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Abstract

An emerging literature in high-dimensional statistics focuses on studying high-dimensional

time series. However, there is little fundamental study on optimal estimation. This paper

founds, for the first time in the literature, such a result. For this, we focus on the copula-based

time series model. It includes the Gaussian vector autoregressive model as a sub-class. The

temporal dependence of this model is fully characterized by the transition matrix A, which we

aim to estimate. Under a low-rank assumption on A, we derive sharp upper and lower bounds

for estimation. A key step to establishing the lower bound is through a novel analysis of the

log determinant term in calculating the Kullback-Leibler divergence. For this, we observe a

clear distinction from the analysis of the independent data, where the log determinant term is

typically ignorable.

Keywords: high-dimensional time series; transition matrix estimation; α-mixing; constrained

`∗-minimization; minimax lower bound.

1 Introduction

The multivariate time series analysis plays a fundamental role in modelling and analyzing many

types of datasets of temporal correlatedness. For example, it is critically useful for the analysis

of stock market data (Fan et al., 2011b), time course genomic data (Michailidis, 2012), and task-

based/resting state functional magnetic resonance image (fMRI) data (Lindquist, 2008; Smith,

2012). A common feature through these datasets is that the time series dimension d is un-ignorable

compared to the time series length T . This characteristic motivates regularized estimation (Bickel

et al., 2009; Negahban and Wainwright, 2011).

There exists an emerging literature in studying high-dimensional time series. Focused on the

vector autoregressive (VAR) model (Lütkepohl, 2007), Shojaie and Michailidis (2010), Negahban

and Wainwright (2011), and Han et al. (2015) studied estimating the large transition matrix A

of an order one VAR model (VAR(1)). Song and Bickel (2011) and Davis et al. (2016) studied

VAR models of order p > 1 (VAR(p)). Very recently, Basu and Michailidis (2015) provided an
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analysis of stationary Gaussian VAR(p) models and revealed the role of spectral density functions

in measuring the parameter estimation accuracy. Related statistical problems of interest include

stochastic regression (Loh and Wainwright, 2012; Chang et al., 2015) and covariance/precision

matrix estimation (Fan et al., 2011a; Xiao and Wu, 2012; Chen et al., 2013).

Although there have been a variety of methods for studying high-dimensional VAR models, it is

still unclear whether they are minimax optimal. This is because the minimax lower bound, serving

as an important benchmark for evaluating the estimators’ performance, is still unknown in the time

series literature. In addition, we mention two constraints in the literature: (i) most aforementioned

methods require the data to be Gaussian distributed; (ii) most results focus on the linear temporal

system, while the analysis for nonlinear systems is largely unexplored.

This paper focuses on studying a general semiparametric time series model as an order one

Markov chain1. Specifically, let {Xt}t∈Z be a multivariate time series with Xt ∈ Rd. We focus on

the following time series model.

• Semiparametric meta-elliptical-based stationary time series. Assume there exists a

set of unknown strictly increasing functions, f := {f1, . . . , fd}, such that

f(Xt) = Af(Xt−1) +Et and Zt := f(Xt) ∼ ECd(0,Σ, ξ), for any t ∈ Z. (1.1)

Here {Zt}t∈Z is of elements identically and continuously elliptically distributed2.

Model (1.1) is related to a growing literature in modelling the possibly nonlinear temporal

dependence (Hsing and Wu, 2004; Beare, 2010; Patton, 2012a,b; Wang and Xia, 2015). In particular,

Model (1.1) is a multivariate extension to the univariate order one Gaussian copula Markov chain

introduced in Chen and Fan (2006) and Chen et al. (2009). It is also obvious that Model (1.1) is a

strict extension to the stationary Gaussian VAR(1) model considered in Negahban and Wainwright

(2011), Han et al. (2015), and Basu and Michailidis (2015).

This paper aims to estimate the transition matrix A in Model (1.1) under a low-rank assump-

tion. Here the assumption, r := rank(A) < d, is regular in the related literature (Christiano et al.,

1999; Bai, 2003; Pan and Yao, 2008; Bańbura et al., 2010; Negahban and Wainwright, 2011; Lam

et al., 2011; Lam and Yao, 2012; Basu, 2014). In particular, it is strongly motivated from a latent

factor model, where a few latent factors drive the main movement of the multivariate time series,

and the marginal transformation f could be pictured as contamination (Chen et al., 2009).

We establish the minimax optimal rate of convergence for transition matrix estimation within

Model (1.1). Here, on one hand, for parameter estimation and, in particular, for handling the

possibly nonlinear temporal system, we introduce a novel algorithm based on the robust sign trans-

formation, whose intrinsic idea comes from the one-to-one map between the Pearson’s correlation

and Kendall’s tau under the Gaussian copula model (Kruskal, 1958).

On the other hand, regarding the optimality, we build a rate-sharp minimax lower bound.

Conventional techniques, designed for the independent data, are not well suited for studying the

time series. We overcome this issue via a novel analysis focused on the log determinant term in

calculating the Kullback-Leibler divergence (Tsybakov, 2009). The log determinant term reflects the

1We will discuss extensions to the order p > 1 case in Section 5.
2Mathematical definition of elliptical distribution will be provided in the later sections.
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impact of data dependence on estimation, and is regularly ignorable under the data independence

assumption.

1.1 Other related works

Our work on optimal estimation of large transition matrix is closely related to estimating large

covariance matrices in the time series. For this, we refer the readers to: (i) Fan et al. (2011a),

Bai and Liao (2016), and Han and Liu (2013) for results under different mixing conditions; (ii)

Xiao and Wu (2012) and Chen et al. (2013) for results under the physical dependence condition

(Wu, 2005); and (iii) Sancetta (2008) and Fan et al. (2012) for results under the weak dependence

condition (Doukhan and Louhichi, 1999).

Our work is also related to a vast literature on low-rank matrix estimation under the univari-

ate/multivariate regression (Izenman, 1975; Reinsel and Velu, 1998; Yuan et al., 2007; Bunea et al.,

2011, 2012) and matrix completion (Candès and Recht, 2009; Candès et al., 2011; Koltchinskii

et al., 2011) settings. In particular, under the multivariate regression setting, Yuan et al. (2007)

and Bunea et al. (2011) advocated using singular value `1 (nuclear-) and `0 (rank-) norms to pe-

nalize the loss function. Ever since the analysis of high-dimensional time series is distinct from the

analysis of the independent data, our results are complementary to those in Yuan et al. (2007) and

Bunea et al. (2011).

1.2 Notation

Throughout the paper, let Z and R represent the sets of integers and real numbers. Let v =

(v1, . . . , vm)T and M = [Mjk] ∈ Rn×m be an n-dimensional real vector and an n by m real matrix.

For sets I ⊂ {1, . . . , n} and J ⊂ {1, . . . ,m}, let vJ be the subvector of v with entries indexed by J ,

and MI,J be the submatrix of M with entries indexed by I and J . For any two matrices M,N ∈
Rn×m, we define 〈M,N〉 := Tr(MTN), where Tr(·) represents the trace for square matrices. For

0 < q <∞, we define the vector `0, `q, and `∞ (pseudo-)norms of v to be ‖v‖0 := card({j : vj 6= 0}),
‖v‖q := (

∑m
i=1 |vi|q)1/q, and ‖v‖∞ := max1≤i≤m |vi|. We define the matrix element-wise supremum

(`max), operator (`q), Frobenius (`F), and nuclear (`∗) norms as ‖M‖max := maxj,k |Mjk|, ‖M‖q :=

maxv ‖Mv‖q/‖v‖q, ‖M‖F := (
∑

M2
jk)

1/2, and ‖M‖∗ :=
∑
σj(M). Here σj(M) represents the

j-th largest singular value of M. For any univariate function f(·) : R → R, define f(M) :=

[f(Mjk)] ∈ Rn×m. For the symmetric real matrix M ∈ Rn×n, let λmax(M) and λmin(M) be

the largest and smallest eigenvalues of M. For a set of functions f := {fj}mj=1, define f(v) :=

(f1(v1), . . . , fm(vm))T. Let diag(M) be the diagonal matrix with the diagonals M11,M22, . . . ,Mnn.

Let vec(M) be the vectorized version of M. Let In ∈ Rn×n be the identity matrix. For any x ∈ R,

we define the sign function sign(x) := x/|x|, where by convention we let 0/0 = 0, and the floor

function bxc as the largest integer not greater than x. We let c, C be two generic absolute positive

constants, whose actual values might vary at different locations. For any two real sequences {an}
and {bn}, we write an � bn if there exist c, C such that c|bn| ≤ |an| ≤ C|bn| for any large enough n.
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1.3 Paper organization

We organize the rest of the paper as follows. Section 2 introduces the method. Section 3 studies

the theoretical properties of the proposed method. In Section 4, we establish a minimax lower

bound of the studied problem. Section 5 gives extensions to Markov chains of order p > 1. Section

6 provides finite sample simulations and the real stock market data analysis. Section 7 concludes.

Proofs and axillary lemmas are relegated to a supplementary material.

2 Model description and estimation procedure

This section elaborates Model (1.1) in more detail, and introduces the proposed method. In the

sequel, suppose we only observe a length T fragment, {X1, . . . ,XT }, of the times series {Xt}t∈Z.

In addition, assume the time series is centered with median(Xt) = 0 for t ∈ Z. In the sequel, for

any two random vectors X,Y ∈ Rd, we write X
d
= Y if X and Y are identically distributed.

2.1 Model description

For elaborating Model (1.1) in more detail, we first define the elliptical distribution.

Definition 2.1 (Elliptical distribution, Fang et al. (1990)). A continuous d-dimensional random

vector Z of covariance matrix Σ is said to follow an elliptical distribution if and only if there exist

a vector µ ∈ Rd, a nonnegative random variable ξ ∈ R of P(ξ = 0) = 0, a random vector U ∈ Rd

uniformly distributed in the unit sphere Sd−1 ⊂ Rd and independent of ξ, such that

Z
d
= µ+ ξΣ1/2U .

We then write Z ∼ ECd(µ,Σ, ξ). Of note, the elliptical distribution family contains the Gaussian

and multivariate t-distribution families.

Suppose {Xt}t∈Z is the observed time series. It follows Model (1.1) if and only if the following

two properties hold.

(P1). There exists a set of unknown strictly increasing functions, f := {f1, . . . , fd}, such that

f(Xt) = Af(Xt−1) +Et and Zt := f(Xt) ∼ ECd(0,Σ, ξ), for any t ∈ Z.

For model identifiability, we assume Σ has diagonals all equal to 1.

(P2). The random vector (ZT
1 , . . . ,Z

T
T )T ∈ RTd is continuous and elliptically distributed for

arbitrary integer T ≥ 1.

In practice, such a time series could be generated through an iterative algorithm presented

in Rémillard et al. (2012). Specifically, for each t ∈ Z, given Zt−1, the idiosyncratic error Et is

constructed such that (ZT
t−1,Z

T
t )T is elliptically distributed and {Zt−1,Zt} satisfies (P1)3. We

then generate {Xt}t∈Z based on {Zt}t∈Z and the set of strictly increasing functions f = {fj}df=1.

Due to the uniqueness of Et, we immediately have the following proposition. It guarantees that

Property (P2) holds.

3Of note, Et is possibly correlated with Zt−1.
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Proposition 2.1. Suppose we generate {Zt}t∈Z using Algorithm 1 in Rémillard et al. (2012). Then

we have {Zt}t∈Z is globally elliptically distributed, i.e., (ZT
t1 , . . . ,Z

T
tm)T is elliptically distributed

for arbitrary positive integer m and t1, . . . , tm ∈ Z.

Model (1.1) is very general. Because the Gaussian belongs to the elliptical distribution family,

Model (1.1) is a strict extension to the Gaussian-copula-based time series model, which has attracted

a lot of attention in Chen and Fan (2006). In addition, when the transition matrix A = 0, we

recover the meta-elliptical distribution family introduced in Fang et al. (2002). Our model is also

very related to Markovian models equipped with meta-elliptical copulas (Rémillard et al., 2012).

Model (1.1) could also be regarded as a possibly nonlinear alternative to the Kalman filter, for

which we refer the readers to Roweis and Ghahramani (1999) for a complementary review.

2.2 Estimation procedure

The problem of transition matrix estimation is strongly related to multiple regression. For this,

even when the temporal system is linear, under the low-rank assumption on A, the least square

estimator,

ÂLSE := argmin
Q∈Rd×d

1

T − 1

T∑
t=2

‖Xt −QXt−1‖2F,

is not statistically efficient for estimating A (Izenman, 1975). For improving estimation efficiency,

there have been a number of methods introduced in the literature. In particular, Negahban and

Wainwright (2011) proposed the following penalized M-estimator:

ÂNW
λ := argmin

Q∈Rd×d

1

T − 1

T∑
t=2

‖Xt −QXt−1‖2F + λ‖Q‖∗. (2.1)

Here the nuclear norm is added to induce the sparsity of the estimator’s singular values, and hence

encourages low-rankness. The obtained estimator is easy to implement, and proves to enjoy good

theoretical properties.

