
Imn

a(i1,...,im)h2;i1,...,im(Xi1 ,...,Xim), (A.2)

where h1,i(·) and h2;i1,...,im(·) are defined in (2.14) and (2.15), respectively.

First we establish (A.1). We have

E(Un |Xi)−E(Un) =
(n−m)!

n!

∑
Imn

a(i1,...,im)
[
E{h(Xi1 ,...,Xim) |Xi}−θ(i1,...,im)

]
. (A.3)

Consider a fixed i∈ [n] and fixed (i1,...,im)∈ Imn . If i /∈{i1,...,im},

E{h(Xi1 ,...,Xim) |Xi}−θ(i1,...,im) = 0 a.s..

∗Department of Statistics, University of Washington, Seattle, WA 98195, USA; e-mail: fanghan@uw.edu
†Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA; e-mail: tqian2@jhu.edu
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It follows that∑
Imn

a(i1,...,im)
[
E{h(Xi1 ,...,Xim) |Xi}−θ(i1,...,im)

]
=

∑
Im−1
n−1 (−i)

a(i,i1,...,im−1)
[
E{h(Xi,Xi1, ...,Xim−1) |Xi}−θ(i,i1,...,im−1)

]
+

∑
Im−1
n−1 (−i)

a(i1,i,i2,...,im−1)
[
E{h(Xi1 ,Xi,Xi2 ,...,Xim−1) |Xi}−θ(i1,i,i2,...,im−1)

]
+ ···

+
∑

Im−1
n−1 (−i)

a(i1,...,im−1,i)
[
E{h(Xi1, ...,Xim−1 ,Xi) |Xi}−θ(i1,...,im−1,i)

]

=
∑

Im−1
n−1 (−i)

m∑
l=1

a(l)(i;i1,...,im−1)
[
E{h(l)(Xi;Xi1 ,...,Xim−1) |Xi}−θ(l)(i;i1,...,im−1)

]
. (A.4)

By the definition of h1,i(·), (A.4) equals {(n−1)!/(n−m)!}h1,i(Xi). Combining this with (A.3)

yields (A.1).

Next we establish (A.2). The following lemma shows that
∑n

i=1{E(Un |Xi)−E(Un)} is a U-

statistic.

Lemma A.1. We have
m∑
l=1

n∑
i=1

∑
Im−1
n−1 (−i)

a(l)(i;i1,...,im−1)
[
E{h(l)(Xi;Xi1 ,...,Xim−1) |Xi}−θ(l)(i;i1,...,im−1)

]

=
∑
Imn

a(i1,...,im)
[ m∑
j=1

E{h(Xi1 ,...,Xim) |Xij}−mθ(i1,...,im)
]
. (A.5)

Using Lemma A.1, it follows from (A.4) that
n∑
i=1

{E(Un |Xi)−E(Un)}=
∑
Imn

a(i1,...,im)
[ m∑
j=1

E{h(Xi1 ,...,Xim) |Xij}−mθ(i1,...,im)
]
.

By the definition of h2;i1,...,im(·), we deduce that (A.2) holds.

Equations (2.14) and (2.15) follow immediately from the definitions in (2.4) and (2.5). This

completes the proof.

A.1.2 Proof of Theorem 2.4

Proof. In Lemma A.11, let Yn,i =σ−1n h1,i(Xi), gn be the identity function, tn = 0 and σ2n = 1. By

the definition of T̂n we have T̂n =n−1
∑n

i=1σ
−1
n h1,i(Xi). Equation (2.17) implies (A.187). (2.18)

implies (A.188). Equations (4.2), (2.10) and Slutsky’s theorem imply that for any t∈R,

P
{
T̂n− tn≤ t

}
−Φ(t)→ 0.

2



By Lemma A.10 the above convergence is uniform in t∈R. This yields (A.189). Therefore, all

conditions in Lemma A.11 hold, which implies

sup
t∈R

∣∣∣∣P ∗{ n∑
i=1

{h1,i(Xi)}∗

nσn
−

n∑
i=1

h1,i(Xi)

nσn
≤ t
}
−P

{ n∑
i=1

h1,i(Xi)

nσn
≤ t
}∣∣∣∣ P→ 0.

This proves (2.19). Equation (2.20) follows immediately from Theorem 2.1.

A.1.3 Proof of Corollary 2.1

Proof. For proving Corollary 2.1, by Theorem 2.6, it suffices to show (2.22), (2.23), and (2.24) when

the Xi’s are i.i.d..

First we show (2.22). Equations (2.7), (2.8), and (2.9) imply (2.10) according to Theorem

2.1. By the i.i.d.-ness of the Xi’s we have E{h1,i(Xj)}=E{h1,i(Xi)}= 0 and E{h1,i(Xj)
2}=

E{h1,i(Xi)
2}. It follows from (2.10) that for any j ∈ [n],

E
[ n∑
i=1

{h1,i(Xj)

nσn

}2]
=

n∑
i=1

E{h1,i(Xj)
2}

n2σ2n
=

∑n
i=1Var{h1,i(Xi)}

n2σ2n
→ 1. (A.6)

By the weak law of large numbers for i.i.d. random variables, we have

1

n

n∑
j=1

n∑
i=1

{h1,i(Xj)

nσn

}2
−E

[ n∑
i=1

{h1,i(Xj)

nσn

}2] P→ 0. (A.7)

Equations (A.6), (A.7), and Slutsky’s theorem yield (2.22).

Next we prove (2.23). By algebra we have

1

n2

n∑
i=1

{ n∑
j=1

h1,i(Xj)

nσn

}2
=

1

n2

n∑
j=1

n∑
i=1

{h1,i(Xj)

nσn

}2
+

1

n2

∑
j1 6=j2

n∑
i=1

h1,i(Xj1)h1,i(Xj2)

n2σ2n
. (A.8)

Equation (2.22) implies that the first term on the right-hand side of (A.8) converges to 0 in prob-

ability. The second term on the right-hand side of (A.8) equals (n−1)/n times a U-statistic with

symmetric kernel g(x,y) =n−2σ−2n
∑n

i=1h1,i(x)h1,i(y). By the triangle inequality, Jensen’s inequal-

ity, and the i.i.d.-ness of the Xi’s, we deduce

E |g(X1,X2)| ≤
n∑
i=1

E
∣∣∣h1,i(X1)

nσn

∣∣∣ E∣∣∣h1,i(X2)

nσn

∣∣∣≤ n∑
i=1

E
{(h1,i(Xi)

nσn

)2}
= 1. (A.9)

The i.i.d.-ness of the Xi’s and the fact that E{h1,i(Xi)}= 0 yield

E{g(X1,X2)}=n−2σ−2n

n∑
i=1

E{h1,i(X1)}E{h1,i(X2)}= 0. (A.10)

By (A.9) and (A.10), it follows from the weak law of large numbers for U-statistics of i.i.d. variables

(Serfling, 2009, Theorem 5.4 A) that the second term on the right-hand side of (A.8) converges

to 0 in probability. Therefore, by Slutsky’s theorem, the left-hand side of (A.8) converges to 0 in

probability, which establishes (2.23).

Lastly, we establish (2.24). By the definition of θ(·) in (2.2), we have θ(i1,...,im)−θ(j1,...,jm) =

0 for any (i1,...,im) and (j1,...,jm) in Imn . This implies that M1(n) = 0. For any p,q ∈ [m] and

3



r,s,k∈ Imn such that r∩s=k∩s= rp = sq = kp, by the i.i.d.-ness of the Xi’s, we have

E
[
E
{
h(Xr1 ,...,Xrm)h(Xs1 ...Xsm) |Xkp

}]
=E

[
E
{
h(X1,...,Xm)h(Xm+1,...,Xm+q−1,Xp,Xm+q,...,X2m−1) |Xp

}]
, (A.11)

and

E
[
E
{
h(Xk1 ,...,Xkm)h(Xs1 ,...,Xsm) |Xkp

}]
=E

[
E
{
h(X1,...,Xm)h(Xm+1,...,Xm+q−1,Xp,Xm+q,...,X2m−1) |Xp

}]
. (A.12)

Equations (A.11) and (A.12) imply that M2(n) = 0. Therefore, (2.24) follows from the fact that

M1(n) =M2(n) = 0 and the assumption that n−2σ−2n A2,1(n)→ 0.

A.1.4 Proof of Lemma 3.1

Proof. For UKen
n we have a(i,j) =1(j < i) and h(Xi,Xj) =1(Xj >Xi). Using definitions in (2.2)

and (2.3), we have f
(1)
i (x) =E{h(x,Xi)}=P (Xi>x), f

(2)
i (x) =E{h(Xi,x)}= 1−P (Xi>x), and

θ(i,j) = 1−θ(j,i). By Lemma 2.2 we obtain

hKen
1,i (x) =

1

n−1

n∑
j=1
j 6=i

a(i,j){f (1)j (x)−θ(i,j)}+a(j,i){f (2)j (x)−θ(j,i)}

=
1

n−1

n∑
j=1

{1(j < i)−1(j > i)}{P (Xj >x)−θ(i,j)},

and

hKen
2;i,j(x,y) =h(x,y)−f (1)j (x)−f (2)i (y)+θ(i,j) =1(y >x)−P (Xj >x)−P (y >Xi)+θ(i,j).

This completes the proof.

A.1.5 Proof of Lemma 3.2

Proof. For UAP
n , we have a(i,j) =n(i−1)−11(j < i) and h(Xi,Xj) =1(Xj >Xi). The form of

f
(1)
i (x) and f

(2)
i (x) is the same as in the proof of Lemma 3.1. By Lemma 2.2 we obtain

hAP
1,i (x) =

1

n−1

n∑
j=1
j 6=i

a(i,j){f (1)j (x)−θ(i,j)}+a(j,i){f (2)j (x)−θ(j,i)}

=
1

n−1

n∑
j=1

{n1(j < i)

i−1
− n1(j > i)

j−1

}
{P (Xj >x)−θ(i,j)},

and

hAP2;i,j(x,y) =h(x,y)−f (1)j (x)−f (2)i (y)+θ(i,j) =1(y >x)−P (Xj >x)−P (y >Xi)+θ(i,j).

This completes the proof.
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A.1.6 Proof of Theorem 3.3, UKen
n part

Proof. Proof for UKen
n follows the same logic as the proof for UAP

n . In the following we calculate

the orders of A2,2(n), A3,1(n), and V (n) for UKen
n .

Since a(i,j) =1(j < i) for UKen
n , we have a(i,j)a(j,i) = 0 and a(i,i) = 0. It then follows from

(4.21) that

A2,2(n) =
1

n2

n∑
i=2

i−1∑
j=1

1 =O(1). (A.13)

By (4.23), following the same argument as in (4.24)-(4.27) we deduce

A3,1(n) =O(1). (A.14)

Next we establish lower bound on V (n) :=n−2
∑n

i=1Var{hKen
1,i (Xi)}. The following lemma gives

lower bound on |hKen
1,i (Xi)|.

Lemma A.2. Consider a fixed i∈ [n]. If n− i≤ (i−1)δn/2, either Condition (i) or Condition (ii)

in Theorem 3.3 implies

P
{
|hKen

1,i (Xi)| ≥
i−1

n−1

δn
2

}
≥ pn. (A.15)

If i−1≤ (n− i)δn/2, either Condition (i) or Condition (ii) in Theorem 3.3 implies

P
{
|hKen

1,i (Xi)| ≥
n− i
n−1

δn
2

}
≥ pn. (A.16)

If i≥ (2n−δn)/(2+δn), we have n− i≤ (i−1)δn/2 and (i−1)/(n−1)≥ 2/(δn+2). Lemma A.2

implies that (A.15) holds. By Chebyshev’s inequality we deduce

Var{hKen
1,i (Xi)}≥{

i−1

n−1

δn
2
}2pn≥

4

(2+δn)2
δ2npn. (A.17)

If i≤ (nδn+2)/(2+δn), we have i−1≤ (n− i)δn/2 and (n− i)/(n−1)≥ 2/(2+δn). Lemma A.2

implies that (A.16) holds. By Chebyshev’s inequality we deduce

Var{hKen
1,i (Xi)}≥{

n− i
n−1

δn
2
}2pn≥

1

(2+δn)2
δ2npn. (A.18)

By (A.17) and (A.18), we have

n∑
i=1

Var{hKen
1,i (Xi)}≥

b(nδn+2)/(2+δn)c∑
i=1

1

(2+δn)2
δ2npn+

n∑
i=b(2n−δn)/(2+δn)c+1

4

(2+δn)2
δ2npn. (A.19)

Note that
b(nδn+2)/(2+δn)c∑

i=1

1

(2+δn)2
δ2npn =

(nδn+2)/(2+δn)−1

(2+δn)2
δ2npn�nδ3npn. (A.20)

Combining (A.19) and (A.20) yields
n∑
i=1

Var{hKen
1,i (Xi)}&nδ3npn. (A.21)
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It follows from (3.3) and (A.21) that

V (n) :=
1

n2

n∑
i=1

Var{hKen
1,i (Xi)}�n−4/3. (A.22)

Equations (A.13), (A.14), and (A.22) yield (2.8) and (2.9). The asymptotic normality of UKen
n

then follows from Theorem 2.1. This completes the proof for Part II.

A.1.7 Proof of Corollary 3.1

Proof. We divide the proof into two parts. In Part I, we show that (2.17) and (2.18) hold for hKen
1,i .

In Part II, we show that (2.17) and (2.18) hold for hAP
1,i .

Part I. By (3.3) and Theorem 3.3, we have that (2.10) holds. This combined with (A.22) gives

nσn�n1/3, (A.23)

where σ2n := Var(UKen
n ). By (3.1), we have |hKen

1,i (x)| ≤ 1 for any x. It then follows from Markov’s

inequality that for any ε> 0,

P
{∣∣∣hKen

1,i (Xi)

nσn

∣∣∣≥ ε}≤ E|hKen
1,i (Xi)|
εnσn

≤ 1

εnσn
. (A.24)

Taking sup1≤i≤n on both sides of (A.24), we deduce (2.17) from (A.23).

By (2.14) we have

E
{hKen

1,i (Xi)

nσn
1
(∣∣∣hKen

1,i (Xi)

nσn

∣∣∣≤ ε)}=−E
{hKen

1,i (Xi)

nσn
1
(∣∣∣hKen

1,i (Xi)

nσn

∣∣∣>ε)}. (A.25)

Cauchy-Schwarz inequality gives∣∣∣E{hKen
1,i (Xi)

nσn
1
(∣∣∣hKen

1,i (Xi)

nσn

∣∣∣>ε)}∣∣∣≤ [E{hKen
1,i (Xi)

nσn

}2]1/2
P
(∣∣∣hKen

1,i (Xi)

nσn

∣∣∣>ε)1/2. (A.26)

Combining (A.25) and (A.26) yields[
E
{hKen

1,i (Xi)

nσn
1
(∣∣∣hKen

1,i (Xi)

nσn

∣∣∣≤ ε)}]2≤E{hKen
1,i (Xi)

nσn

}2
P
(∣∣∣hKen

1,i (Xi)

nσn

∣∣∣>ε). (A.27)

Taking summation over 1≤ i≤n on both sides of (A.27), it follows from (A.24) that
n∑
i=1

[
E
{hKen

1,i (Xi)

nσn
1
(∣∣∣hKen

1,i (Xi)

nσn

∣∣∣≤ ε)}]2≤ 1

εnσn

n∑
i=1

E
{hKen

1,i (Xi)

nσn

}2
. (A.28)

By (2.14) and (2.10) we obtain
n∑
i=1

E
{hKen

1,i (Xi)

nσn

}2
=σ−2n n−2

n∑
i=1

Var{hKen
1,i (Xi)}→ 1. (A.29)

Equation (2.18) then follows from (A.23), (A.28), and (A.29).

Part II. By (3.4) and Theorem 3.3, we have that (2.10) hold. This combined with (4.36) gives

nσn�n1/3 logn, (A.30)
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where σ2n := Var(UAP
n ). By (3.2) and the fact that |{1(j < i)−1(j > i)}{P (Xj >x)−θ(i,j)}|≤ 1,

we obtain

|hAP
1,i (x)| ≤ n

n−1

( i−1∑
j=1

1

i−1
+

n∑
j=i+1

1

j−1

)
. (A.31)

It follows from (A.31) and Lemma A.13 that

|hAP
1,i (x)| ≤ n

n−1
{1+1+log(n−1)}≤ 4+2logn. (A.32)

By Markov’s inequality and (A.32) we have for any ε> 0,

P
{∣∣∣hAP

1,i (Xi)

nσn

∣∣∣≥ ε}≤ E|hAP
1,i (Xi)|
εnσn

≤ 4+2logn

εnσn
. (A.33)

Taking sup1≤i≤n on both sides of (A.33), we deduce (2.17) from (A.30).

Equations (A.25), (A.26) and (A.27) hold for hAP
1,i as well. Taking summation over 1≤ i≤n on

both sides of (A.27), it follows from (A.33) that
n∑
i=1

[
E
{hAP

1,i (Xi)

nσn
1
(∣∣∣hAP

1,i (Xi)

nσn

∣∣∣≤ ε)}]2≤ 4+2logn

εnσn

n∑
i=1

E
{hAP

1,i (Xi)

nσn

}2
. (A.34)

By (2.14) and (2.10) we obtain
n∑
i=1

E
{hAP

1,i (Xi)

nσn

}2
=σ−2n n−2

n∑
i=1

Var{hAP
1,i (Xi)}→ 1. (A.35)

Equation (2.18) then follows from (A.30), (A.34), and (A.35).

This completes the proof.

A.1.8 Proof of Corollary 3.2

Proof. By Theorem 2.6, for proving Corollary 3.2, it suffices to show that (2.21), (2.22), (2.23), and

(2.24) hold. For UKen
n we have |h(x,y)| ≤ 1 for any x,y. This implies (2.21).

Now we establish (2.24). For UKen
n , we have |a(i,j)|= |1(j < i)| ≤ 1. By the definition in (2.6),

we have

A2,1(n) =n−3
∑

(I2n)
⊗2
≥1

|a(i1,j1)a(i2,j2)|=O(1). (A.36)

By (2.25) and (3.19) we have

M1(n).n−1/6. (A.37)

By (2.26) and (3.20) we have

M2(n).n−1/3. (A.38)

Equation (3.3) implies (A.22) by Theorem 3.3. Combining (A.22) and (2.10) yields

σ2n�n−4/3. (A.39)

Equation (2.24) follows from (A.36), (A.37), (A.38), and (A.39).

7



Next we establish (2.22). The following lemma gives bounds on
∑n

i=1E{hKen
1,i (Xj)

2} and∑n
i=1E{hKen

1,i (Xi)
2}.