However, given (2.1), because transformation functions f1, . . . , fd are unknown, estimating A

in Model (1.1) requires extra efforts. More specifically, let’s consider the following general setting.

Suppose M ∈ Rn×n and M1 ∈ Rn×m, of dimensions n and {n,m}, are two real matrices, M is

symmetric and positive definite, and the matrix of interest A could be written as A = MT
1 M−1 ∈

Rm×n of rank r ≤ min(m,n). Let M̂ and M̂1 be estimates of M and M1, and define

ÂG
λ := argmin

Q∈Rm×n

Lλ(Q; M̂, M̂1), where Lλ(Q; M̂, M̂1) := 〈−2M̂1 + M̂QT,QT〉+ λ‖Q‖∗. (2.2)

The following lemma provides the key result motivating our new method. Its proof is very straight-

forward given the literature.

Lemma 2.2. Assume M̂ and M̂1 are the estimates of M ∈ Rn×n and M1 ∈ Rn×m based on T

observations, satisfying

P(‖M̂−M‖2 ≤ δ1) ≥ 1− ε1 and P(‖M̂1 −M1‖2 ≤ δ2) ≥ 1− ε2. (2.3)
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Here δ1, δ2, ε1, ε2 are functions of (T,m, n), and ε1, ε2 go to zero as (T,m, n) increases to infinity.

Further assume

M = MT, λmin(M) ≥ γmin, A := MT
1 M−1, rank(A) ≤ r, ‖A‖2 ≤ γmax,

and

λ ≥ 2(γmaxδ1 + δ2) and µ ≤ γmin − δ1,

where γmin and γmax are two absolute positive constants. We then have

P
(
‖ÂG

λ −A‖F ≥
λ+ 2

√
2(γmaxδ1 + δ2)

2µ

√
r
)
≤ ε1 + ε2.

Lemma 2.2 implies, as long as M̂ and M̂1 are consistent estimators of M and M1, and the

tuning parameter λ is appropriately chosen, ÂG
λ could consistently estimate A. For Model (1.1), if

we write

Σ = Cov(Zt) and Σ1 = Cov(Zt,Zt+1)

to be the covariance and lag 1 covariance matrices of {Zt}t∈Z, by the celebrated Yule-Walker

equation, we have A = ΣT
1 Σ−1. Hence, Lemma 2.2 indicates, for estimating the transition matrix

A, a major step is to construct efficient estimators of Σ and Σ1. Of note, by setting M̂ =∑T−1
t=1 XtX

T
t /(T − 1) and M̂1 =

∑T−1
t=1 XtX

T
t+1/(T − 1), we recover the estimator ÂNW

λ .

However, in Model (1.1), {Zt}1≤t≤T is not observable, and hence ÂNW
λ could be biased. For

consistently estimating Σ and Σ1, the key observation is the following lemma, revealing that the

latent covariances could be directly estimated via a sign transformation of the original data.

Lemma 2.3 (Kruskal (1958)). Suppose Z ∼ ECd(0,Σ, ξ) is elliptically distributed with the diag-

onals of Σ all equal to 1. Let S := sign(Z) and T := Cov(S). We then have Σ = sin(π2 T).

Motivated from Lemmas 2.2 and 2.3, our transition matrix estimation procedure has two steps.

The first step is a robust estimation of Σ and Σ1 through a new algorithm we call “robust sign

transformation”. In the second step, we plug the estimators Σ̂ and Σ̂1 into the general penalization

algorithm (2.2). The detailed procedure is as follows.

• Step 1: Estimating Σ and Σ1. For t = 1, . . . , T , we define the robust-sign-transformation

version of the observed data points Xt as

St := sign(Xt) = (sign(Xt1), sign(Xt2), . . . , sign(Xtd))
T. (2.4)

We further calculate

T̂ :=
1

T

T∑
t=1

StS
T
t and T̂1 :=

1

T − 1

T−1∑
t=1

StS
T
t+1.

Σ and Σ1 are then separately estimated using

Σ̂ := sin(
π

2
T̂) and Σ̂1 := sin(

π

2
T̂1).

• Step 2: Estimating the transition matrix A. We plug Σ̂ and Σ̂1 into the general
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algorithm (2.2) to obtain the final estimator:

Âλ := argmin
Q∈Rd×d

Lλ(Q; Σ̂, Σ̂1). (2.5)

Of note, Âλ directly estimates A without requiring calculating the transformation functions

f1, . . . , fd. This is due to Lemma 2.3 and the fact that the sign function is invariant to strictly

increasing functions.

Remark 2.4. We compare the robust-sign-transformation approach to the others. On one hand,

Chen and Fan (2006) studied the setting where the exact copula function is known, and proposed

a likelihood-based approach. However, Model (1.1) does not specify the exact copula function, and

hence is more general. On the other hand, Rémillard et al. (2012) studied models like Model (1.1)

and proposed a fully nonparametric method. However, a key step there is to estimate the joint

distribution function, which is known to be very inefficient in high dimensions.

Remark 2.5. For presentation simplicity, we focus on the centered time series following similar

settings as in Negahban and Wainwright (2011), Han et al. (2015), and Basu and Michailidis

(2015). However, of note, if {Xt}t∈Z is a non-centered time series following Model (1.1), then we

can instead apply the developed procedure to {Xt −Xt−∆T }t∈Z. This new time series is centered

and corresponds to {Zt − Zt−∆T }t∈Z, whose transition matrix approximates A as the gap ∆T

increases with T . Such a procedure, we call “split-and-conquer”, is common in the literature and

can settle the non-centeredness issue without hurting the theory. In practice, we could also conduct

a pre-processing procedure by deleting the sample median from the time series.

3 Properties of the proposed estimator

We now study the properties of the robust-sign-transformation estimator Âλ introduced in Section

2. To this end, let’s first introduce some extra definitions. Given a measurable space (Ω,F ,P), for

any two σ-algebras A and B in F , define the corresponding α-mixing coefficient by

α(A,B) := sup
A∈A,B∈B

∣∣P(A ∩B)− P(A)P(B)
∣∣.

Let {Xt}t∈Z be a sequence of real-valued random variables. We further define

α(n; {Xt}t∈Z) := sup
t∈Z

α(Gt−∞,G∞t+n),

where for arbitrary j ∈ Z, Gj−∞ := σ(Xt, t ≤ j) and G∞j := σ(Xt, t ≥ j) represent the sigma fields

generated by {Xt}t≤j and {Xt}t≥j respectively.

We then study the properties of the estimator Âλ under Model (1.1). For this, let’s first provide

two assumptions on the sequence {Xt}t∈Z.

• Assumption (A1). Assume λmin(Σ) and λmax(Σ) are lower and upper bounded by two

absolute positive constants, respectively.

• Assumption (A2). The sequence {Xt}t∈Z satisfies the following strong mixing condition:

α(n; {Xt}t∈Z) = α(n; {Zt}t∈Z) ≤ exp(−κ1n
γ1), for all n ≥ 1, (3.1)

7



for some absolute positive constants κ1 and γ1.

Of note, Assumption (A1) is regular in the low-rank matrix estimation literature (Negahban and

Wainwright, 2011; Candes and Plan, 2011). Assumption (A2) is routine in studying autoregression

models (Andrews, 1991; Den Haan and Levin, 1998; Liebscher, 2005; Bandyopadhyay, 2006). In

particular, Beare (2010), Rémillard et al. (2012), and Han and Li (2017) verified that the sequence

{Xt}t∈Z satisfies (A2) with γ1 = 1 when certain explicitly stated conditions hold.

Proposition 3.1 (Rémillard et al. (2012)). Suppose Model (1.1) and Assumption (A1) hold. In

addition, suppose {Zt}t∈Z is stationarily Gaussian or multivariate t-distributed with the rank of A

bounded. We then have (3.1) holds with γ1 = 1.

Proposition 3.2 (Kolmogorov and Rozanov (1960) and Han and Li (2017)). Suppose Model (1.1)

and Assumption (A1) hold. In addition, suppose {Zt}t∈Z is stationarily Gaussian-distributed with

‖A‖2 < C < 1 for some absolute constant C > 0. We then have (3.1) holds with γ1 = 1.

Remark 3.3. We first note Proposition 3.1 could be further strengthened. In particular, by

checking the proofs of Propositions 2 and 4 in Rémillard et al. (2012), we immediately have, when

{Zt}t∈Z is stationarily Gaussian or multivariate t-distributed, the time series {Xt}t∈Z is ρ-mixing.

Longla and Peligrad (2012) showed {Xt}t∈Z is also φ-mixing. We refer the readers to Bradley

(2005) for explicit definitions of these mixing conditions. Secondly, we note Proposition 3.2 is

established in Han and Li (2017) and credited to Kolmogorov and Rozanov (1960), which showed

that the ρ-mixing coefficient of a Gaussian sequence is determined by the corresponding canonical

correlation and hence can be explicitly calculated.

The next theorem studies the approximation error of the proposed estimator Âλ in (2.5) over

the class of low-rank matrices AM (r, γmax), defined as follows:

AM (r, γmax) :=
{

M ∈ Rd×d : rank(M) ≤ r, ‖M‖2 ≤ γmax

}
. (3.2)

Here γmax is an absolute positive constant not necessarily smaller than 1.

Theorem 3.4. Assume Model (1.1) and Assumptions (A1), (A2) hold, and assume the transition

matrix A ∈ AM (r, γmax) for some absolute positive constant γmax. Suppose there exist three

absolute constants µ,C1, C2 > 0 such that

λ ≥ 2
(
C1γmax

√
d/T + C2

√
d/(T − 1)

)
, (3.3)

and

µ ≤ λmin(Σ)− C1

√
d/T . (3.4)

Further assume there exists an absolute constant κ2 > 0 such that T ≥ κ2d
2/γ0−1, where γ0 =

γ1/(γ1 + 1) and T ≥ 4. We then have

P
(
‖Âλ−A‖F ≥

1

2µ

(
λ
√
r+2
√

2C1γmax

√
dr

T
+2
√

2C2

√
dr

T−1

))
=O

(
exp(−C3d)+d2 exp

(
−2

√
T

d

))
,

where C3 > 0 is a constant only depending on C1, C2, κ1, κ2, γ1, λmax(Σ), and λmin(Σ).
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Theorem 3.4 shows, when we choose λ �
√
d/T and the theorem’s conditions hold, we have

‖Âλ −A‖F = OP (
√
dr/T ),

which is the minimax optimal rate as in Section 4 we will show. Of note, this result is a strict

extension to Corollary 4 in Negahban and Wainwright (2011), which heavily relies on the Gaussian

assumption, a linear temporal system, and an additional spectral norm constraint on A: ‖A‖2 < 1.

This result is also closely related to Proposition V.2 in Basu (2014), which recovered the same rate

for the linear Gaussian family.

Remark 3.5. Theorem 3.4 also reveals an interesting phenomenon on scaling. Specifically, when we

allow the dimension d to increase with the time series length T , the temporal dependence strength

will have an impact on the scaling requirement, i.e., T is required to be larger than κ2d
2/γ0−1 for

some absolute constant κ2. When the data are independent, so that A = 0 and γ1 =∞, we attain

the efficient scaling T ≥ κ2d. However, when γ1 < ∞, T is required to be of an order larger than

d. In comparison, there is no rate lost in approximation if γ1 is assumed to be finite, which holds

under the conditions in either Proposition 3.1 or Proposition 3.2. Similar phenomena have also

been discovered in the literature (e.g., Lemma 3.1 in Fan et al. (2011a) and Theorem 3 in Fan et al.

(2012)).

A key step in proving Theorem 3.4 is to establish the convergence rates of T̂ and T̂1 under the

spectral norm. The sign subgaussian property of the elliptical distribution proved in Han and Liu

(2017) and Barber and Kolar (2015) is used. In particular, for any Z ∼ ECd(0,Σ, ξ), ξ ∈ R, and

v ∈ Sd−1, we have

E exp(ξ · vT sign(Z)) ≤ exp
( λmax(Σ)

2λmin(Σ)
· ξ2
)
. (3.5)

Indeed, from the proof of Theorem 3.4, under the mixing condition (A2) and using the sign

subgaussian property (3.5), we have

‖T̂− ET̂‖2 = OP (
√
d/T ) and ‖T̂1 − ET̂1‖2 = OP (

√
d/T ),

which further implies

‖Σ̂−Σ‖2 = OP (
√
d/T ) and ‖Σ̂1 −Σ1‖2 = OP (

√
d/T ).

The proof of above equations hinges on combining the results in Han and Liu (2017) and Barber

and Kolar (2015) with recent developments in concentration inequalities for weakly dependent data

(Merlevède et al., 2011).

Remark 3.6. Of note, It is also of interest to compare the rate of convergence derived in Theorem

3.4 (under a low-rank assumption on A) to the one obtained in Basu and Michailidis (2015) (under

a sparsity assumption on A). In particular, Proposition 4.1 in Basu and Michailidis (2015) shows

there exists an estimator Âs such that

‖Âs −A‖F = OP (
√
s log d/n), (3.6)

where s represents the total number of nonzero entries in A. Assume

Ajj 6= 0 for j = 1, . . . , d,
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indicating that each covariate is at least correlated with its own history. Equation (3.6) then yields

‖Âs −A‖F = OP (
√
d log d/n).

This rate could be slower than our derived rate OP (rd/n) under the low-rank assumption.

4 Minimax lower bound

Theorem 3.4 shows that the proposed estimator Âλ attains the rate of convergence
√
dr/T . This

section shows this rate cannot be further improved in the minimax sense.

To this end, let’s define the following sets of interest:

VM :=
{

M ∈ Rd×d : diag(M) = Id,M = MT, and there exist two generic absolute positive

constants c and C such that 0 < c ≤ λmin(M) ≤ λmax(M) ≤ C <∞
}

and Vf :=
{
f = {fj}dj=1 : fj is strictly increasing

}
.

The next theorem characterizes the minimax lower bound in approximating the transition ma-

trix A. It fills a long standing gap on understanding the optimal estimation of high-dimensional

time series, and proves the minimax optimality of Âλ.

Theorem 4.1. Assume rd/T = o(1) and Model (1.1) holds. Let PA,Σ,f be the probability measure

on marginally Gaussian copula distributed {Xt}Tt=1 whose probability space is uniquely determined

by the parameters A, Σ, and f . Then for arbitrary absolute constant β ∈ (0, 1), there exists a

sufficiently small absolute constant Cβ > 0, such that the following inequality,

inf
Â

sup
A∈AM (r,γmax),Σ∈VM ,f∈Vf

PA,Σ,f

(
‖Â−A‖2F ≥ Cβ ·

rd

T

)
> β, (4.1)

holds for all sufficiently large T . Here γmax can be any absolute positive constant and the infimum

is taken over all measurable estimators on the probability space generated by the multivariate time

series X1, . . . ,XT .

Theorem 4.1, combined with Theorem 3.4, yields the minimax rate-optimality of Âλ. The proof

of Theorem 4.1 is involved. We provide a sketch here, while deferring more details to Section A1

in a supplementary material.

Proof. We first introduce some additional notation. Let α ∈ (0, 1/8) be an absolute constant and

remind r is the parameter representing the rank of the latent transition matrix A. We define C to

be a subset of d by r real matrices taking values only on {0, γ (r/(dT ))1/2}:

C :=
{

M ∈ Rd×r : Mjk ∈
{

0, γ
( r
dT

) 1
2
}
, ∀1 ≤ j ≤ d, 1 ≤ k ≤ r

}
. (4.2)

Here γ is an absolute constant controlling the magnitude of the matrices in C, satisfying:

0 ≤ γ ≤
√
α log 2

8
. (4.3)
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Built on the matrix set C, we further define the following set of matrices:

B(C) :=
{

M = (M | . . . | M | 0) ∈ Rd×d : M ∈ C
}
,

where 0 is a d by (d − rbd/rc) matrix with all elements equal to zero. By construction and the

condition that rd/T = o(1), for sufficiently large T , any matrix in B(C) has rank at most r, and

has the spectral norm upper bounded by γmax, as long as γmax is an absolute positive constant.

Thus, B(C) is a subset of AM (r, γmax).

We are now ready to prove the theorem. First, we note, using the fact that Id ∈ VM and the

set of identity functions belongs to Vf , it suffices to show that (4.1) holds when the supremum is

taken over the probability space with the specific Σ = Id and f = f0, the set of identity functions,

and the latent sequence {Zt}t∈Z Gaussian distributed. In other words, it is sufficient to study the

setting where Zt ∼ Nd(0, Id) follows a standard Gaussian distribution and Xt = Zt.

We then turn to prove (4.1). To this end, we exploit the general framework introduced by

Lucien Le Cam and detailed in Tsybakov (2009). There are two steps.

(i) We construct a sufficiently small subset A0 of B(C) and calculate its cardinality.

(ii) We show (4.1) holds when the supremum is taken over all A ∈ A0.

In detail, first, similar to Koltchinskii et al. (2011), using Lemma A2.1, we deduce there exists

a subset A0 ⊂ B(C) containing the d by d zero matrix and having the cardinality card(A0) ≥
2dr/8 + 1. In addition, A0 satisfies, for any two distinct elements A1 = (Ā1 | . . . | Ā1 | 0) and

A2 = (Ā2 | . . . | Ā2 | 0) of A0, we have

ρH(vec(Ā1), vec(Ā2)) ≥ rd

8
,

where ρH denotes the Hamming distance between two vectors.

By the definition of the Frobenius norm, we then have

‖A1 −A2‖2F ≥
rd

8

(
γ2 r

dT

)⌊d
r

⌋
≥ γ2rd

16T
,

where the last inequality is due to the fact that d ≥ r implies (d/r) < 2bd/rc.
The second part distinguishes our proof from Koltchinskii et al. (2011). Specifically, focusing

on the subset A0, we aim to bound (4.1) with the supremum taken over all A ∈ A0. To this

end, it is sufficient to consider the VAR process {Zt}Tt=1 with the transition matrix A. Let Y :=

(ZT
T , . . . ,Z

T
1 )T ∼ NTd(0,VA) be the vectorized version of {Zt}Tt=1, with the covariance matrix VA

defined as

VA :=


Id A A2 . . . AT−1

AT Id A . . . AT−2

(AT)2 AT Id . . . AT−3

...
...

...
. . .

...

(AT)T−1 (AT)T−2 (AT)T−3 . . . Id

 ∈ RTd×Td. (4.4)

Let PA be the probability measure of Y and P0 be the probability measure of the Td-dimensional

standard Gaussian. For any two probability measures P1 and P2 over a set X satisfying that P1 is

11



absolutely continuous with respect to P2, the Kullback-Leibler divergence from P1 to P2 is

DKL(P1‖P2) :=

∫
X

log
dP1

dP2
dP1,

where dP1/dP2 denotes the Radon-Nikodym derivative of P1 with respect to P2. Then, for any

A ∈ A0, the Kullback-Leibler divergence DKL(PA‖P0) satisfies

DKL(PA‖P0) =
1

2

(
Tr(VA − ITd)− log det VA

)
,

where log det(·) represents the log determinant. Because Tr(VA) = Td, we further have

DKL(PA‖P0) = −1

2
log det VA. (4.5)

Of note, this part is 0 when A = 0, corresponding to the case of independent observations, and

hence is ignorable in the regular calculation of minimax lower bounds. Some involved calculations

(details are in Section A1.2) yield

DKL(PA‖P0) ≤ γ2rd. (4.6)

Combining (4.3) and (4.6), we deduce

1

card(A0)− 1

∑
A∈A0

DKL(PA‖P0) ≤ α log(card(A0)− 1). (4.7)

Combining (4.7) and Lemma A2.2, we have, for arbitrary absolute constant β ∈ (0, 1), there exists

a sufficiently small absolute constant Cβ such that

inf
Â

sup
A∈A0,Σ=Id,f=f0

PA,Σ,f

(
‖Â−A‖2F ≥ Cβ ·

rd

T

)
> β.

This further yields

inf
Â

sup
A∈AM (r,a),Σ∈VM ,f∈Vf

PA,Σ,f

(
‖Â−A‖2F ≥ Cβ ·

rd

T

)
> β,

and hence completes the proof.

5 Extensions to Markov chains of higher orders

For presentation clearness, we focus on the order one Markov chains in the above sections. However,

it is very straightforward to extend the results to Markov chains of order p > 1. This section

discusses such an extension.

Let’s consider the following centered time series:

f(Xt) =

p∑
j=1

Ajf(Xt−j) +Et and Zt := f(Xt) ∼ ECd(0,Σ, ξ), for any t ∈ Z, (5.1)

which satisfies {Zt}t∈Z is globally elliptically distributed. By a repeatedly used argument of con-

verting the VAR(p) model to the VAR(1) one (Han et al., 2015; Basu and Michailidis, 2015), we

can write

Z̃t = ÃZ̃t−1 + Ẽt,

12



where we denote

Z̃t =


Zt
Zt−1

...

Zt−p+1

 , Ã =


A1 A2 . . . Ap−1 Ap

Id 0 . . . 0 0

0 Id . . . 0 0
...

. . . · · · · · ·
...

0 0 . . . Id 0

 , and Ẽt =


Et
0
...

0

 .

Notice, for any t ∈ Z, we have

Zt = (A1, . . . ,Ap)︸ ︷︷ ︸
B∈Rd×dp

· (ZT
t−1,Z

T
t−2, . . . ,Z

T
t−p)

T︸ ︷︷ ︸
Yt∈Rdp×1

+Et,

which yields

B = ΩT
1 Ω−1, where Ω := Cov(Yt) ∈ Rdp×dp and Ω1 := Cov(Yt,Zt) ∈ Rdp×d.

Accordingly, we could exploit Lemma 2.2 again and propose a similar algorithm to estimate B. In

detail, reminding St is defined in (2.4), we write

K̂ :=
1

T − p+ 1

T∑
t=p

(ST
t ,S

T
t−1, . . . ,S

T
t−p+1)T · (ST

t ,S
T
t−1, . . . ,S

T
t−p+1),

K̂1 :=
1

T − p

T−1∑
t=p

(ST
t ,S

T
t−1, . . . ,S

T
t−p+1)T · ST

t+1,

and Ω̂ := sin
(π

2
K̂
)
, Ω̂1 := sin

(π
2

K̂1

)
.

We then estimate B by

B̂λ := argmin
Q∈Rd×dp

Lλ(Q; Ω̂, Ω̂1).

To study the properties of B̂λ, we require Assumption (A2) and an additional assumption on

the sequence {Xt}t∈Z.

• Assumption (B1). We assume λmin(Ω) and λmax(Ω) are lower and upper bounded by two

absolute positive constants respectively.

Here, on one hand, similar to the arguments in Section 3, Assumption (A2) holds for Gaussian

and multivariate t models satisfying (5.1). On the other hand, Assumption (B1) implies λmin(Σ)

and λmax(Σ) are also lower and upper bounded by two absolute positive constants, and hence is a

stronger assumption than (A1).

Let’s define the following set of matrices:

BM (r, γmax) :=
{

M ∈ Rd×dp : rank(M) ≤ r, ‖M‖2 ≤ γmax

}
.

The next theorem characterizes an upper bound of the estimation error ‖B̂λ −B‖F.

Theorem 5.1. Assume Model (5.1) and Assumptions (A2), (B1) hold. Assume B ∈ BM (r; γmax)

for some absolute positive constant γmax. Suppose there exist three absolute constants µ,C4, C5 > 0

13



such that

λ ≥ 2
(
C4γmax

√
dp/(T − p+ 1) + C5

√
dp/(T − p)

)
,

and

µ ≤ λmin(Ω)− C4

√
dp/(T − p+ 1).

Further assume there exists an absolute constant κ′2 > 0 such that T ≥ κ′2(dp)2/γ0−1 where γ0 =

γ1/(γ1 + 1) and T ≥ 4. We then have

P
(
‖B̂λ −B‖F ≥

1

2µ

(
λ
√
r + 2

√
2C4γmax

√
drp

T − p+ 1
+ 2
√

2C5

√
drp

T − p
))

= O
(

exp(−C6 · dp) + (dp)2 exp
(
− 2

√
T − p
dp

))
,

where C6 > 0 is a constant only depending on C4, C5, κ1, κ
′
2, γ1, λmax(Ω), and λmin(Ω).

Theorem 5.1 confirms, when p is fixed and λ is appropriately chosen, our approach could attain

the same
√
dr/T rate of convergence as in the VAR(1) model. This also confirms the minimax

rate-optimality in studying the general VAR(p) models.

6 Experimental results

This section provides the empirical simulation and real stock market data analysis. It is split into

two parts. In the first part, we provide a computationally efficient algorithm to calculate Âλ. The

second part includes the numerical results.

6.1 Algorithm

We first provide a computationally efficient algorithm to implement (2.2). For this, we exploit

the contractive Peaceman-Rachford splitting method (PRSM) (Peaceman and Rachford, 1955; He

et al., 2014). In detail, letting ÃG
λ := [ÂG

λ ]T, it is obvious

ÃG
λ = argmin

Q∈Rn×m

〈−2M̂1 + M̂Q,Q〉+ λ‖Q‖∗.