Lemma A.3. Under the assumptions of Corollary 3.2, we have
n∑
i=1

E{hKen
1,i (Xj)

2}=
n(n+1)

3(n−1)
(η2−θ2)+O(n5/6), (A.40)

and
n∑
i=1

E{hKen
1,i (Xi)

2}=
n(n+1)

3(n−1)
(η2−θ2)+O(n5/6). (A.41)

By (2.10) we have

σ2n =n−2
n∑
i=1

E{hKen
1,i (Xi)

2}{1+o(1)}. (A.42)

Using (A.41) and (A.42) we obtain

n2σ2n = {1+o(1)}
{n(n+1)

3(n−1)
(η2−θ2)+O(n5/6)

}
. (A.43)

Note that

1

n

n∑
i=1

n∑
j=1

E
[{hKen

1,i (Xj)

nσn

}2]
=
n−1

∑n
i=1

∑n
j=1E{hKen

1,i (Xj)
2}

n2σ2n
. (A.44)

Combining (A.44) with (A.40), (A.43), and the fact that η2 6= θ2 yields

1

n

n∑
i=1

n∑
j=1

E
[{hKen

1,i (Xj)

nσn

}2]
=

3−1(n−1)−1n(n+1)(η2−θ2)+O(n5/6)

{1+o(1)}
{

3−1(n−1)−1n(n+1)(η2−θ2)+O(n5/6)
}→ 1. (A.45)

By (3.1) we have |h1,i(x)| ≤ 1. Therefore, for any x∣∣∣ n∑
i=1

{h1,i(x)

nσn

}2∣∣∣= ∣∣∣∑n
i=1h1,i(x)2

n2σ2n

∣∣∣≤ 1

nσ2n
. (A.46)

Equations (A.43) and (A.46) imply that
n∑
j=1

Var
[ n∑
i=1

{h1,i(Xj)

nσn

}2]
≤

n∑
j=1

1

n2σ4n
=O(n) = o(n2).

It then follows from Lemma A.12 that

1

n

n∑
j=1

[ n∑
i=1

{h1,i(Xj)

nσn

}2
−E

{ n∑
i=1

(h1,i(Xj)

nσn

)2}] P→ 0. (A.47)

Equation (2.22) follows from (A.45) and (A.47).

Lastly, we prove (2.23). By algebra we have

1

n2

n∑
i=1

{ n∑
j=1

hKen
1,i (Xj)

nσn

}2
=

1

n2

n∑
j=1

n∑
i=1

{hKen
1,i (Xj)

nσn

}2
+

1

n2

∑
j1 6=j2

n∑
i=1

hKen
1,i (Xj1)hKen

1,i (Xj2)

n2σ2n
. (A.48)
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By (2.22) we have

1

n2

n∑
j=1

n∑
i=1

{hKen
1,i (Xj)

nσn

}2 P→ 0. (A.49)

The second term on the right-hand side of (A.48) is (n−1)/n times a U-statistic with symmetric

kernel g(x,y) =n−2σ−2n
∑n

i=1h
Ken
1,i (x)hKen

1,i (y). By (3.1) and (3.19) we have

E{hKen
1,i (Xj)}=

1

n−1

n∑
k=1

sgn(i−k){P (Xk>Xj)−P (Xk>Xi)}=O(n−1/6). (A.50)

It follows from (A.50) and (A.43) that

E{g(Xj1 ,Xj2)}=n−2σ−2n

n∑
i=1

E{hKen
1,i (Xj1)}E{hKen

1,i (Xj2)}→ 0. (A.51)

By (A.51) and the weak law of large numbers for U-statistics with independent but not identically

distributed variables (Lee, 1990, Theorem 1, Section 3.7.2), we deduce

1

n2

∑
j1 6=j2

n∑
i=1

hKen
1,i (Xj1)hKen

1,i (Xj2)

n2σ2n

P→ 0. (A.52)

Equation (2.23) follows from (A.48), (A.49), and (A.52).

This completes the proof.

A.2 Proofs of the supporting lemmas

A.2.1 Proof of Lemma A.1

Proof. We prove Lemma A.1 by showing that for each (i∗1,...,i
∗
m)∈ Imn , the coefficients of a(i∗1,...,i

∗
m)

on both sides of (A.5) are equal. In the following we fix (i∗1,...,i
∗
m)∈ Imn .

For the left-hand side of (A.5), we enumerate the combinations in

{l,i,(i1,...,im−1) : l∈ [m],i∈ [n],(i1,...,im−1)∈ Im−1n−1 (−i)}

such that a(l)(i;i1,...,im−1) = a(i∗1,...,i
∗
m), as follows:

l= 1,i= i∗1,(i1,...,im−1) = (i∗1,...,i
∗
m)\i∗1;

...

l= j,i= i∗j ,(i1,...,im−1) = (i∗1,...,i
∗
m)\i∗j ; (A.53)

...

l=m,i= i∗m,(i1,...,im−1) = (i∗1,...,i
∗
m)\i∗m.

When l= j,i= i∗j ,(i1,...,im−1) = (i∗1,...,i
∗
m)\i∗j ,

E{h(l)(Xi;Xi1 ,...,Xim−1) |Xi}−θ(l)(i;i1,...,im−1) =E{h(Xi∗1
,...,Xi∗m) |Xi∗j

}−θ(i∗1,...,i∗m).
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So the coefficient of a(i∗1,...,i
∗
m) on the left-hand side of (A.5) is
m∑
j=1

[
E{h(Xi∗1

,...,Xi∗m |Xi∗j
}−θ(i∗1,...,i∗m)

]
.

This equals the coefficient of a(i∗1,...,i
∗
m) on the right-hand side of (A.5). This completes the

proof.

A.2.2 Proof of Lemma 4.1

Proof. To simplify notation, define i= (i1,...,im), Xi = (Xi1 ,...,Xim), and i−m = (i1,...,im−1). By

definition of h1,i(Xi) in (2.4) we have

n∑
i=1

E|h1,i(Xi)|3=

n∑
i=1

{(n−m)!

(n−1)!

}3
E
∣∣∣ ∑
Im−1
n−1 (−i)

m∑
l=1

a(l)(i;i−m)
{
f
(l)
i−m

(Xi)−θ(l)(i;i−m)
}∣∣∣3. (A.54)

Define

T
(l1)
i−m

(Xi) = f
(l1)
i−m

(Xi)−θ(l1)(i;i−m),

and define T
(l2)
j−m

(Xi) and T
(l3)
k−m

(Xi) similarly. The right-hand side of (A.54) equals{(n−m)!

(n−1)!

}3∑∣∣∣a(l1)(i;i−m)a(l2)(i;j−m)a(l3)(i;k−m)
∣∣∣E∣∣∣T (l1)

i−m
(Xi)T

(l2)
j−m

(Xi)T
(l3)
k−m

(Xi)
∣∣∣, (A.55)

where the summation is over i∈ [n], l1,l2,l3 ∈ [m], and i−m,j−m,k−m ∈ Im−1n−1 (−i). By Cauchy-

Schwarz inequality and Lemma A.6(ii), we have

E
∣∣∣T (l1)

i−m
(Xi)T

(l2)
j−m

(Xi)T
(l3)
k−m

(Xi)
∣∣∣≤ [E{T (l1)

i−m
(Xi)

2T
(l2)
j−m

(Xi)
2}
]1/2[

E{T (l3)
k−m

(Xi)
2}
]1/2

≤
[
E{T (l1)

i−m
(Xi)

4}
]1/4[

E{T (l2)
j−m

(Xi)
4}
]1/4[

E{T (l3)
k−m

(Xi)
4}
]1/4
≤CM(n)3/4. (A.56)

By the definition of A3,1(n) in (2.6) and algebra, we have∑
|a(l1)(i;i−m)a(l2)(i;j−m)a(l3)(i;k−m)| ≤C

∑
(Imn )⊗3

≥1

|a(i)a(j)a(k)|=Cn3m−2A3,1(n), (A.57)

where the summation in the leftmost part of (A.57) is over i∈ [n], l1,l2,l3 ∈ [m], and i−m,j−m,k−m ∈
Im−1n−1 (−i). By (A.54), (A.55), (A.56), and (A.57), we deduce

n∑
i=1

E |h1,i(Xi)|3≤CnA3,1(n)M(n)3/4. (A.58)

This completes the proof.
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A.2.3 Proof of Lemma 4.2

Proof. Define i := (i1,...,im) and Xi := (Xi1 ,...,Xim). By (4.13) we have

E∗{σ−2n U∗n(h2)
2}=σ−2n

{(n−m)!

n!

}2 ∑
(Imn )⊗2

≥0

a(i)a(j)E∗{h2;i(X∗i )h2;j(X∗j )} (A.59)

and [E∗{σnU∗n(h2)}]2 =σ−2n

{(n−m)!

n!

}2 ∑
(Imn )⊗2

≥0

a(i)a(j)E∗{h2;i(X∗i )}E∗{h2;j(X∗j )}. (A.60)

Define

g(i,j) := a(i)a(j)
[
E∗{h2;i(X∗i )h2;j(X∗j )}−E∗{h2;i(X∗i )}E∗{h2;j(X∗j )}

]
. (A.61)

It follows from (A.59) and (A.60) that

Var∗{σ−1n U∗n(h2)}=σ−2n

{(n−m)!

n!

}2 ∑
(i,j)∈(Imn )⊗2

≥0

g(i,j). (A.62)

The following proof consists of two steps. In the first step, we establish

Var∗{σ−1n U∗n(h2)}=σ−2n

{(n−m)!

n!

}2 ∑
(i,j)∈(Imn )⊗2

=1

g(i,j)+oP (1). (A.63)

In the second step, we show that

σ−2n

{(n−m)!

n!

}2 ∑
(i,j)∈(Imn )⊗2

=1

g(i,j)
P→ 0. (A.64)

Lemma 4.2 then follows from (A.63), (A.64), and Slutsky’s theorem.

Step I. If (i,j)∈ (Imn )⊗2=0, we have E∗{h2;i(X∗i )h2;j(X∗j )}=E∗{h2;i(X∗i )}E∗{h2;j(X∗j )} a.s..