The above optimization problem falls into the application regime of the contractive PRSM algo-

rithm. Similar to Fan et al. (2014), we can show ÃG
λ is the convergence of the sequence {Y(k)}k≥1

in the following iterative scheme:
X(k+1) = (2M̂ + βIn)−1(2M̂1 + βY(k) + P(k)),

P(k+1/2) = P(k) − αβ(X(k+1) −Y(k)),

Y(k+1) = Sλ/β(X(k+1) −P(k+1/2)/β),

P(k+1) = P(k+1/2) − αβ(X(k+1) −Y(k+1)),

where Sτ (·) is the conventional matrix soft thresholding operator defined in Fan et al. (2014), α is

a relaxation parameter, and β is a penalty parameter. We choose α = 0.9 and β = 1 following the

discussions in Fan et al. (2014).
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Figure 1: The estimation errors plotted against the sample sizes (T ) and the rescaled sample sizes

(T/(rd)). The errors between the estimators and the true transition matrix are measured under the

Frobenius norm. We consider Scheme (M1). We fix r = 3 and select d = 40 or 80. In calculating

the errors, we assume the rank r is known. The results are obtained over 1,000 replications.

We further discuss how to determine the tuning parameter λ. This involves a vast literature.

Here we follow a procedure provided in Lam and Yao (2012), exploiting the ratio estimator. In

detail, the determination of λ is in two steps.

• In the first step, we choose a small enough λ0 such that

rank(ÃG
λ0) = d/2.

• In the second step, we select r̂ to be

r̂ = argmin
{σj+1(ÃG

λ0
)

σj(ÃG
λ0

)
: 1 ≤ j ≤ d

2
− 1
}
.

The selected tuning parameter λ is then chosen to be the minimum value such that the rank

of ÃG
λ is r̂.

6.2 Numerical results

This section gives the results on studying synthetic and real stock market data.

6.2.1 Synthetic data analysis

This section provides the numerical results on the synthetic data. We consider the following two

methods:
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• NW: the linear regression procedure in Negahban and Wainwright (2011);

• HXL: the proposed robust-sign-transformation procedure.

For comparison fairness, we use the contractive PRSM algorithm for calculating the estimates of

both NW and HXL. We focus on the following two time series schemes belonging to Model (1.1).

• (M1). {Zt ∈ Rd}t∈Z is a Gaussian sequence, and Xt is equal to Zt.

• (M2). {Zt ∈ Rd}t∈Z is multivariate t-distributed of degree of freedom 3, and Xt is a trans-

formed version of Zt using transformation functions f1(x) = · · · = fd(x) = x1/3.

We adopt a similar setting as in Negahban and Wainwright (2011) for generating A,Σ, and ΣE :=

Cov(E1). Specifically, let the transition matrix A be generated through A = XYT /(3d), where

X,Y ∈ Rd×r have entries all independently distributed to N1(0, 1). We let ΣE = Id and hence

further determine Σ due to the stationary condition. In the end, we rescale the system to make

diag(Σ) = Id.

We first study the scaling of the estimation error ‖Âλ −A‖F compared to (T, d). To this end,

we focus on Scheme (M1), fix r = 3, increase d from 40 to 80, and assume r is known in tuning

the parameter λ. Figure 1 illustrates the scaling of averaged errors, ‖Âλ −A‖F, compared to T as

well as T/(rd) over 1,000 replications. It gives a similar “stacking” phenomenon as in Negahban

and Wainwright (2011), and backs up Theorem 3.4.

Secondly, we compare HXL to NW on Schemes (M1) and (M2). Fixing r = 3, d = 40, T = 400,

and assuming the true rank r is known, Table 1 reports the estimators’ averaged errors and their

standard deviations when T increases from 200 to 2,000. Table 1 confirms HXL beats NW when

the data are nonGaussian, while attaining comparable performance under the Gaussian model. In

addition, HXL performs closely under the Gaussian and nonGaussian settings, though the variances

slightly inflate under the nonGaussian setting.

6.2.2 Stock market data analysis

We analyze the log returns of daily closing prices from the Standard & Poor 100 (S&P 100)

index (finance.yahoo.com). We focus on two periods: January 1, 2003 to December 31, 2006

and January 1, 2009 to December 31, 2012, the pre- and post-financial crisis time regions. This

gives us 1,005 and 1,006 daily returns. We study 90 companies that are constantly in the S&P

100 index. The 90 stocks come from 10 Global Industry Classification Standard (GICS) sectors,

including Consumer Discretionary, Consumer Staples, Energy, Financials, Health Care, Industrials,

Information Technology, Materials, Telecommunications Services, and Utilities.

We apply HXL to the log returns in these two periods. This gives us two estimates, Â1 of rank

2, and Â2 of rank 1, via the rank selection procedure described in Lam and Yao (2012). Table 2

illustrates the ranks of Â1 and Â2. Table 2 further shows the top 10 stocks of largest magnitudes

in right-singular vectors of Â1 and Â2
4. Here the right-singular vectors correspond to the latent

4We present the abbreviations of the stock names, while the full names can be found on finance.yahoo.com.
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Table 1: Comparison of averaged estimation errors (by taking the median) under the Frobenius

norm for two competing methods over 1,000 replications. The standard deviations are presented

in the parentheses. In each simulation, we set d = 40, r = 3, and T from 200 to 2,000. Schemes

(M1) and (M2) are considered.

T NW HXL NW HXL

(M1) (M2)

200 0.39 (0.03) 0.44 (0.04) 1.65 (0.92) 0.45 (0.08)

400 0.32 (0.03) 0.32 (0.04) 0.86 (0.80) 0.32 (0.06)

600 0.25 (0.03) 0.28 (0.03) 0.65 (0.73) 0.28 (0.06)

800 0.24 (0.03) 0.24 (0.02) 0.55 (0.26) 0.25 (0.03)

1000 0.18 (0.02) 0.20 (0.02) 0.67 (0.18) 0.22 (0.03)

1200 0.16 (0.03) 0.18 (0.03) 0.65 (0.29) 0.19 (0.07)

1400 0.15 (0.02) 0.17 (0.03) 0.54 (0.13) 0.18 (0.05)

1600 0.16 (0.01) 0.16 (0.02) 0.59 (0.27) 0.18 (0.06)

1800 0.13 (0.02) 0.15 (0.01) 0.71 (0.37) 0.15 (0.04)

2000 0.12 (0.02) 0.14 (0.02) 0.63 (0.35) 0.15 (0.03)

driving factors in the model of Basu (2014), and hence the corresponding stocks can be interpreted

as the obtained driving factors in each period.

There are some notable discoveries. First, the driving factors for pre- and post- 2007-2008

financial crisis are utterly different. This is consistent to the relevant economics and finance prin-

ciples. Secondly, we find, for the period 2003-2006, the stocks from Energy and Industrials sectors

dominate the driving factor. The domination of stocks in Energy and Industrials sectors (e.g., Oc-

cidental Petroleum, Caterpillar Inc., Raytheon Company) are relevant to the fact that in 2003 there

was a huge increase in the international oil price and it was convoluted with the 2003 invasion of

Iraq. In comparison, for the period 2009-2012, we find the stocks in Energy and Financials sectors

dominate the driving factor. On one hand, the domination of stocks in the Energy sector in both

pre- and post-crisis period is as expected, because the energy forms the foundation for economic

development and has strong impact on many other sectors (Kilian and Park, 2009). On the other

hand, the role of stocks in the Industrials sector on driving the stock market is replaced by those

in the Financials sector. This is an interesting discovery and we will investigate this pattern shift

in more details in the future.
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Table 2: The list of ranks and driving factors calculated from the transition matrix estimators Â1

and Â2 using HXL. Here the m-th value in the column “percentage” represents the ratio of `2 norm

of the top m entries’ values to the `2 norm of the whole singular vector, which is 1.

Â1 Â2

rank driving factors stock sector percentage rank driving factors stock sector percentage

2 OXY E 0.31 1 BK F 0.25

CVS CS 0.38 AXP F 0.34

CAT I 0.44 FDX I 0.42

AMZN CD 0.49 T TS 0.48

AIG F 0.53 NOV E 0.53

WMT CS 0.56 UTX CD 0.57

RTN I 0.59 HAL E 0.60

CVZ TS 0.62 TWX CD 0.64

NSC I 0.64 GS F 0.66

UPS I 0.66 AAPL IT 0.69

JNJ HC 0.22

PG CS 0.26

WFC F 0.29

ORCL IT 0.31

WMT CS 0.32

CMCSA CD 0.33

SO U 0.34

MSFT IT 0.34

PEP CS 0.34

GE I 0.34

Abbreviations for stock sectors: Consumer Discretionary(CD), Consumer Staples(CS),

Energy(E), Financials(F), Health Care(HC), Industrials(I), Information Technology(IT),

Materials(M), Telecommunications Services(TS), Utilities(U).
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7 Discussions

7.1 Extension to study sparse transition matrix

The techniques developed for establishing upper and lower bounds in the time series analysis are

very general, and could be extended to study many other problems.

For example, an immediate problem related to low-rank transition matrix estimation is sparse

transition matrix estimation, where Han et al. (2015) and Basu and Michailidis (2015) have provided

a set of results under the Gaussian assumption. Here we note the proof of Theorem 3.4 can easily

devise the following proposition.

Proposition 7.1. Suppose the conditions in Theorem 3.4 hold. We then have

‖Σ̂−Σ‖2,s = OP (
√
s log(d/s)/T ) and ‖Σ̂1 −Σ1‖2,s = OP (

√
s log(d/s)/T ), (7.1)

where the restricted spectral norm ‖ · ‖2,s is defined as

‖M‖2,s := sup
‖v‖0≤s

(vTMMTv)1/2

‖v‖2
.

Proposition 7.1 is in parallel to Proposition 2.4 in Basu and Michailidis (2015), which is the

key in their analysis. Hence, by exploiting Proposition 7.1, we can similarly plug Σ̂ and Σ̂1 into

the algorithm in Basu and Michailidis (2015), and build a similar upper bound for our robust-sign-

transformation sparsity-induced estimator.

7.2 Estimation of transformation functions

In this manuscript we did not discuss estimation of transformation functions f1, . . . , fd in Model

(1.1) since they are beyond the main interest. However, in practice, in addition to estimating the

temporal correlation pattern, approximating transformation functions could also be of interest for

rebuilding the latent factors, and hence deserves a discussion.

It might be attempting to conjecture that estimation of such nonparametric functions is sta-

tistically very challenging, especially when d is relatively large. However, as has been shown in

Theorem 4.6 in Liu et al. (2012), when the observed sequence is i.i.d. Gaussian copula distributed

with d moderately growing to infinity with T , f1, . . . , fd can be uniformly approached by a trun-

cated nonparametric likelihood estimator. Exactly the same set of estimators can be employed

under Model (1.1), and are able to be shown to enjoy the same uniform convergence property as

their analogues in Liu et al. (2012) under the weak dependence assumption (A2).

7.3 Addition comments

First, the theories developed in this paper heavily rely on the stationary assumption. The techniques

developed in this paper cannot be trivially applied to study non-stationary VAR models. We will

leave this for future studies. Secondly, we evaluate the temporal dependence of the VAR model

via characterizing the corresponding mixing coefficients. This is in parallel to the settings of

theoretical studies in low dimensions (Chen and Fan, 2006; Beare, 2010). In comparison, Negahban
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and Wainwright (2011), Loh and Wainwright (2012), Han et al. (2015), and Basu and Michailidis

(2015) gave alternative upper bounds with ‖A‖2 and spectral densities involved. For this, they

require a stringent Gaussian assumption on the time series. Extending such results to study the

non-linear nonGaussian time series is interesting as well as very challenging, and is left for future

studies.
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Supplementary material to “Rate-optimal estimation of a

high-dimensional semiparametric time series model”

Fang Han∗, Sheng Xu†, and Han Liu‡

This supplementary material provides all proofs of results in the main text as well as some

auxiliary lemmas.

A1 Proofs of main results

This section provides the proofs of Theorem 3.4 and Theorem 4.1. In the following, for any two

matrices M,N ∈ Rm×n, we define the Hadamard product between M and N to be M ◦ N :=

[MjkNjk].

A1.1 Proof of Theorem 3.4

Proof. Remind the robust-sign-transformation version of the observed data point Xt, for t =

1, . . . , T , is defined as

St := sign(Xt) = sign(Zt).

We further define

T := Cov(St) = E(StS
T
t ),

T1 := Cov(St,St+1) = E(StS
T
t+1).

Based on Lemma 2.2, it suffices to determine δ1, δ2 > 0 such that

P
(
‖Σ̂−Σ‖2 ≤ δ1

)
≥ 1− ε1, (A1.1)

P
(
‖Σ̂1 −Σ1‖2 ≤ δ2

)
≥ 1− ε2, (A1.2)

where δ1, δ2 are functions of (T, d) and ε1, ε2 go to zero when (T, d) goes to infinity. The proof is

then split into two parts.

Step I. First, we study (A1.1). For this, we relate Σ to T via the following formula

Σ = sin(
π

2
T).
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Secondly, by Taylor’s theorem, we have

Σ̂−Σ = sin
(π

2
T̂
)
− sin

(π
2

T
)

= cos
(π

2
T
)
◦ π

2
(T̂−T)− 1

2
sin
(π

2
T̄
)
◦ π

2
(T̂−T) ◦ π

2
(T̂−T), (A1.3)

for some matrix T̄ with each entry T̄jk being a number on the closed interval between Tjk and

T̂jk. Applying the operator norm on both sides of (A1.3) and then using the triangle inequality

on the right-hand side yields

‖Σ̂−Σ‖2 ≤
π

2
‖ cos

(π
2

T
)
◦ (T̂−T)‖2︸ ︷︷ ︸
E1

+
π2

8
‖ sin

(π
2

T̄
)
◦ (T̂−T) ◦ (T̂−T)‖2︸ ︷︷ ︸

E2

. (A1.4)

Hence, in order to establish a bound for ‖Σ̂ − Σ‖2, it suffices to establish appropriate bounds

separately for the first order term E1, and the second order term E2.

Step I.1 We first consider the first order term E1. For any v ∈ Sd−1 (the unit sphere in the

d-dimensional Euclidean space), we define, for t = 1, . . . , T ,

Yt := vTSt = vTsign(Xt).

There are two observations on {Yt}Tt=1. First, since {Zt}Tt=1 satisfies the strong mixing condition

and the link functions between {Zt}Tt=1 and {Y 2
t }Tt=1 are measurable, {Y 2

t }Tt=1 also satisfies the

strong mixing condition with

α(n;Y 2
t ) ≤ exp(−C11n

γ1), (A1.5)

for the absolute constant C11 = κ1 and any n ≥ 2.

Secondly, because {Zt}Tt=1 is elliptically distributed, {Yt}Tt=1 satisfies the subgaussian condition

in (3.5). In particular, we have {Y 2
t }Tt=1 satisfies that there exists a positive constant C12, only

depending on λmax(Σ) and λmin(Σ), such that, for all ξ > 0,

P(|Y 2
t − EY 2

t | > ξ) ≤ exp
(

1− ξ

C12

)
. (A1.6)

Notice, for arbitrary fixed v ∈ Sd−1,

vTT̂v =
1

T

T∑
t=1

(vTSt)
2 =

1

T

T∑
t=1

Y 2
t

and

vTTv =
1

T

T∑
t=1

E(vTSt)
2 =

1

T

T∑
t=1

EY 2
t .

We then exploit the strong mixing condition (A1.5), the tail condition (A1.6), and employ Lemma

A2.7 to deduce that there exist positive constants C13 − C17, only depending on C11, C12, γ1, such

2



that for all T ≥ 4 and η1 > 0, we have

P
(
|vTT̂v − vTTv| ≥ η1

)
≤T exp

(
− (Tη1)γ0

C13

)
+ exp

(
− (Tη1)2

C14(1 + C15T )

)
+ exp

(
− (Tη1)2

C16T
exp

( (Tη1)γ0(1−γ0)

C17(log Tη1)γ0

))
,

where γ0 = γ1/(γ1 + 1) < 1. Setting η1 = C10

√
d/T , we further have

P
(
|vTT̂v − vTTv| ≥ C10

√
d

T

)
≤T exp

(
− (C2

10Td)γ0/2

C13

)
︸ ︷︷ ︸

F1

+ exp
(
− C2

10Td

C14(1 + C15T )

)
︸ ︷︷ ︸

F2

+ exp
(
− C2

10d

C16
exp

( (C2
10Td)γ0(1−γ0)/2

C17(log(C10

√
Td))γ0

))
︸ ︷︷ ︸

F3

.

Now we focus on F1, F2, F3 and bound them successively. For F1, since T ≥ κ2d
2/γ0−1, we have

(Td)
γ0
2 ≥ κ

γ0
2

2 d,

which implies

T ≤ exp
(Cγ010 (Td)

γ0
2

C13
− Cγ010κ

γ0
2

2

2C13
d
)
,

for large T . Hence, we deduce that

F1 ≤ exp
(
− (C2

10κ2)
γ0
2

2C13
d
)
. (A1.7)

For F2, since T ≥ 1, we have

F2 ≤ exp
(
− C2

10Td

C14(1 + C15)T

)
= exp

(
− C2

10d

C14(1 + C15)

)
. (A1.8)

For F3, since Td > 1, we have log
√
Td > 0, which implies

F3 ≤ exp
(
− C2

10d

C16

)
. (A1.9)

Combining (A1.7), (A1.8), and (A1.9), we have

P
(
|vTT̂v − vTTv| ≥ C10

√
d/T

)
(A1.10)

≤ exp
(
− (C2

10κ2)
γ0
2

2C13
d
)

+ exp
(
− C2

10

C14(1 + C15)
d
)

+ exp
(
− C2

10

C16
d
)
.

Define C18 := min{Cγ010κ
γ0/2
2 C−1

13 /2, C
2
10(C14(1 + C15))−1, C2

10C
−1
16 }. It follows from (A1.10) that

P
(
|vTT̂v − vTTv| ≥ C10

√
d/T

)
≤ 3 exp(−C18d). (A1.11)

We then aim to bound ‖T̂−T‖2. To this end, we first define some additional notation. For any

metric space (Ω, ρ), a subset Sε(Ω) is called an ε-net of Ω if every point ω ∈ Ω can be approximated

3



to within ε by some point ξ ∈ Sε(Ω). The minimal cardinality of the ε-net, if finite, is denoted by

N (Ω, ε).

We define the (1/4)-net of Sd−1, equipped with the Euclidean distance, as S1/4. According to

Lemma A2.6, we have

‖T̂−T‖2 = sup
v∈Sd−1

∣∣〈(T̂−T)v,v〉
∣∣ ≤ 2 sup

v∈S1/4

∣∣〈(T̂−T)v,v〉
∣∣. (A1.12)

Using Lemma A2.5, we also have

N (Sd−1, 1/4) ≤ 9d. (A1.13)

Using (A1.12), we have

P
(
‖T̂−T‖2 > 2C10

√
d

T

)
≤ P

(
sup

v∈S1/4

∣∣vT(T̂−T)v
∣∣ > C10

√
d

T

)
. (A1.14)

Combining (A1.13) and (A1.14), we have, for arbitrary v ∈ S1/4,

P
(
‖T̂−T‖2 > 2C10

√
d

T

)
≤ 9d · P

(∣∣vT(T̂−T)v
∣∣ > C10

√
d

T

)
.

Using (A1.11), we have

P(‖T̂−T‖2 > 2C10

√
d

T
) ≤ 9d · 3 exp(−C18d).

By Lemma A2.8, it follows that

P
(∥∥ cos

(π
2

T
)
◦ (T̂−T)

∥∥
2
≤ 4C10

√
d

T

)
> 1− 9d · 3 exp(−C18d), (A1.15)

where we remind C18 is a constant only depending on C10, κ1, κ2, γ1, λmax(Σ), and λmin(Σ).

Step I.2. In this step we upper bound the second order term E2. Due to Lemma A2.9 and the

fact that, for any 1 ≤ i, j ≤ d,∣∣∣[ sin
(π

2
T̄
)
◦ (T̂−T) ◦ (T̂−T)

]
ij

∣∣∣ ≤ [(T̂−T) ◦ (T̂−T)
]
ij
,

we have ∥∥∥ sin
(π

2
T̄
)
◦ (T̂−T) ◦ (T̂−T)

∥∥∥
2
≤ ‖(T̂−T) ◦ (T̂−T)‖2. (A1.16)

Similarly, using Lemma A2.7, we have there exists a positive constant C19, only depending on

κ1, κ2, γ1, λmax(Σ), and λmin(Σ), such that, for 1 ≤ i, j ≤ d and η2 > 0, we have

P(|T̂ij −Tij | ≥ η2) ≤ 3 exp(−C19Tη
2
2),

and, by the union bound, we further obtain

P(‖T̂−T‖max ≥ η2) ≤ 3

2
· d2 exp(−C19Tη

2
2). (A1.17)

Reminding the inequality ‖M‖2 ≤ d · ‖M‖max for any M ∈ Rd×d, we deduce

‖(T̂−T) ◦ (T̂−T)‖2 ≤ d · ‖(T̂−T) ◦ (T̂−T)‖max = d · ‖T̂−T‖2max. (A1.18)
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Combining (A1.16), (A1.17), and (A1.18), we conclude that

P
(∥∥ sin

(π
2

T̄
)
◦ (T̂−T) ◦ (T̂−T)

∥∥
2
≤ dη2

2

)
> 1− 3

2
· d2 exp(−C19Tη

2
2).

Setting η2
2 = 2 log(2d/β1)/C19T where β1 > 0 is any absolute positive constant, we deduce

P
(∥∥ sin

(π
2

T̄
)
◦ (T̂−T) ◦ (T̂−T)

∥∥
2
≤ 2d log(2d/β1)

C19T

)
> 1− 3β2

1

8
. (A1.19)

Combining (A1.4), (A1.15), and (A1.19), we have

P
(
‖Σ̂−Σ‖2 ≤ 2πC10

√
d

T
+
π2d log(2d/β1)

4C19T

)
>1−9d · 3 exp(−C18d)− 3β2

1

8
.

Setting β1 = 2d/ exp(
√
T/d), we conclude

P
(
‖Σ̂−Σ‖2 ≤ (2πC10 +

π2

4C19
) ·
√
d

T

)
>1− 9d · 3 exp(−C18d)− 3

2
· d2 exp

(
− 2

√
T

d

)
,

And it follows that there exist an absolute constant C1 > 0 and a constant C ′1, only depending on

C1, κ1, γ1, λmax(Σ), λmin(Σ), such that

P
(
‖Σ̂−Σ‖2 ≤ C1 ·

√
d

T

)
> 1− ε1, (A1.20)

where ε1 = 9d ·3 exp(−C ′1d) + 3d2 exp(−2
√
T/d)/2, and ε1 goes to zero when (T, d) goes to infinity.

Therefore (A1.20) verifies (A1.1).

Step II. Now we turn to study (A1.2). Similar to the deviation in the first part, we have

‖Σ̂1 −Σ1‖2 ≤
π

2
· ‖ cos

(π
2

T1

)
◦ (T̂1 −T1)‖2︸ ︷︷ ︸
E3

+ (A1.21)

π2

8
· ‖ sin

(π
2

T̄1

)
◦ (T̂1 −T1) ◦ (T̂1 −T1)‖2︸ ︷︷ ︸

E4

.

Step II.1. For the first order term, since

T̂1 =
1

T − 1

T−1∑
t=1

StS
T
t+1,

we have, for any v ∈ Sd−1,

vT(T̂1 −T1)v =
1

T − 1

T−1∑
t=1

(
vTStS

T
t+1v − EvTStS

T
t+1v

)
=

1

T − 1

T−1∑
t=1

(
(vTSt)(v

TSt+1)− E(vTSt)(v
TSt+1)

)
. (A1.22)

For t = 1, . . . , T − 1, we define

At := vTSt and Bt := vTSt+1.
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It follows from (A1.22) that

vT(T̂1 −T1)v =
1

T − 1

T−1∑
t=1

(AtBt − EAtBt).

Due to the fact that

AtBt =
1

4
((At +Bt)

2 − (At −Bt)2),

we have

vT(T̂1 −T1)v =
1

T − 1

T−1∑
t=1

(At +Bt)
2 − E(At +Bt)

2

4
+

1

T − 1

T−1∑
t=1

(At −Bt)2 − E(At −Bt)2

4
.

Thus, we also have

|vT(T̂1 −T1)v| ≤
∣∣∣ 1

T − 1

T−1∑
t=1

(At +Bt)
2 − E(At +Bt)

2

4

∣∣∣+ (A1.23)

∣∣∣ 1

T − 1

T−1∑
t=1

(At −Bt)2 − E(At −Bt)2

4

∣∣∣.
Since {Zt}Tt=1 satisfies the strong mixing condition, we have {(At +Bt)

2}T−1
t=1 and {(At−Bt)2}T−1

t=1

also satisfy the strong mixing condition. At the same time, {(At + Bt)}T−1
t=1 and {(At − Bt)}T−1

t=1

also satisfy the subguassian condition. According to Lemma A2.7, we have

P
(∣∣ 1

T − 1

T−1∑
t=1

(At +Bt)
2 − E(At +Bt)

2

4

∣∣ ≥ C21

√
d

T − 1

)
≤ 3 exp(−C22d), (A1.24)

P
(∣∣ 1

T − 1

T−1∑
t=1

(At −Bt)2 − E(At −Bt)2

4

∣∣ ≥ C23

√
d

T − 1

)
≤ 3 exp(−C24d). (A1.25)

where C21, C23 are absolute constants, C22 is a constant only depending on C21, κ1, κ2, γ1, λmax(Σ),

λmin(Σ), and C24 is a constant only depending on C23, κ1, κ2, γ1, λmax(Σ), λmin(Σ). Combining

(A1.23), (A1.24), and (A1.25), we have

P
(
|vT(T̂1 −T1)v| ≥ (C21 + C23)

√
d

T − 1

)
≤ 3 exp(−C22d) + 3 exp(−C24d).