This implies ∑
(i,j)∈(Imn )⊗2

=0

g(i,j) = 0 a.s.. (A.65)

For any (i,j)∈ (Imn )⊗2≥2, by the law of iterated expectation, Cauchy-Schwarz inequality, and trian-

gular inequality we have

E
∣∣∣E∗{h2;i(X∗i )h2;j(X∗j )}

∣∣∣≤E{|h2;i(X∗i )||h2;j(X∗j )|
}
≤
[
E{h2;i(X∗i )2}E{h2;j(X∗j )2}

] 1
2
. (A.66)

Similarly, by Jensen’s inequality and triangular inequality we have

E
∣∣∣E∗{h2;i(X∗i )}E∗{h2;j(X∗j )}

∣∣∣≤E{E∗|h2;i(X∗i )|E∗|h2;j(X∗j )|
}

≤
[
E{E∗|h2;i(X∗i )|}2E{E∗|h2;j(X∗j )|}2

] 1
2 ≤

[
E{h2;i(X∗i )2}E{h2;j(X∗j )2}

] 1
2
. (A.67)

Using the law of iterated expectation, we deduce

E{h2;i(X∗i )2}=E[E∗{h2;i(X∗i )2}] =n−m
∑

1≤j1,...,jm≤n
E{h2;i(Xj1 ,...,Xjm)2}. (A.68)

By Lemma A.6(iii) and (2.21), there exists an absolute constant C > 0 such that for any n, for any
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i∈ Imn , and for any 1≤ j1,...,jm≤n,

E{h2;i(Xj1 ,...,Xjm)2}≤C. (A.69)

Combining (A.68) and (A.69) yields that E{h2;i(X∗i )2}≤C. It then follows from (A.66) and (A.67)

that

E
∣∣∣E∗{h2;i(X∗i )h2;j(X∗j )}

∣∣∣≤C, (A.70)

and E
∣∣∣E∗{h2;i(X∗i )}E∗{h2;j(X∗j )}

∣∣∣≤C. (A.71)

Equations (A.61), (A.70), and (A.71) imply that

E
∣∣∣ ∑
(Imn )⊗2

≥2

g(i,j)
∣∣∣≤ 2C

∑
(Imn )⊗2

≥2

|a(i)a(j)|= 2Cn2m−2A2,2(n). (A.72)

By (2.8), (2.10), and (A.72), we deduce

σ−2n

{(n−m)!

n!

}2
E
∣∣∣ ∑
(Imn )⊗2

≥2

g(i,j)
∣∣∣→ 0.

It then follows from Markov’s inequality that

σ−2n

{(n−m)!

n!

}2 ∑
(Imn )⊗2

≥2

g(i,j)
P→ 0. (A.73)

Combining (A.62), (A.65), and (A.73) yields (A.63). This concludes Step I.

Step II. Consider a fixed (i,j)∈ (Imn )⊗2=1. Without loss of generality assume i∩j = {ip}= {jq}
for some 1≤ p,q≤m. By the i.i.d.-ness of X∗i ’s given X1,...,Xn, we have

E[E∗{h2;i(X∗i )h2;j(X∗j )}] =n−(2m−1)
∑

r,s∈[n]2m
rp=sq

E{h2;i(Xr)h2;j(Xs)} (A.74)

and

E[E∗{h2;i(X∗i )}E∗{h2;j(X∗j )}] =n−2m
∑

r,s∈[n]2m
E{h2;i(Xr)h2;j(Xs)}. (A.75)

The number of pairs (r,s) in {(r,s)∈ [n]2m : rp = sq} satisfying any of the following three statements

is of order O(n2m−2): (1) r or s has duplicate indices (i.e., r /∈ Imn or s /∈ Imn ); (2) i∩r 6= ∅; or (3)

j∩s 6= ∅. It then follows from (A.70) that∑
r,s∈[n]2m
rp=sq

E{h2;i(Xr)h2;j(Xs)}=
∑

(r,s)∈(Imn )⊗2
=1

rp=sq ,i∩r=∅=j∩s

E{h2;i(Xr)h2;j(Xs)}+O(n2m−2). (A.76)

The following lemma gives bound on the right-hand side of (A.76).

Lemma A.4. For any (i,j)∈ (Imn )⊗2=1, under the assumptions of Theorem 2.6, there exists a constant
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C such that ∣∣∣ ∑
(r,s)∈(Imn )⊗2

=1
rp=sq ,i∩r=∅=j∩s

E{h2;i(Xr)h2;j(Xs)}
∣∣∣≤Cn2m−1{M1(n)2+M2(n)}. (A.77)

It follows from (A.74), (A.76) and Lemma A.4 that

|E[E∗{h2;i(X∗i )h2;j(X∗j )}]| ≤C{M1(n)2+M2(n)+n−1}. (A.78)

Using an argument similar to (A.76), we have∑
r,s∈{1,...,n}2m

E{h2;i(Xr)h2;j(Xs)}=
∑

(r,s)∈(Imn )⊗2
=0

i∩r=∅=j∩s

E{h2;i(Xr)h2;j(Xs)}+O(n2m−1). (A.79)

The following lemma gives bound on the right-hand side of (A.79).

Lemma A.5. For any (i,j)∈ (Imn )⊗2=1, under the assumptions of Theorem 2.6, there exists a constant

C such that ∣∣∣ ∑
(r,s)∈(Imn )⊗2

=0
i∩r=∅=j∩s

E{h2;i(Xr)h2;j(Xs)}
∣∣∣≤Cn2mM1(n)2. (A.80)

It follows from (A.75), (A.79) and Lemma A.5 that

|E[E∗{h2;i(X∗i )}E∗{h2;j(X∗j )}]| ≤CM1(n)2. (A.81)

Combining (A.61) with (A.78) and (A.81) yields that, for any (i,j)∈ (Imn )⊗2=1,

|g(i,j)| ≤C|a(i)a(j)|{M1(n)2+M2(n)+n−1}.

Therefore, by the definition of A2,1(n) in (2.6), we have∣∣∣ ∑
(Imn )⊗2

=1

g(i,j)
∣∣∣≤Cn2m−1A2,1(n){M1(n)2+M2(n)+n−1}. (A.82)

Equation (A.64) follows from (A.82) and (2.24). This concludes Step II.

The proof is thus finished.

A.2.4 Proof of Lemma 4.3

Proof. Define

fij(x) :=P (Xj >x)−θ(i,j), S
(1)
i (x) :=

i−1∑
j=1

n

i−1
fij(x), and S

(2)
i (x) :=

n∑
j=i+1

n

j−1
fij(x). (A.83)

By (3.2) we have hAP
1,i (Xi) = {S(1)

i (Xi)−S(2)
i (Xi)}/(n−1) for any i∈ [n]. In the following we use

Lemma A.13 repeatedly to bound ϕ(n) :=
∑n

k=1k
−1.
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First, we show that (4.29) and (4.30) hold under Condition (i) of Theorem 3.3. Using fij(·)
notation, Condition (i) becomes

P{δn≤ fij(Xi)≤ 1,∀j ∈ [n]\{i}}≥ pn. (A.84)

If δn≤ fij(x)≤ 1,∀j ∈ [n]\{i}, we have

nδn =
i−1∑
j=1

n

i−1
δn≤S(1)

i (x)≤
i−1∑
j=1

n

i−1
=n, (A.85)

and

S
(2)
i (x)≥

n∑
j=i+1

n

j−1
δn =nδn{ϕ(n−1)−ϕ(i−1)}≥nδn log

n

i
, (A.86)

S
(2)
i (x)≤

n∑
j=i+1

n

j−1
=n{ϕ(n−1)−ϕ(i−1)}≤nlog

n−1

i−1
. (A.87)

Using (A.85), (A.86), and (A.87), it follows from (A.84) that

P
{
nδn≤S(1)

i (Xi)≤n,nδn log
n

i
≤S(2)

i (Xi)≤nlog
n−1

i−1

}
≥ pn. (A.88)

If log{(n−1)/(i−1)}≤ δn/2, the monotonicity property of probability measure gives

P{h1,i(Xi)≥ δn/2}≥P
{S(1)

i (Xi)

n−1
≥ n

n−1
δn,

S
(2)
i (Xi)

n−1
≤ n

n−1
log

n−1

i−1

}
=P
{
S
(1)
i ≥nδn,S

(2)
i ≤nlog

n−1

i−1

}
≥P

{
nδn≤S(1)

i ≤n,nδn log
n

i
≤S(2)

i ≤nlog
n−1

i−1

}
. (A.89)

Note that

P{|h1,i(Xi)| ≥ δn/2}≥P{h1,i(Xi)≥ δn/2}. (A.90)

Equation (4.29) follows from (A.88), (A.89), and (A.90). If δn log(n/i)≥ 2, the monotonicity prop-

erty of probability measure gives

P{h1,i(Xi)≤−1}≥P
{S(1)

i (Xi)

n−1
≤ n

n−1
,
S
(2)
i (Xi)

n−1
≥ n

n−1
δn log

n

i

}
=P
{
S
(1)
i ≤n,S

(2)
i ≥nδn log

n

i

}
≥P

{
nδn≤S(1)

i ≤n,nδn log
n

i
≤S(2)

i ≤nlog
n−1

i−1

}
. (A.91)

Note that

P{|h1,i(Xi)| ≥ 1}≥P{h1,i(Xi)≤−1}. (A.92)

Equation (4.30) follows from (A.88), (A.91), and (A.92).

Secondly, we show that (4.29) and (4.30) hold under Condition (ii) of Theorem 3.3. Using fij(·)
notation, Condition (ii) becomes

P{−1≤ fij(Xi)≤−δn,∀j ∈ [n]\{i}}≥ pn. (A.93)

By an argument similar to (A.85)-(A.87), if −1≤ fij(x)≤−δn,∀j ∈ [n]\{i} we have

−n≤S(1)
i (x)≤−nδn, and −nlog

n−1

i−1
≤S(2)

i (x)≤−nδn log
n

i
. (A.94)
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By (A.94), Condition (ii) in Theorem 3.3 implies that

P
{
−n≤S(1)

i (Xi)≤−nδn,−nlog
n−1

i−1
≤S(2)

i (Xi)≤−nδn log
n

i

}
≥ pn. (A.95)

If log{(n−1)/(i−1)}≤ δn/2, the monotonicity property of probability measure gives

P{h1,i(Xi)≤−δn/2}≥P
{S(1)

i (Xi)

n−1
≤− n

n−1
δn,

S
(2)
i (Xi)

n−1
≥− n

n−1
log

n−1

i−1

}
=P
{
S
(1)
i ≤−nδn,S

(2)
i ≥−nlog

n−1

i−1

}
≥P
{
−n≤S(1)

i ≤−nδn,−nlog
n−1

i−1
≤S(2)

i ≤−nδn log
n

i

}
. (A.96)

Note that

P{|h1,i(Xi)| ≥ δn/2}≥P{h1,i(Xi)≤−δn/2}. (A.97)

Equation (4.29) follows from (A.95), (A.96), and (A.97). If δn log(n/i)≥ 2, the monotonicity prop-

erty of probability measure gives

P{h1,i(Xi)≥ 1}≥P
{S(1)

i (Xi)

n−1
≥− n

n−1
,
S
(2)
i (Xi)

n−1
≤− n

n−1
δn log

n

i

}
=P
{
S
(1)
i ≥−n,S

(2)
i ≤−nδn log

n

i

}
≥P
{
−n≤S(1)

i ≤−nδn,−nlog
n−1

i−1
≤S(2)

i ≤−nδn log
n

i

}
. (A.98)

Note that

P{|h1,i(Xi)| ≥ 1}≥P{h1,i(Xi)≥ 1}. (A.99)

Equation (4.30) follows from (A.95), (A.98), and (A.99).

This completes the proof.

A.2.5 Proof of Lemma A.2

Proof. Define

fij(x) :=P (Xj >x)−θ(i,j), S
(1)
i (x) :=

i−1∑
j=1

fij(x), and S
(2)
i (x) :=

n∑
j=i+1

fij(x). (A.100)

By (3.1) we have hAP
1,i (Xi) = {S(1)

i (Xi)−S(2)
i (Xi)}/(n−1) for 2≤ i≤n.

First, we show that (A.15) and (A.16) hold under Condition (i) of Theorem 3.3. Using fij(·)
notation, Condition (i) becomes

P{δn≤ fij(Xi)≤ 1,∀j ∈ [n]\{i}}≥ pn. (A.101)

If δn≤ fij(x)≤ 1,∀j ∈ [n]\{i}, we have

(i−1)δn =
i−1∑
j=1

δn≤S(1)
i (x)≤

i−1∑
j=1

1 = i−1, (A.102)
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and

(n− i)δn =
n∑

j=i+1

δn≤S(2)
i (x)≤

n∑
j=i+1

1 =n− i. (A.103)

Using (A.102) and (A.103), it follows from (A.101) that

P
{

(i−1)δn≤S(1)
i (Xi)≤ i−1,(n− i)δn≤S(2)

i (Xi)≤n− i
}
≥ pn. (A.104)

If n− i≤ (i−1)δn/2, the monotonicity property of probability measure gives

P
{
h1,i(Xi)≥

i−1

n−1

δn
2

}
≥P

{S(1)
i (Xi)

n−1
≥ i−1

n−1
δn,

S
(2)
i (Xi)

n−1
≤ n− i
n−1

}
=P
{
S
(1)
i ≥ (i−1)δn,S

(2)
i ≤n− i

}
≥P
{

(i−1)δn≤S(1)
i ≤ i−1,(n− i)δn≤S(2)

i ≤n− i
}
. (A.105)

Note that

P
{
|h1,i(Xi)| ≥

i−1

n−1

δn
2

}
≥P

{
h1,i(Xi)≥

i−1

n−1

δn
2

}
. (A.106)

Equation (A.15) follows from (A.104), (A.105), and (A.106). If i−1≤ (n− i)δn/2, the monotonicity

property of probability measure gives

P{h1,i(Xi)≤−
n− i
n−1

δn
2
}≥P

{S(1)
i (Xi)

n−1
≤ i−1

n−1
,
S
(2)
i (Xi)

n−1
≥ n− i
n−1

δn

}
=P
{
S
(1)
i ≤ i−1,S

(2)
i ≥ (n− i)δn

}
≥P
{

(i−1)δn≤S(1)
i ≤ i−1,(n− i)δn≤S(2)

i ≤n− i
}
. (A.107)

Note that

P
{
|h1,i(Xi)| ≥

n− i
n−1

δn
2

}
≥P

{
h1,i(Xi)≤−

n− i
n−1

δn
2

}
. (A.108)

Equation (A.16) follows from (A.104), (A.107), and (A.108).

Secondly, we show that (A.15) and (A.16) hold under Condition (ii) of Theorem 3.3. Using

fij(·) notation, Condition (ii) becomes

P{−1≤ fij(Xi)≤−δn,∀j ∈ [n]\{i}}≥ pn. (A.109)

If −1≤ fij(x)≤−δn,∀j ∈ [n]\{i}, we have

−(i−1) =−
i−1∑
j=1

1≤S(1)
i (x)≤−

i−1∑
j=1

δn =−(i−1)δn, (A.110)

and

−(n− i) =−
n∑

j=i+1

1≤S(2)
i (x)≤−

n∑
j=i+1

δn =−(n− i)δn. (A.111)

Using (A.110) and (A.111), it follows from (A.101) that

P
{
−(i−1)≤S(1)

i (Xi)≤−(i−1)δn,−(n− i)≤S(2)
i (Xi)≤−(n− i)δn

}
≥ pn. (A.112)
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If n− i≤ (i−1)δn/2, the monotonicity property of probability measure gives

P
{
h1,i(Xi)≤−

i−1

n−1

δn
2

}
≥P

{S(1)
i (Xi)

n−1
≤− i−1

n−1
δn,

S
(2)
i (Xi)

n−1
≥− n− i

n−1

}
=P
{
S
(1)
i ≤−(i−1)δn,S

(2)
i ≥−(n− i)

}
≥P
{
−(i−1)≤S(1)

i ≤−(i−1)δn,−(n− i)≤S(2)
i ≤−(n− i)δn

}
. (A.113)

Note that

P
{
|h1,i(Xi)| ≥

i−1

n−1

δn
2

}
≥P

{
h1,i(Xi)≤−

i−1

n−1

δn
2

}
. (A.114)

Equation (A.15) follows from (A.112), (A.113), and (A.114). If i−1≤ (n− i)δn/2, the monotonicity

property of probability measure gives

P{h1,i(Xi)≥
n− i
n−1

δn
2
}≥P

{S(1)
i (Xi)

n−1
≥− i−1

n−1
,
S
(2)
i (Xi)

n−1
≤− n− i

n−1
δn

}
=P
{
S
(1)
i ≥−(i−1),S

(2)
i ≤−(n− i)δn

}
≥P
{
−(i−1)≤S(1)

i ≤−(i−1)δn,−(n− i)≤S(2)
i ≤−(n− i)δn

}
. (A.115)

Note that

P
{
|h1,i(Xi)| ≥

n− i
n−1

δn
2

}
≥P

{
h1,i(Xi)≥

n− i
n−1

δn
2

}
. (A.116)

Equation (A.16) follows from (A.112), (A.115), and (A.116).

This completes the proof.

A.2.6 Proof of Lemma 4.4

Proof. As in the statement of Lemma 4.4, we consider a fixed i∈ [n]. For any j ∈ [n]\{i}, we have

ρ−1ij ≤ ρn and −rij ≤Rn. This combined with (4.40) implies that zi≥ ρ−1ij t0−rij , or equivalently

ρij(zi+rij)≥ t0. (A.117)

Equations (A.117) and (3.6) imply that

F cj {ρij(zi+rij)}≤ c2{ρij(zi+rij)}−b2 . (A.118)

Define

δn := min
{c1

2
R−b1n ,

c1
2
t−b10 ,

1

2

}
.

This implies that δn ∈ (0,1) and

−δn
c2

+
c1
c2
t−b10 ≥ c1

2c2
t−b10 , (A.119)

and − δn
c2

+
c1
c2
R−b1n ≥ c1

2c2
R−b1n . (A.120)

For an arbitrary j ∈ [n]\{i}, either rij(1+ρ−2ij )−1/2≤ t0 or rij(1+ρ−2ij )−1/2>t0 holds. In the fol-

lowing we show fij(x)≤−δn for all j ∈ [n]\{i} under these two mutually exclusive and collectively
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exhaustive cases.