According to Lemma A2.5 and Lemma A2.6, it follows that

P(‖T̂1 −T1‖2 ≥ 2(C21 + C23)

√
d

T − 1
) ≤ 9d · 3(exp(−C22d) + exp(−C24d)).

By Lemma A2.8, it follows that

P
(∥∥ cos

(π
2

T1

)
◦ (T̂1 −T1)

∥∥
2
≤ 4(C21 + C23)

√
d

T − 1

)
(A1.26)

>1− 9d · 3(exp(−C22d) + exp(−C24d)).
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Step II.2. For the second order term E4, due to Lemma A2.9, we have∥∥∥ sin
(π

2
T̄1

)
◦ (T̂1 −T1) ◦ (T̂1 −T1)

∥∥∥
2
≤ ‖(T̂1 −T1) ◦ (T̂1 −T1)‖2.

By Lemma A2.7 and the elementary inequality that ‖M‖2 ≤ d · ‖M‖max for any M ∈ Rd×d, we

have, for any absolute positive constant β2 > 0,

P
(∥∥ sin

(π
2

T̄1

)
◦ (T̂1 −T1) ◦ (T̂1 −T1)

∥∥
2
≤ 2d log(2d/β2)

C25(T − 1)

)
(A1.27)

> 1− 3β2
2

8
,

where C25 is a constant only depending on κ1, κ2, γ1, λmax(Σ), and λmin(Σ). Combining (A1.21),

(A1.26), and (A1.27), we have

P
(
‖Σ̂1 −Σ1‖2 ≤ 2π(C21 + C23) ·

√
d

T − 1
+
π2d log(2d/β2)

4C25(T − 1)

)
> 1− 9d · 3(exp(−C22d) + exp(−C24d))− 3β2

2

8
.

Setting β2 = 2d/
√

(T − 1)/d, we conclude that

P
(
‖Σ̂1 −Σ1‖2 ≤ (2π(C21 + C23) +

π2

4C25
) ·
√

d

T − 1

)
>1− 9d · 3(exp(−C22d) + exp(−C24d))− 3

2
· d2 exp

(
− 2

√
T − 1

d

)
,

And it follows that there exist an absolute positive constant C2 and a constant C ′2, only depending

on C2, κ1, κ2, γ1, λmax(Σ), λmin(Σ), such that

P
(
‖Σ̂1 −Σ1‖2 ≤ C2 ·

√
d

T − 1

)
> 1− ε2, (A1.28)

where ε2 = 9d · 6 exp(−C ′2d) + 3d2 exp(−2
√

(T − 1)/d)/2, and ε2 goes to zero when (T, d) goes to

infinity. And (A1.28) verifies (A1.2).

In the end, based on the assumptions (3.3), (3.4), and the results (A1.20), (A1.28), we adopt

Lemma 2.2 to conclude

P
(
‖Âλ −A‖F ≤

1

2µ

(
λ
√
r + 2

√
2C1γmax

√
dr

T
+ 2
√

2C2

√
dr

T − 1

))
≥ 1− ε,

where

ε = 9d · 3 exp(−C ′1d) + 9d · 6 exp(−C ′2d) +
3

2
· d2 exp

(
− 2

√
T

d

)
+

3

2
· d2 exp

(
− 2

√
T − 1

d

)
,

and ε goes to zero when (T, d) goes to infinity. This completes the proof.
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A1.2 The remainder of the proof of Theorem 4.1

Proof. We aim to show

DKL(PA‖P0) ≤ γ2rd.

For this, we study the term log det VA. We first focus on determining a lower triangular auxiliary

matrix U ∈ RTd×Td, such that the product VAU is upper triangular:

U :=


Id 0 0 . . . 0

U21 Id 0 . . . 0

U31 U32 Id . . . 0
...

...
...

. . .
...

UT1 UT2 UT3 . . . Id

 .
If such a U exists, it is straightforward that det(U) = 1 and accordingly

det(VA) = det(VAU). (A1.29)

We now prove that such a U indeed exists. For the sake of presentation clearness, with a little

abuse of notation, we rewrite VA by using Vij , 1 ≤ i, j ≤ T . Specifically, let Vij = Aj−i if j > i,

Vij = (Ai−j)T if i < j, and Vij = Id if j = i. Accordingly, we have

VA :=


V11 V12 V13 . . . V1T

V21 V22 V23 . . . V2T

V31 V32 V33 . . . V3T
...

...
...

. . .
...

VT1 VT2 VT3 . . . VTT


and VAU is equal to

V11+V12U21+. . .+V1TUT1 V12+V13U32+. . .+V1TUT2 . . . V1T

V21+V22U21+. . .+V2TUT1 V22+V23U32+. . .+V2TUT2 . . . V2T

V31+V32U21+. . .+V3TUT1 V32+V33U32+. . .+V3TUT2 . . . V3T
...

...
. . .

...

VT1+VT2U21+. . .+VTTUT1 VT2+VT3U32+. . .+VTTUT2 . . . VTT

 . (A1.30)

Now let us determine the entries of U such that the product VAU is indeed upper triangular. In

this case, we obtain (T 2 − T )/2 constraint equations. And the T − k constraint equations arising

from the k-th column of VAU are

Vk+1,k + Vk+1,k+1Uk+1,k + . . .+ Vk+1,TUTk = 0,

Vk+2,k + Vk+2,k+1Uk+1,k + . . .+ Vk+2,TUTk = 0,

...

VT,k + VT,k+1Uk+1,k + . . .+ VT,TUTk = 0.

(A1.31)
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For further calculation, we now define

Vc
ij := [VT

ij , VT
i+1,j , . . . , VT

Tj ]
T, for 1 ≤ i, j ≤ T,

Uc
ij := [UT

ij , UT
i+1,j , . . . , UT

Tj ]
T, for 1 ≤ j < i ≤ T.

And we similarly define

Vr
ij := [Vij , Vi,j+1, . . . , ViT ], for 1 ≤ i, j ≤ T.

We then let Ṽk represent the k by k block matrix formed from the lower right corner of VA for

k = 1, . . . , T :

Ṽk :=


VT−k+1,T−k+1 VT−k+1,T−k+2 . . . VT−k+1,T

VT−k+2,T−k+1 VT−k+2,T−k+2 . . . VT−k+2,T
...

...
. . .

...

VT,T−k+1 VT,T−k+2 . . . VT,T

 .
With these definitions, we can rewrite (A1.31) as

Vc
k+1,k + ṼT−kU

c
k+1,k = 0, for k = 1, . . . , T − 1,

and we have

Uc
k+1,k = −Ṽ−1

T−kV
c
k+1,k, (A1.32)

which determines the lower triangular auxiliary matrix U such that VAU is upper triangular. Of

note, ṼT−k is invertible since VA is positive definite.

Secondly, we study VAU in more details. From (A1.30), we can express the k-th diagonal

element of VAU, for k = 1, . . . , T , in the form:

(VAU)kk = Vkk + Vk,k+1Uk+1,k + . . .+ VkTUTk = Vkk + Vr
k,k+1U

c
k+1,k. (A1.33)

Combining (A1.32) and (A1.33) we have

(VAU)kk = Vkk −Vr
k,k+1Ṽ

−1
T−kV

c
k+1,k.

For k = 0, 1, . . . , T and 1 ≤ i, j ≤ T , define V
(k)
ij as follows:

V
(0)
ij = Vij , (A1.34)

V
(k)
ij = Vij −Vr

i,T−k+1Ṽ
−1
k Vc

T−k+1,j , for k = 1, . . . , T.

Then we have

(VAU)kk = V
(T−k)
kk .

Noting that VAU is upper triangular, we obtain

det(VAU) =
T∏
k=1

det
(
V

(T−k)
kk

)
. (A1.35)

Combining (A1.29) and (A1.35), we have

det(VA) =

T∏
k=1

det
(
V

(T−k)
kk

)
. (A1.36)
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We then aim to solve the expression of V
(T−k)
kk for k = 1, . . . , T . Now we focus on V

(k)
ij for

k = 0, 1, . . . , T and 1 ≤ i, j ≤ T . It is sufficient to establish the recursive relationship between

matrices for difference choices of k. Let us start with

V
(k+1)
ij = Vij −Vr

i,T−kṼ
−1
k+1V

c
T−k,j

= Vij −
[

Vi,T−k Vr
i,T−k+1

] [ VT−k,T−k Vr
T−k,T−k+1

Vc
T−k+1,T−k Ṽk

]−1 [
VT−k,j

Vc
T−k+1,j

]
.

Noting that

VT−k,T−k −Vr
T−k,T−k+1Ṽ

−1
k Vc

T−k+1,T−k = V
(k)
T−k,T−k,

and using the Banachiewic identity (Brualdi and Schneider, 1983),[
M11 M12

M21 M22

]−1

=

[
(M11 −M12M

−1
22 M21)−1 −(M11 −M12M

−1
22 M21)−1M12M

−1
22

−M−1
22 M21(M11 −M12M

−1
22 M21)−1 M−1

22 [I + M21(M11 −M12M
−1
22 M21)−1M12M

−1
22 ]

]
,

we deduce that

V
(k+1)
ij = Vij −

[
Vi,T−k Vr

i,T−k+1

]
·[

(V
(k)
T−k,T−k)

−1 −(V
(k)
T−k,T−k)

−1Vr
T−k,T−k+1Ṽ

−1
k

−Ṽ−1
k Vc

T−k+1,T−k(V
(k)
T−k,T−k)

−1 Ṽ−1
k [I + Vc

T−k+1,T−k(V
(k)
T−k,T−k)

−1Vr
T−k,T−k+1Ṽ

−1
k ]

]

·

[
VT−k,j

Vc
T−k+1,j

]
.

Multiplying the last two matrices implies

V
(k+1)
ij = Vij −

[
Vi,T−k Vr

i,T−k+1

]
·

[
(V

(k)
T−k,T−k)

−1(VT−k,j −Vr
T−k,T−k+1Ṽ

−1
k Vc

T−k+1,j)

Ṽ−1
k Vc

T−k+1,j − Ṽ−1
k Vc

T−k+1,T−k(V
(k)
T−k,T−k)

−1(VT−k,j −Vr
T−k,T−k+1Ṽ

−1
k Vc

T−k+1,j)

]
.

By the fact that

VT−k,j −Vr
T−k,T−k+1Ṽ

−1
k Vc

T−k+1,j = V
(k)
T−k,j ,

we have

V
(k+1)
ij =Vij −

[
Vi,T−k Vr

i,T−k+1

]
·

[
(V

(k)
T−k,T−k)

−1V
(k)
T−k,j

Ṽ−1
k Vc

T−k+1,j − Ṽ−1
k Vc

T−k+1,T−k(V
(k)
T−k,T−k)

−1V
(k)
T−k,j

]
.

Multiplying the last two matrices further implies

V
(k+1)
ij =Vij −Vi,T−k(V

(k)
T−k,T−k)

−1V
(k)
T−k,j −Vr

i,T−k+1Ṽ
−1
k Vc

T−k+1,j

+ Vr
i,T−k+1Ṽ

−1
k Vc

T−k+1,T−k(V
(k)
T−k,T−k)

−1V
(k)
T−k,j .
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Reorganizing the above equation implies

V
(k+1)
ij =(Vij −Vr

i,T−k+1Ṽ
−1
k Vc

T−k+1,j)

− (Vi,T−k −Vr
i,T−k+1Ṽ

−1
k Vc

T−k+1,T−k)(V
(k)
T−k,T−k)

−1V
(k)
T−k,j .

Noting that

Vij −Vr
i,T−k+1Ṽ

−1
k Vc

T−k+1,j = V
(k)
ij

and

Vi,T−k −Vr
i,T−k+1Ṽ

−1
k Vc

T−k+1,T−k = V
(k)
i,T−k,

we further have

V
(k+1)
ij = V

(k)
ij −V

(k)
i,T−k(V

(k)
T−k,T−k)

−1V
(k)
T−k,j , (A1.37)

which gives us a recursive relationship between matrices of consecutive values of k. Now we calculate

the exact value of V
(k)
ij for 1 ≤ i, j ≤ T − k and k = 0, 1, . . . , T − 1 by (4.4) and the recursive

relationship in (A1.37). Here we employ the induction strategy to solve the problem. By the

definition in (A1.34), we have, for k = 0 and 1 ≤ i, j ≤ T ,

V
(0)
ij =


Id, if i = j,

Aj−i, if i < j,

(AT)i−j , if i > j,

and for k = 1, 1 ≤ i, j ≤ T − 1,

V
(1)
ij =


Id −AT−i(AT)T−j , if i = j,

Aj−i [Id −AT−j(AT)T−j
]
, if i < j,[

Id −AT−i(AT)T−i
]

(AT)i−j , if i > j.