Case 1: Assume that for a fixed j we have

rij(1+ρ−2ij )−1/2≤ t0. (A.121)

By the monotonicity of F cji(·) we have

F cji{rij(1+ρ−2ij )−1/2}≥F cji(t0). (A.122)

By (3.7) we have

F cji(t0)≥ c1t
−b1
0 . (A.123)

Combining (A.122) and (A.123) yields

F cji{rij(1+ρ−2ij )−1/2}≥ c1t−b10 . (A.124)

Combining (4.39), (A.118), and (A.124) gives

fij(x)≤ c2{ρij(zi+rij)}−b2−c1t−b10 . (A.125)

Equation (A.119) implies (
− δn
c2

+
c1
c2
t−b10

)−1/b2
≤
(
t−b10

c1
2c2

)−1/b2
. (A.126)

Noting that t0> 0 and Rn≥−rij , (4.40) implies

zi≥−rij +
(
t−b10

c1
2c2

)−1/b2
ρn, (A.127)

Combining (A.126) and (A.127) gives

ρij(zi+rij)≥
(
− δn
c2

+
c1
c2
t−b10

)−1/b2
. (A.128)

Therefore, by (A.125) and (A.128) we deduce

fij(x)≤−δn+c1t
−b1
0 −c1t−b10 =−δn.

Case 2: Assume that for a fixed j we have

rij(1+ρ−2ij )−1/2>t0. (A.129)

By (3.7) we have

F cji{rij(1+ρ−2ij )−1/2}≥ c1{rij(1+ρ−2ij )−1/2}−b1 . (A.130)

Combining (4.39), (A.118), and (A.130) gives

fij(x)≤ c2{ρij(zi+rij)}−b2−c1{rij(1+ρ−2ij )−1/2}−b1 . (A.131)

Equation (A.120) implies (
− δn
c2

+
c1
c2
R−b1n

)−1/b2
≤
( c1

2c2
R−b1n

)−1/b2
. (A.132)

18



Noting that t0> 0 and Rn≥−rij , (4.40) implies

zi≥−rij +ρ−1ij

( c1
2c2

)−1/b2
Rb1/b2n . (A.133)

Combining (A.132) and (A.133) gives

ρij(zi+rij)≥
(
− δn
c2

+
c1
c2
R−b1n

)−1/b2
. (A.134)

Equation (A.134) implies

c2{ρij(zi+rij)}−b2 ≤−δn+c1R
−b1
n . (A.135)

Since rij ≤Rn and (1+ρ−2ij )−1/2≤ 1, we have

c1{rij(1+ρ−2ij )−1/2}−b1 ≥ c1R−b1n . (A.136)

Therefore, by (A.131), (A.135), and (A.136) we deduce

fij(x)≤−δn+c1R
−b1
n −c1R−b1n =−δn.

This completes the proof.

A.2.7 Proof of Lemma 4.5

Proof. For any j ∈ [n]\{i}, we have ρ−1ij ≤ ρn and −rij ≤Rn. This combined with (4.51) implies

that zi≥ ρ−1ij t0−rij , or equivalently

ρij(zi+rij)≥ t0. (A.137)

Equations (A.137) and (3.10) imply that

F cj {ρij(zi+rij)}≤ c2exp[−b2{ρij(zi+rij)}λ]. (A.138)

Define

δn := min
{c1

2
exp(−b1Rλn),

c1
2

exp(−b1tλ0),
1

2

}
.

This implies that δn ∈ (0,1) and that

−δn
c2

+
c1
c2

exp(−b1tλ0)≥ c1
2c2

exp(−b1tλ0) (A.139)

and − δn
c2

+
c1
c2

exp(−b1Rλn)≥ c1
2c2

exp(−b1Rλn). (A.140)

In the following we show fij(x)≤−δn for all j ∈ [n]\{i} under these two mutually exclusive and

collectively exhaustive cases.

Case 1: Assume that for a fixed j we have

rij(1+ρ−2ij )−1/2≤ t0. (A.141)

By the monotonicity of F cji(·) we have

F cji{rij(1+ρ−2ij )−1/2}≥F cji(t0). (A.142)
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By (3.11) we have

F cji(t0)≥ c1exp(−b1tλ0). (A.143)

Combining (A.142) and (A.143) yields

F cji{rij(1+ρ−2ij )−1/2}≥ c1exp(−b1tλ0). (A.144)

Combining (4.39), (A.138), and (A.144) gives

fij(x)≤ c2exp[−b2{ρij(zi+rij)}λ]−c1exp(−b1tλ0). (A.145)

Equation (A.139) implies

− 1

b2
log{−δn

c2
+
c1
c2

exp(−b1tλ0)}≤− 1

b2
log

c1
2c2

+
b1
b2
tλ0 . (A.146)

Noting that t0> 0 and Rn≥−rij , (4.51) implies

zi≥−rij +ρ−1ij K3≥−rij +ρ−1ij

(
− 1

b2
log

c1
2c2

+
b1
b2
tλ0

)1/λ
. (A.147)

Combining (A.146) and (A.147) gives

ρij(zi+rij)≥
[
− 1

b2
log
{
− δn
c2

+
c1
c2

exp(−b1tλ0)
}]1/λ

. (A.148)

Therefore, by (A.145) and (A.148) we deduce

fij(x)≤−δn+c1exp(−b1tλ0)−c1exp(−b1tλ0) =−δn.

Case 2: Assume that for a fixed j we have

rij(1+ρ−2ij )−1/2>t0. (A.149)

By (3.11) we have

F cji{rij(1+ρ−2ij )−1/2}≥ c1exp
[
−b1

{
rij

(
1+ρ−2ij

)−1/2}λ]
. (A.150)

Combining (4.39), (A.138), and (A.150) gives

fij(x)≤ c2exp[−b2{ρij(zi+rij)}λ]−c1exp[−b1{rij(1+ρ−2ij )−1/2}λ]. (A.151)

Equation (A.140) implies

− 1

b2
log{−δn

c2
+
c1
c2

exp(−b1Rλn)}≤− 1

b2
log

c1
2c2

+
b1
b2
Rλn. (A.152)

Equation (4.51) implies

zi≥Rn+ρnξ(λ
−1)
{(
− 1

b2
log

c1
2c2

)1/λ
+
(b1
b2
Rλn

)1/λ}
. (A.153)

It follows from (A.153) and Lemma A.14 that

zi≥Rn+ρn

(
− 1

b2
log

c1
2c2

+
b1
b2
Rλn

)1/λ
. (A.154)
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Noting that t0> 0 and Rn≥−rij , (A.154) implies

zi≥−rij +ρ−1ij

(
− 1

b2
log

c1
2c2

+
b1
b2
Rλn

)1/λ
. (A.155)

Combining (A.152) and (A.155) gives

ρij(zi+rij)≥
[
− 1

b2
log{−δn

c2
+
c1
c2

exp(−b1Rλn)}
]1/λ

. (A.156)

Equation (A.156) implies

c2exp[−b2{ρij(zi+rij)}λ]≤−δn+c1exp(−b1Rλn). (A.157)

Since rij ≤Rn and (1+ρ−2ij )−1/2≤ 1, we have

c1exp
[
−b1{rij(1+ρ−2ij )−1/2}λ

]
≥ c1exp(−b1Rλn). (A.158)

Therefore, by (A.151), (A.157), and (A.158) we deduce

fij(x)≤−δn+c1exp(−b1Rλn)−c1exp(−b1Rλn) =−δn.

This completes the proof.

A.2.8 Proof of Lemma A.3

Proof. Consider an arbitrary vector (l1,...,ln), with each li ∈ [n]. Define the sign function sgn(x) :=

1(x> 0)−1(x< 0). It follows from (3.1) that
n∑
i=1

E{hKen
1,i (Xli)

2}=
1

(n−1)2

n∑
i=1

E
[ n∑
k=1

sgn(i−k){P (Xk>Xli |Xli)−P (Xk>Xi)}
]2

=T1−2T2+T3, (A.159)

where

T1 =
1

(n−1)2

n∑
i=1

n∑
k1,k2=1

sgn(i−k1)sgn(i−k2)E [P (Xk1 >Xli |Xli)P (Xk2 >Xli |Xli)], (A.160)

T2 =
1

(n−1)2

n∑
i=1

n∑
k1,k2=1

sgn(i−k1)sgn(i−k2)P (Xk1 >Xj)P (Xk2 >Xi), (A.161)

T3 =
1

(n−1)2

n∑
i=1

n∑
k1,k2=1

sgn(i−k1)sgn(i−k2)P (Xk1 >Xi)P (Xk2 >Xi). (A.162)

We have
n∑
i=1

n∑
k1,k2=1

sgn(i−k1)sgn(i−k2) =
n∑
i=1

(2i−n−1)2 =
1

3
n(n−1)(n+1). (A.163)

It follows from (3.20), (A.160), and (A.163) that

T1 =
n(n−1)(n+1)

3(n−1)2
{η2+O(n−1/3)}=

n(n+1)

3(n−1)
η2+O(n2/3). (A.164)
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It follows from (3.19), (A.161), (A.162), and (A.163) that

T2 =
n(n−1)(n+1)

3(n−1)2
{θ+O(n−1/6)}2 =

n(n+1)

3(n−1)
θ2+O(n5/6), (A.165)

T3 =
n(n−1)(n+1)

3(n−1)2
{θ+O(n−1/6)}2 =

n(n+1)

3(n−1)
θ2+O(n5/6). (A.166)

Combining (A.159) with (A.164), (A.165), and (A.166) yields
n∑
i=1

E
{
hKen
1,i (Xli)

2
}

=T1−2T2+T3 =
n(n+1)

3(n−1)
(η2−θ2)+O(n5/6). (A.167)

In (A.167), letting (l1,...,ln) = (j,j,...,j) yields (A.40), and letting (l1,...,ln) = (j,j,...,j) yields

(A.41).

This completes the proof.

A.2.9 Proof of Lemma 4.6

Proof. Consider an arbitrary vector (l1,...,ln), with each li ∈ [n]. It follows from (3.2) that
n∑
i=1

E{hAP
1,i (Xli)

2}=
1

(n−1)2

n∑
i=1

E
[ n∑
k=1

{n1(k < i)

i−1
− n1(k > i)

k−1

}
{P (Xk>Xli |Xli)−P (Xk>Xi)}

]2
=T1−2T2+T3, (A.168)

where

T1 =
n2

(n−1)2

n∑
i=1

n∑
k1,k2=1

γ(i,k1,k2)E [P (Xk1 >Xli |Xli)P (Xk2 >Xli |Xli)], (A.169)

T2 =
n2

(n−1)2

n∑
i=1

n∑
k1,k2=1

γ(i,k1,k2)P (Xk1 >Xj)P (Xk2 >Xi), (A.170)

T3 =
n2

(n−1)2

n∑
i=1

n∑
k1,k2=1

γ(i,k1,k2)P (Xk1 >Xi)P (Xk2 >Xi), (A.171)

and

γ(i,k1,k2) :=
{1(k1<i)

i−1
− 1(k1>i)

k1−1

}{1(k2<i)

i−1
− 1(k2>i)

k2−1

}
.

By Lemma A.15 and Lemma A.13 we have
n∑
i=1

n∑
k1,k2=1

γ(i,k1,k2) = (n−1)+ϕ(n−1) = (n−1)+O(logn). (A.172)

It follows from (3.22), (A.169), and (A.172) that

T1 =
n2{(n−1)+O(logn)}

(n−1)2
{η2+O(n−1/3(logn)2)}=

n2

n−1
η2+O{n2/3(logn)2}. (A.173)
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It follows from (3.21), (A.170), (A.171), and (A.172) that

T2 =
n2{(n−1)+O(logn)}

(n−1)2
{θ+O(n−1/6 logn)}2 =

n2

n−1
θ2+O(n5/6 logn), (A.174)

T3 =
n2{(n−1)+O(logn)}

(n−1)2
{θ+O(n−1/6 logn)}2 =

n2

n−1
θ2+O(n5/6 logn). (A.175)

Combining (A.168) with (A.173), (A.174), and (A.175) yields
n∑
i=1

E
{
hAP
1,i (Xli)

2
}

=T1−2T2+T3 =
n2

n−1
(η2−θ2)+O(n5/6 logn). (A.176)

In (A.176), letting (l1,...,ln) = (j,j,...,j) yields (A.40), and letting (l1,...,ln) = (j,j,...,j) yields

(A.41). This completes the proof.

A.2.10 Proof of Lemma A.4

Proof. For a fixed (i,j)∈ (Imn )⊗2=1, consider any (r,s)∈ (Imn )⊗2=1 with rp = sq and i∩r = ∅= j∩s. By

the law of iterated expectation and the independence of Xi’s we have

E{h2;i(Xr)h2;j(Xs)}=E[E{h2;i(Xr) |Xrp}E{h2;j(Xs) |Xsq}]. (A.177)

For i= (i1,...,im) and l∈ [m], define

i\il := (i1,...,il−1,il+1,...,im).

Using the definition of h2;i(·) in (2.5) we have

E{h2;i(Xr) |Xrp}=E{h(Xr) |Xrp}

−
m∑
l=1

E[Ei\il{h
(l)(Xrl ;Y1,...,Ym−1) |Xrl} |Xrp ]+(m−1)θ(i). (A.178)

By the independence of the Xi’s we have
m∑
l=1

E[Ei\il{h
(l)(Xrl ;Y1,...,Ym−1) |Xrl} |Xrp ].

=

m∑
l=1
l 6=p

θ(l)(rl;i\il)+Ei\ip{h
(l)(Xrp ;Y1,...,Ym−1) |Xrp} (A.179)

Using (A.178) and (A.179) we obtain

E{h2;i(Xr) |Xrp}=E{h(Xr) |Xrp}−
m∑
l=1
l 6=p

θ(l)(rl;i\il)

−Ei\ip{h
(l)(Xrp ;Y1,...,Ym−1) |Xrp}+(m−1)θ(i). (A.180)
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We introduce some notation:

i\il⊕k := (i1,...,il−1,k,il+1,...,im),

Xi\il⊕k := (Xi1 ,...,Xil−1
,Xk,Xil+1

,...,Xim),

θ(i | il) :=E{h(Xi) |Xil}.

Using the new notation, (A.180) becomes

E{h2;i(Xr) |Xrp}= θ(r | rp)−
m∑
l=1
l 6=p

θ(i\il⊕rl)−θ(i\ip⊕rp | rp)+(m−1)θ(i). (A.181)

Similarly, we have

E{h2;j(Xs) |Xsq}= θ(s | sq)−
m∑
l=1
l 6=q

θ(j\jl⊕sl)−θ(j\jq⊕sq | sq)+(m−1)θ(j). (A.182)

By algebra and the law of iterated expectation, we derive from (A.181) and (A.182) that

E[E{h2;i(Xr) |Xrp}E{h2;j(Xs) |Xsq}] =T1+T2+T3+T4+T5, (A.183)

where

T1 =E{θ(r | rp)θ(s | sq)}−E{θ(r | rp)θ(j\jq⊕sq | sq)}
−E{θ(i\ip⊕rp | rp)θ(s | sq)}+E{θ(i\ip⊕rp | rp)θ(j\jq⊕sq | sq)},

T2 = (m−1)θ(r)θ(j)−θ(r)
∑
l 6=q

θ(j\jl⊕sl)+(m−1)θ(i)θ(s)−θ(s)
∑
l 6=p

θ(i\il⊕rl),

T3 =
{ m∑
l=1

θ(i\il⊕rl)−mθ(i)
}{ m∑

l=1

θ(j\jl⊕sl)−mθ(j)
}
,

T4 = θ(i)
m∑
l=1

θ(j\jl⊕sl)+θ(j)
m∑
l=1

θ(i\il⊕rl)−2mθ(i)θ(j),

T5 = θ(i)θ(j)−θ(i\ip⊕rp)θ(j\jq⊕sq).

By the definitions of M1(n) and M2(n) in (2.25) and (2.26), we have |T1| ≤ 2M2(n), |T2| ≤CM1(n),

|T3| ≤CM1(n)2, |T4| ≤CM1(n), and |T5| ≤CM1(n). Therefore, it follows from (A.183) that

|E[E{h2;i(Xr) |Xrp}E{h2;j(Xs) |Xsq}]| ≤C{M1(n)2+M2(n)}.

This yields (A.77). The proof is thus finished.

A.2.11 Proof of Lemma A.5

Proof. For a fixed (i,j)∈ (Imn )⊗2=1, consider any (r,s)∈ (Imn )⊗2=0 such that i∩r = ∅= j∩s. By inde-

pendence of the Xi’s we have

E{h2;i(Xr)h2;j(Xs)}=E{h2;i(Xr)}E{h2;j(Xs)}. (A.184)
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By the definition of h2;i(·) in (2.5), we have

E{h2;i(Xr)}=E{h(Xr)}−
m∑
l=1

E[Ei\il{h
(l)(Xrl ;Y1,...,Ym−1) |Xrl}]+(m−1)θ(i)

= θ(r)−
m∑
l=1

θ(l)(rl;i\il)+(m−1)θ(i).

It then follows from the definition of M1(n) in (2.25) that

|E{h2;i(Xr)}|≤mM1(n). (A.185)

Combining (A.184) and (A.185) yields that

|E{h2;i(Xr)h2;j(Xs)}|≤m2M1(n).

This implies (A.80). The proof is thus finished.

A.3 Auxiliary lemmas

Lemma A.6. There exists a constant cm which only depends on m, such that the following results

hold.

(i) For any n and any (i1,...,im)∈ Imn ,

E{h2;i1,...,im(Xi1 ,...,Xim)2}≤ cmE{h(Xi1 ,...,Xim)2}.

(ii) For any n, any i∈ [n], any (i1,...,im−1)∈ Im−1n−1 (−i), and any l∈ [m],

E[{f (l)i1,...,im−1
(Xi)−θ(l)(i;i1,...,im−1)}4]≤ cmE{h(l)(Xi;Xi1 ,...,Xim−1)4}.

(iii) For any n, any (i1,...,im)∈ Imn , and any j1,...,jm ∈ [n],

E{h2;i1,...,im(Xj1 ,...,Xjm)2}≤ cm sup
1≤k1,...,km≤n

E{h(Xk1 ,...,Xkm)2}.

Lemma A.7. Consider three random variables X,Y,Z. Assume Y is independent of Z conditional

on X. Then for two measurable functions f,g :R2→R, we have

Cov{f(X,Y ),g(X,Z)}= Cov
[
E{f(X,Y ) |X},E{g(X,Z) |X}

]
.

Lemma A.8. Consider a sequence of random variables X1,X2,..., with E(Xn) = 0 for all Xn. If

Var(Xn)→ 0, then Xn
P→ 0.

Lemma A.9 (Lyapunov’s central limit theorem). Let X1,X2,... be a sequence of independent

random variables and let Sn =n−1
∑n

i=1Xi. If there exists δ > 0 such that

lim
n→∞

∑n
i=1E|Xi−E(Xi)|2+δ{∑n
i=1E |Xi−E(Xi)|2

} 2+δ
2

= 0, (A.186)

then

Var(Sn)−1/2{Sn−E(Sn)} d→N(0,1).
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Lemma A.10 (Lehmann, 1999, Theorem 2.6.1). If a sequence of cumulative distribution functions

Hn tends to a continuous cdf H, then Hn(x) converges to H(x) uniformly in x.