And then we aim to prove, for k = 1, . . . , T − 1, 1 ≤ i, j ≤ T − k,

V
(k)
ij =


Id −AT+1−k−i(AT)T+1−k−j , if i = j,

Aj−i [Id −AT+1−k−j(AT)T+1−k−j] , if i < j,[
Id −AT+1−k−i(AT)T+1−k−i] (AT)i−j , if i > j.

(A1.38)

Let us assume (A1.38) holds for k = 1, . . . , n and consider k = n+ 1. Then,

• if i = j, we have

V
(n+1)
ij

=V
(n)
ij −V

(n)
i,T−n(V

(n)
T−n,T−n)−1V

(n)
T−n,j

=Id −AT+1−n−i(AT)T+1−n−j −AT−n−i(Id −AAT)(AT)T−n−j

=Id −AT−n−i(AT)T−n−j ;
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• if i < j, we have

V
(n+1)
ij

=Aj−i
[
Id−AT+1−n−j(AT)T+1−n−j

]
−AT−n−i(Id−AAT)(AT)T−n−j

=Aj−i
[
Id −AT−n−j(AT)T−n−j

]
;

• if i > j, we have

V
(n+1)
ij

=
[
Id−AT+1−n−i(AT)T+1−n−i

]
(AT)i−j−AT−n−i(Id−AAT)(AT)T−n−j

=
[
Id −AT−n−i(AT)T−n−i

]
(AT)i−j .

Therefore, we prove (A1.38) holds for k = 1, . . . , T − 1 and 1 ≤ i, j ≤ T − k. This implies, for

k = 1, . . . , T − 1,

V
(T−k)
kk = Id −AAT. (A1.39)

Thus, combining (A1.36), (A1.39), and the fact that V
(0)
TT = Id, we have

−1

2
log det VA = −T − 1

2
log det(Id −AAT). (A1.40)

We note that A ∈ A0 and accordingly A can be written as A = (Ā | . . . | Ā | 0) where Ā ∈ Rd×r

is a d by r matrix in the form of (4.2). We then have

det(Id −AAT) = det
(
Id −

⌊d
r

⌋
· ĀĀT

)
.

Let the singular values of Ā be σ1 ≥ σ2 ≥ · · · ≥ σd with σr+1 = · · · = σd = 0. By definition, the

eigenvalues of ĀĀT are σ2
1, . . . , σ

2
d, and we have

det
(
Id −

⌊d
r

⌋
· ĀĀT

)
=

d∏
j=1

(
1−

⌊d
r

⌋
σ2
j

)
≥

d∏
j=1

(
1−

dσ2
j

r

)
.

Using the fact that

d∑
j=1

σ2
i = ‖Ā‖2F = Tr(ĀĀT) ≤ γ2 r

dT
dr = γ2 r

2

T
,

and, for 2 ≤ k ≤ d,(
1− d

r
(σ2

1 + . . .+ σ2
k−1)

)(
1− d

r
σ2
k

)
≥ 1− d

r
(σ2

1 + . . .+ σ2
k),

we have

det
(
Id −

⌊d
r

⌋
· ĀĀT

)
≥ 1− d

r

d∑
i=1

σ2
i ≥ 1− γ2 rd

T
.

Combining (4.5) and (A1.40), we conclude

DKL(PA‖P0) ≤ −T − 1

2
log(1− γ2 rd

T
).
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Under the condition that rd/T = o(1), for T sufficiently large, we have

− log(1− γ2 rd

T
) ≤ 2γ2 rd

T
,

yielding

DKL(PA‖P0) ≤ T − 1

T
γ2rd ≤ γ2rd.

This completes the proof.

A2 Proofs of the rest results

A2.1 Proof of Lemma 2.2

Proof. The proof is very straightforward given the literature (see, for example, Fan et al. (2014)).

However, the general version we presented does not exist, and is arguably worth a separate proof.

We begin by introducing some additional notation. First, for an arbitrary convex function f(M) :

Rm×n 7→ R, we define ∂f(M) to be its subdifferential:

∂f(M) :=
{

G ∈ Rm×n : f(N) ≥ f(M) + 〈N−M,G〉, ∀ N ∈ Rm×n
}
.

Secondly, for arbitrary matrix Q ∈ Rm×n of rank r̃ and with spectral representation

Q =
r̃∑
j=1

σjujv
T
j ,

we define the support of Q as the pair of linear vector subspaces (S1,S2). Here S1 is the linear

span of u1,u2, . . . ,ur̃, and S2 is the linear span of v1,v2, . . . ,vr̃. We denote by S⊥j the orthogonal

complement of Sj for j = 1, 2. We denote by PS the projection matrix on the linear vector subspace

S of Rd.
Due to the fact that Lλ(Q; M̂, M̂1), defined in (2.2), is a convex function of Q, we can write

its subdifferential as:

∂Lλ(Q; M̂, M̂1) =
{
− 2M̂T

1 + 2QM̂ + λV : V ∈ ∂‖Q‖∗
}
, (A2.1)

and accordingly

∂Lλ(ÂG
λ ; M̂, M̂1) =

{
− 2M̂T

1 + 2ÂG
λ M̂ + λV̂ : V̂ ∈ ∂‖ÂG

λ ‖∗
}
. (A2.2)

Since ÂG
λ is the minimizer of Lλ(Q; M̂, M̂1), we have

0 ∈ ∂Lλ(ÂG
λ ; M̂, M̂1).

In particular, there exists V̂ ∈ ∂‖ÂG
λ ‖∗ such that, for all Q ∈ Rm×n, we have

〈−2M̂T
1 + 2ÂG

λ M̂ + λV̂, ÂG
λ −Q〉 = 0.

Using the bilinear property of inner product yields

〈−2(M̂T
1 −AM̂), ÂG

λ −Q〉+ 〈2(ÂG
λ −A)M̂, ÂG

λ −Q〉+ λ〈V̂, ÂG
λ −Q〉 = 0.
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By subtracting λ〈V, ÂG
λ −Q〉 on each side of the above inequality, we have

〈−2(M̂T
1 −AM̂), ÂG

λ −Q〉+〈2(ÂG
λ −A)M̂, ÂG

λ −Q〉+λ〈V̂ −V, ÂG
λ −Q〉 (A2.3)

= −λ〈V, ÂG
λ −Q〉.

Noticing that V̂ ∈ ∂‖ÂG
λ ‖∗ and V ∈ ∂‖Q‖∗, we have

‖Q‖∗ ≥ ‖ÂG
λ ‖∗ + 〈Q− ÂG

λ , V̂〉 and ‖ÂG
λ ‖∗ ≥ ‖Q‖∗ + 〈ÂG

λ −Q,V〉.

Then adding the above two inequalities implies

〈V̂ −V, ÂG
λ −Q〉 ≥ 0. (A2.4)

It follows from (A2.3) and (A2.4) that

−2〈M̂T
1 −AM̂, ÂG

λ −Q〉+ 2〈(ÂG
λ −A)M̂, ÂG

λ −Q〉 ≤ −λ〈V, ÂG
λ −Q〉.

Moving the first part of the left-hand side to the right-hand side yields

2〈(ÂG
λ −A)M̂, ÂG

λ −Q〉 ≤ −λ〈V, ÂG
λ −Q〉+ 2〈M̂T

1 −AM̂, ÂG
λ −Q〉.

Using the representation introduced in Watson (1992), any element in ∂‖Q‖∗ can be written as:

V =
r∑
j=1

ujv
T
j + PS⊥1

WPS⊥2
and ‖W‖2 ≤ 1.

We further have

2〈(ÂG
λ −A)M̂, ÂG

λ −Q〉+ λ〈PS⊥1 WPS⊥2
, ÂG

λ −Q〉 (A2.5)

≤− λ〈
r∑
j=1

ujv
T
j , Â

G
λ −Q〉+ 2〈M̂T

1 −AM̂, ÂG
λ −Q〉.

This gives the inequality we will focus on in the rest of the proof.

We then aim to introduce ‖ÂG
λ −A‖F in bounding the left and right terms in (A2.5). For this,

we begin with the second term on the left. Noting that Q has the support (S1,S2), we have

〈PS⊥1
WPS⊥2

, ÂG
λ −Q〉 = 〈PS⊥1 WPS⊥2

, ÂG
λ 〉.

Since both PS⊥1
and PS⊥2

are projection matrices, we further have

〈PS⊥1 WPS⊥2
, ÂG

λ 〉 = 〈W,PS⊥1
ÂG
λPS⊥2

〉.

By Lemma A2.3, there exists W0 with ‖W0‖2 ≤ 1 such that

〈W0,PS⊥1
ÂG
λPS⊥2

〉 = ‖PS⊥1 ÂG
λPS⊥2

‖∗.

Thus, for this particular choice W0, we deduce from (A2.5) that

〈2(ÂG
λ −A)M̂, ÂG

λ −Q〉+ λ‖PS⊥1 ÂG
λPS⊥2

‖∗ (A2.6)

≤−λ
〈 r∑
j=1

ujv
T
j , Â

G
λ −Q

〉
︸ ︷︷ ︸

A1

+ 2〈M̂T
1 −AM̂, ÂG

λ −Q〉︸ ︷︷ ︸
A2

.
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Then, we turn to bound the right-hand side of (A2.6). By the fact that

‖
r∑
j=1

ujv
T
j ‖2 = 1 and 〈

r∑
j=1

ujv
T
j , Â

G
λ −Q〉=〈

r∑
j=1

ujv
T
j ,PS1(ÂG

λ −Q)PS2〉,

using Lemma A2.3, we deduce

A1 ≤ λ‖
r∑
j=1

ujv
T
j ‖2 · ‖PS1(ÂG

λ −Q)PS2‖∗ = λ‖PS1(ÂG
λ −Q)PS2‖∗. (A2.7)

By Cauchy-Schwarz inequality, we have

‖PS1(ÂG
λ −Q)PS2‖∗ ≤

√
rank(Q) · ‖ÂG

λ −Q‖F. (A2.8)

Combining (A2.7) and (A2.8) yields

A1 ≤ λ
√

rank(Q) · ‖ÂG
λ −Q‖F. (A2.9)

To provide an upper bound for A2, we define a projection operator PQ(M) := M − PS⊥1
MPS⊥2

.

We then have

A2 =2〈PQ(M̂T
1 −AM̂), ÂG

λ −Q〉︸ ︷︷ ︸
A21

+2〈PS⊥1 (M̂T
1 −AM̂)PS⊥2

, ÂG
λ −Q〉︸ ︷︷ ︸

A22

. (A2.10)

For A21, define Λ := 2‖PQ(M̂T
1 −AM̂)‖F. By Cauchy-Schwarz inequality, we then have

A21 = 2〈PQ(M̂T
1 −AM̂), ÂG

λ −Q〉 ≤ Λ‖ÂG
λ −Q‖F. (A2.11)

For A22, define Γ := 2‖PS⊥1 (M̂T
1 −AM̂)PS⊥2

‖2. By Lemma A2.3, we have

A22 = 2〈PS⊥1 (M̂T
1 −AM̂)PS⊥2

, ÂG
λ 〉 ≤ Γ‖PS⊥1 ÂG

λPS⊥2
‖∗. (A2.12)

Combining (A2.10), (A2.11), and (A2.12), we have

A2 ≤ Λ‖ÂG
λ −Q‖F + Γ‖PS⊥1 ÂG

λPS⊥2
‖∗. (A2.13)

Combining (A2.6), (A2.9), and (A2.13), we have

〈2(ÂG
λ −A)M̂, ÂG

λ −Q〉+ λ‖PS⊥1 ÂG
λPS⊥2

‖∗

≤(λ
√

rank(Q) + Λ) · ‖ÂG
λ −Q‖F + Γ‖PS⊥1 ÂG

λPS⊥2
‖∗. (A2.14)

And now we turn to analyze Λ and Γ. Due to the inequality between the `2 norm and the Frobenius

norm of matrices, we have

Λ = 2‖PQ(M̂T
1 −AM̂)‖F ≤ 2

√
rank(PQ(M̂T

1 −AM̂)) · ‖(M̂T
1 −AM̂)‖2. (A2.15)

By the definition of PQ, we have

PQ(M̂T
1 −AM̂) = (M̂T

1 −AM̂)−PS⊥1
(M̂T

1 −AM̂)PS⊥2

= PS⊥1
(M̂T

1 −AM̂)PS2 + PS1(M̂T
1 −AM̂).