Lemma A.11 (Mammen, 2012, Theorem 2.2). Consider a sequence Yn,1,...,Yn,n of independent

random variables with distribution Pn,i. For a function gn define T̂n =n−1
∑n

i=1gn(Yn,i). Consider

a bootstrap sample Y ∗n,1,...,Y
∗
n,n and define T̂ ∗n =n−1

∑n
i=1gn(Y ∗n,i). Then for every sequence tn the

following assertions are equivalent:

(i) There exists σn such that for every ε> 0

sup
1≤i≤n

P
{∣∣∣gn(Yn,i)− tn

nσn

∣∣∣≥ ε}→ 0, (A.187)

n∑
i=1

(
E
[gn(Yn,i)− tn

nσn
1
{∣∣∣gn(Yn,i)− tn

nσn

∣∣∣≤ ε}])2→ 0, (A.188)

sup
t∈R
|P (T̂n− tn≤ t)−Φ(t)|→ 0. (A.189)

(ii) Bootstrap works:

sup
t∈R
|P (T̂ ∗n− T̂n≤ t |Yn,1,...,Yn,n)−P (T̂n− tn≤ t)|

P→ 0.

Lemma A.12 (Serfling, 2009, Theorem 1.8 C). Let X1,X2,... be uncorrelated with means µ1,µ2,...

and variances σ21,σ
2
2,.... If

∑n
i=1σ

2
i = o(n−2), n→∞, then

1

n

n∑
i=1

Xi−
1

n

n∑
i=1

µi
P→ 0.

Lemma A.13 (Bound on the partial sum of harmonic series). Denote ϕ(n) =
∑n

k=1k
−1. Then for

any two integers m,n such that 1≤m≤n,

log
n+1

m+1
≤ϕ(n)−ϕ(m)≤ log

n

m
, (A.190)

log(n+1)≤ϕ(n)≤ 1+logn. (A.191)

Lemma A.14. For any two positive real numbers a,b and real number p> 0, we have

(a+b)p≤ ξ(p)(ap+bp),

where

ξ(p) =

2p−1 if p≥ 1,

1 if 0<p< 1.

Lemma A.15. We have
n∑
i=1

n∑
j=1

n∑
k=1

{1(j < i)

i−1
− 1(j > i)

j−1

}{1(k < i)

i−1
− 1(k > i)

k−1

}
= (n−1)+ϕ(n−1), (A.192)

where we define 0/0 := 0 and ϕ(n) :=
∑n

k=1k
−1.

26



Lemma A.16. Define Φc(x) = 1√
2π

∫∞
x exp(− t2

2 )dt to be the complement distribution function for

the standard Gaussian. We have the following bounds for Φc(x):

1√
2π

(
1

x
− 1

x3

)
exp(−x

2

2
) ≤Φc(x)≤ 1√

2π

1

x
exp(−x

2

2
), if x> 0,

1+
1√
2π

1

x
exp(−x

2

2
) ≤Φc(x)≤ 1+

1√
2π

(
1

x
− 1

x3

)
exp(−x

2

2
), if x< 0.

A.4 Proof of auxiliary lemmas

A.4.1 Proof of Lemma A.6

Proof. Define i= (i1,...,im), Xi = (Xi1 ,...,Xim), and i−m = (i1,...,im−1).

(i) By the definition of h2;i(·) in (2.5) we have

E{h2;(Xi)
2}≤ 2m+2

[
E{h(Xi)

2}+
m∑
l=1

E{f (l)i\il(Xil)
2}+(m−1)2θ2(i)

]
. (A.193)

Jensen’s inequality and the law of iterated expectation yield

E{f (l)i\il(Xil)
2}=Eil [Ei\il{h

(l)(Xil ;Y1,...Ym−1) |Xil}
2]≤E{h(Xi)

2} (A.194)

and

θ2(i)≤E{h(Xi)
2}. (A.195)

Equations (A.193), (A.194), and (A.195) imply

E{h2;i(Xi)
2}≤ 2m+2{1+m+(m−1)2}E{h(Xi)

2}.

This proves (i).

(ii) We have

E[{f (l)i−m
(Xi)−θ(l)(i;i−m)}4]≤ 24[E{f (l)i−m

(Xi)
4}+θ(l)(i;i−m)4] (A.196)

By the definition of f
(l)
i−m

(·) in (2.3) and Jensen’s inequality we have

E{f (l)i−m
(Xi)

4}≤Ei[Ei−m{h(l)(Xi;Y1,...Ym−1)
4 |Xi}] =E{h(l)(Xi;Xi−m)4}. (A.197)

Jensen’s inequality also implies that

θ(l)(i;i−m)4 = {Eh(l)(Xi;Xi−m)}4≤E{h(l)(Xi;Xi−m)4}. (A.198)

Combining (A.196) with (A.197) and (A.198) yields

E[{f (l)i−m
(Xi)−θ(l)(i;i−m)}4]≤ 24E{h(l)(Xi;Xi−m)4}.

This proves (ii).

(iii) Consider j := (j1,...,jm) with each jl ∈ [m]. Define Xj := (Xj1 ,...,Xjm). By the definition of
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h2;i(·) in (2.5) we have

E{h2;i(Xj)2}≤ 2m+2
[
E{h(Xj)2}+

m∑
l=1

E{f (l)i\il(Xjl)
2}+(m−1)2θ2(i)

]
. (A.199)

By the definition of f
(l)
i−m

(·) in (2.3) and Jensen’s inequality we have

E{f (l)i−m
(Xjl)

2}≤Ejl [Ei−m{h(l)(Xjl ;Y1,...Ym−1)
2 |Xjl}] =E{h(l)(Xjl ;Xi−m)2}. (A.200)

Combining (A.199), (A.200), and (A.195) yields

E{h2;i(Xj)2}≤ 2m+2
[
E{h(Xj)2}+

m∑
l=1

E{h(l)(Xjl ;Xi−m)2}+(m−1)2E{h(Xi)
2}
]

≤ 2m+2m2 sup
1≤k1,...,km≤n

E{h(Xk1 ,...,Xkm)2}.

This proves (iii).

The proof is thus finished.

A.4.2 Proof of Lemma A.7

Proof. Define θ(f) =E{f(X,Y )} and θ(g) =E{g(X,Z)}. By the law of iterated expectation we

have

Cov{f(X,Y ),g(X,Z)}=E[{f(X,Y )−θ(f)}{g(X,Z)−θ(g)}]
=E(E[{f(X,Y )−θ(f)}{g(X,Z)−θ(g)} |X]) (A.201)

By independence between Y and Z conditional on X, we have

E(E[{f(X,Y )−θ(f)}{g(X,Z)−θ(g)} |X]) =E([E{f(X,Y ) |X}−θ(f)][E{g(X,Z) |X}−θ(g)])

= Cov[E{f(X,Y ) |X},E{g(X,Z) |X}]. (A.202)

Lemma A.7 follows from (A.201) and (A.202).

A.4.3 Proof of Lemma A.13

Proof. We have ϕ(n)−ϕ(m) =
∑n

k=m+1k
−1. By integral bound, we have

log
n+1

m+1
=

∫ n+1

m+1

1

x
dx≤

n∑
k=m+1

1

k
≤
∫ n

m

1

x
dx= log

n

m
,

which yields (A.190). We also have

log(n+1)≤
∫ n+1

1

1

x
dx≤

n∑
k=1

1

k
≤ 1+

∫ n

1

1

x
dx≤ 1+logn,

which yields (A.191). The proof is thus finished.
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A.4.4 Proof of Lemma A.15

Proof. By algebra we have
n∑
i=1

n∑
j=1

n∑
k=1

{1(j < i)

i−1
− 1(j > i)

j−1

}{1(k < i)

i−1
− 1(k > i)

k2−1

}
=T1−T2−T3+T4, (A.203)

where

T1 =
n∑
i=1

n∑
j=1

n∑
k=1

1(j < i)

i−1
· 1(k < i)

i−1
, T2 =

n∑
i=1

n∑
j=1

n∑
k=1

1(j < i)

i−1
· 1(k > i)

k−1
,

T3 =
n∑
i=1

n∑
j=1

n∑
k=1

1(j > i)

j−1
· 1(k < i)

i−1
, T4 =

n∑
i=1

n∑
j=1

n∑
k=1

1(j > i)

j−1
· 1(k > i)

k−1
.

For T1 we have

T1 =
n∑
i=2

i−1∑
j=1

i−1∑
k=1

1

(i−1)2
=n−1. (A.204)

For T2 we have

T2 =

n−1∑
i=2

i−1∑
j=1

n∑
k=i+1

1

i−1
· 1

k−1
=

n∑
k=3

k−1∑
i=2

1

k−1
=

n∑
k=3

(
1− 1

k−1

)
= (n−1)−ϕ(n−1). (A.205)

By symmetry T2 =T3, so

T3 = (n−1)−ϕ(n−1). (A.206)

For T4 we have

T4 =
n−1∑
i=1

n∑
j=i+1

n∑
k=i+1

1

j−1
· 1

k−1
=

n∑
j=2

n∑
k=j+1

j−1∑
i=1

1

j−1
· 1

k−1
+

n∑
j=2

j∑
k=2

k−1∑
i=1

1

j−1
· 1

k−1
. (A.207)

Note that
n∑
j=2

n∑
k=j+1

j−1∑
i=1

1

j−1
· 1

k−1
=

n∑
j=2

n∑
k=j+1

1

k−1
=

n∑
k=3

k−1∑
j=2

1

k−1
= (n−1)−ϕ(n−1) (A.208)

and
n∑
j=2

j∑
k=2

k−1∑
i=1

1

j−1
· 1

k−1
=

n∑
j=2

j∑
k=2

1

j−1
=

n∑
j=2

1 =n−1. (A.209)

Combining (A.207) with (A.208) and (A.209) yields

T4 = 2(n−1)−ϕ(n−1). (A.210)

Equation (A.192) follows from (A.203), (A.204), (A.205), and (A.210).

This completes the proof.
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