Combining the above equality with the fact that

rank(PSj ) ≤ rank(Q), for j = 1, 2,
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we have

rank(PQ(M̂T
1 −AM̂)) ≤ 2 · rank(Q). (A2.16)

Combining (A2.15) and (A2.16) and setting ∆ := ‖M̂T
1 −AM̂‖2, we have

Λ ≤ 2
√

2rank(Q) · ‖M̂T
1 −AM̂‖2 ≤ 2∆

√
2rank(Q). (A2.17)

We then turn to bound Γ. By the submultiplicity of `2 norm, we have

Γ = 2‖PS⊥1 (M̂T
1 −AM̂)PS⊥2

‖2 ≤ 2‖M̂T
1 −AM̂‖2 = 2∆. (A2.18)

Combining (A2.14), (A2.17), and (A2.18), we have

〈2(ÂG
λ −A)M̂, ÂG

λ −Q〉+ λ‖PS⊥1 ÂG
λPS⊥2

‖∗

≤(λ
√

rank(Q) + 2∆
√

2rank(Q)) · ‖ÂG
λ −Q‖F + 2∆‖PS⊥1 ÂG

λPS⊥2
‖∗.

And it follows that

〈2(ÂG
λ −A)M̂, ÂG

λ −Q〉 ≤(λ
√

rank(Q) + 2∆
√

2rank(Q)) · ‖ÂG
λ −Q‖F

+ (2∆− λ)‖PS⊥1 ÂG
λPS⊥2

‖∗. (A2.19)

Now we decompose the left-hand side of (A2.19) in the form

〈2(ÂG
λ −A)M̂, ÂG

λ −Q〉 = 〈(ÂG
λ −A)M̂, ÂG

λ −A〉+

〈(ÂG
λ −Q)M̂, ÂG

λ −Q〉 − 〈(Q−A)M̂,Q−A〉.

Thus, it follows from (A2.19) that

〈(ÂG
λ −A)M̂, ÂG

λ −A〉+ 〈(ÂG
λ −Q)M̂, ÂG

λ −Q〉

≤〈(Q−A)M̂,Q−A〉+ (λ
√

rank(Q) + 2∆
√

2rank(Q)) · ‖ÂG
λ −Q‖F

+ (2∆− λ)‖PS⊥1 ÂG
λPS⊥2

‖∗.

Because Q is an arbitrary matrix in Rm×n, setting Q = A, we have

2〈(ÂG
λ −A)M̂, ÂG

λ −A〉 ≤ (λ
√

rank(A) + 2∆
√

2rank(A)) · ‖ÂG
λ −A‖F

+(2∆− λ)‖PS⊥1 ÂG
λPS⊥2

‖∗.

Replacing rank(A) by r implies

2〈(ÂG
λ −A)M̂, ÂG

λ −A〉 ≤ (λ
√
r + 2∆

√
2r) · ‖ÂG

λ −A‖F (A2.20)

+(2∆− λ)‖PS⊥1 ÂG
λPS⊥2

‖∗.

Finally, we bound ∆. To this end, we have

∆ = ‖M̂T
1 −AM̂‖2 ≤ ‖M̂T

1 −MT
1 ‖2 + ‖A(M̂−M)‖2 + ‖MT

1 −AM‖2.

Noting that A satisfies the following condition

‖A‖2 ≤ γmax and M1 = MAT,

it follows that

∆ ≤ ‖M̂1 −M1‖2 + ‖A‖2‖M̂−M‖2 ≤ ‖M̂1 −M1‖2 + γmax · ‖M̂−M‖2.
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By the condition (2.3), we have

P
(
‖M̂−M‖2 ≤ δ1 and ‖M̂1 −M1‖2 ≤ δ2

)
≥ 1− ε1 − ε2. (A2.21)

Therefore, we have, with probability no smaller than 1− ε1 − ε2,

∆ ≤ γmaxδ1 + δ2.

By the assumption λ ≥ 2(γmaxδ1 + δ2), we deduce from (A2.20) that, under the event of (A2.21),

2〈(ÂG
λ −A)M̂, ÂG

λ −A〉 ≤ (λ
√
r + 2∆

√
2r) · ‖ÂG

λ −A‖F. (A2.22)

Meanwhile, due to Lemma A2.4, we have

|λmin(M̂)− λmin(Σ)| ≤ ‖M̂−Σ‖2. (A2.23)

Combining the assumption µ ≤ λmin(Σ) − δ1, (A2.21), and (A2.23), we have, with probability no

smaller than 1− ε1 − ε2,

µ ≤ λmin(M̂). (A2.24)

Hence we deduce from (A2.22) that

2µ‖ÂG
λ −A‖2F ≤ (λ

√
r + 2∆

√
2r) · ‖ÂG

λ −A‖F.

It then follows that

‖ÂG
λ −A‖F ≤

λ+ 2
√

2∆

2µ

√
r.

So we conclude

P

(
‖ÂG

λ −A‖F ≤
λ+ 2

√
2(γmaxδ1 + δ2)

2µ

√
r

)
≥ 1− ε1 − ε2,

where ε1 and ε2 go to zero when (T, d) goes to infinity.

A2.2 Proof of Theorem 5.1

Proof. Let’s define

K := E
[
(ST

t ,S
T
t−1, . . . ,S

T
t−p+1)T · (ST

t ,S
T
t−1, . . . ,S

T
t−p+1)

]
,

K1 := E
[
(ST

t ,S
T
t−1, . . . ,S

T
t−p+1)T · ST

t+1

]
.

Based on Lemma 2.2, it suffices to determine δ1, δ2 > 0 such that

P
(
‖Ω̂−Ω‖2 ≤ δ1

)
≥ 1− ε1, (A2.25)

P
(
‖Ω̂1 −Ω1‖2 ≤ δ2

)
≥ 1− ε2, (A2.26)

where both δ1, δ2 are functions of (T, d) and both ε1, ε2 go to zero when (T, d) goes to infinity. The

following proof is split into two parts according to the above statement.

Step I. First, to prove (A2.25), since {Zt}t∈Z is globally elliptically distributed, we have

Ω = sin
(π

2
K
)
.
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Secondly, similar to Theorem 3.4, by Taylor’s theorem, we have

‖Ω̂−Ω‖2 ≤
π

2
‖ cos

(π
2

K
)
◦ (K̂−K)‖2︸ ︷︷ ︸
E5

+ (A2.27)

π2

8
‖ sin

(π
2

K̄
)
◦ (K̂−K) ◦ (K̂−K)‖2︸ ︷︷ ︸

E6

,

for some matrix K̄ with each entry K̄jk as a value between Kjk and K̂jk.

Step I.1 For E5, we define, for any v ∈ Sdp−1 (the unit sphere in the dp-dimensional Euclidean

space) and t = p, . . . , T ,

Wt := vT(ST
t ,S

T
t−1, . . . ,S

T
t−p+1)T = vTsign

(
(XT

t ,X
T
t−1, . . . ,X

T
t−p+1)T

)
. (A2.28)

Meanwhile, similar to Theorem 3.4, we have {W 2
t }Tt=p also satisfies the strong mixing condition

and the tail condition. According to the strong mixing condition, the tail condition, Lemma A2.5,

Lemma A2.6, Lemma A2.7, and Lemma A2.8, there exists an absolute positive constant C41, such

that the following inequality holds,

P
(∥∥ cos

(π
2

K
)
◦ (K̂−K)

∥∥
2
≤ 4C41

√
dp

T − p+ 1

)
> 1− 9dp · 3 exp(−C42dp), (A2.29)

where C42 is a constant only depending on C41, κ1, κ
′
2, γ1, λmax(Ω), and λmin(Ω).

Step I.2. In this step we upper bound the second order term E6. Similar to Theorem 3.4, we

have, for any positive constant β3,

P
(∥∥ sin

(π
2

K̄
)
◦ (K̂−K) ◦ (K̂−K)

∥∥
2
≤ 2dp log(2dp/β3)

C43(T − p+ 1)

)
> 1− 3β2

3

8
, (A2.30)

where C43 is a constant only depending on κ1, κ
′
2, γ1, λmax(Ω), and λmin(Ω).

Combining (A2.27), (A2.29), and (A2.30), there exist an absolute constant C4 > 0 and another

constant C ′4, only depending on C4, κ1, κ
′
2, γ1, λmax(Ω), and λmin(Ω), such that

P
(
‖Ω̂−Ω‖2 ≤ C4 ·

√
dp

T − p+ 1

)
> 1− ε1, (A2.31)

where

ε1 = 9dp · 3 exp(−C ′4dp) +
3

2
· (dp)2 · exp

(
− 2

√
T − p+ 1

dp

)
,

and ε1 goes to zero when (T, d) goes to infinity. (A2.31) then verifies (A2.25).

Step II. Now we study (A2.26). First, we have

Ω1 = sin(
π

2
K1).
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And we also have

‖Ω̂1 −Ω1‖2 (A2.32)

≤ √p · max
1≤j≤p

∥∥∥ sin
(π

2
· 1

T − p

T−1∑
t=p

St+1−jS
T
t+1

)
− sin

(π
2
· ESt+1−jS

T
t+1

)∥∥∥
2
.

By Taylor’s theorem, similar to Theorem 3.4, for j = 1, . . . , p, we only need to consider the first

and second order terms for the formula in the maximum. And we conclude that there exists an

absolute positive constant C5 such that

P
(
‖Ω̂1 −Ω1‖2 ≤ C5 ·

√
dp

T − p

)
> 1− ε4, (A2.33)

and ε4 goes to zero when (T, d) goes to infinity.

Combining the assumption of λ, µ and (A2.31), (A2.33), we complete the proof.

A2.3 Auxiliary lemmas

The following two lemmas are from Tsybakov (2009) and used in proving Theorem 4.1.

Lemma A2.1. Let m ≥ 8. Then there exists a subset {ω(0), . . . , ω(M)} of Ω = {ω = (ω1, . . . , ωm) :

ωi ∈ {0, 1}} such that ω(0) = (0, . . . , 0),

ρH(ω(j), ω(k)) ≥ m

8
, for 0 ≤ j < k ≤M, and M ≥ 2

m
8 .

Here the metric ρ(·)H represents the Hamming distance.

Lemma A2.2. Assume M ≥ 2 and suppose Θ, equipped with a distance d(·, ·), contains elements

θ0, θ1, . . . , θM such that d(θj , θk) ≥ 2s > 0 for any 0 ≤ j < k ≤ M . Also assume that Pj � P0 for

j = 1, . . . ,M and

1

M

M∑
j=1

DKL(Pj ,P0) ≤ α logM,

with 0 < α < 1/8 and Pj = Pθj , j = 0, 1, . . . ,M . Then

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥
√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
> 0.

The following lemma is the duality property of matrix Schatten norms, and is used in proving

Theorem 4.1.

Lemma A2.3. For any two matrices M,N ∈ Rm×n, we have

|〈M,N〉| ≤ ‖M‖∗ · ‖N‖2. (A2.34)

And for given M ∈ Rm×n, there exists N0 ∈ Rm×n with ‖N0‖2 = 1 such that

|〈M,N〉| = ‖M‖∗.

The following lemma comes from Theorem 3.3.16 in Horn and Johnson (1994) and is used in

proving Lemma 2.2, Theorem 3.4, and Theorem 5.1.
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Lemma A2.4. For any two matrices M,N ∈ Rm×n and r := min{m,n}, the following inequality

holds,

|σj(M + N)− σj(M)| ≤ σ1(N), for j = 1, . . . , r.

The following two lemmas from Ledoux and Talagrand (1991) are about ε-net arguments and

used in the proofs of Theorem 3.4 and Theorem 5.1.

Lemma A2.5. Let (Ω, ρ) be a metric space and let ε > 0. A subset Sε(Ω) of Ω is called an ε-net

of Ω if every point ω ∈ Ω can be approximated to within ε by some point ξ ∈ Sε(Ω), i.e., such that

ρ(ω, ξ) ≤ ε. The minimal cardinality of an ε-net Ω, if finite, is denoted by N (Ω, ε) and is called the

covering number of Ω at scale ε. With these, the unit Euclidean sphere Sn−1 equipped with the

Euclidean metric satisfies, for every ε > 0,

N (Sn−1, ε) ≤
(
1 + 2/ε

)n
.

Lemma A2.6. Let M be a symmetric n by n matrix, and let Sε be an ε-net of Sn−1 for some

ε ∈ [0, 1/2). Then

sup
v∈Sn−1

|〈Mv,v〉| ≤ (1− 2ε)−1 sup
v∈Sε
|〈Mv,v〉|.

The following lemma, from Merlevède et al. (2011), depicts a Bernstein type bound on the tail

probability of the partial sums of a sequence of dependent random variables satisfying a certain

tail condition. It is used in the proofs of Theorem 3.4 and Theorem 5.1.

Lemma A2.7. Let {Xt}t∈Z be a sequence of centered real-valued random variables. Suppose that

the sequence satisfies the strong mixing condition,

α(n) ≤ exp(−2D1n
γ1),

for some absolute constants D1 > 0 and γ1 > 0. And it also satisfies the tail condition that

P(|Xt| > ξ) ≤ exp(1− (ξ/D2)γ2),

for absolute constants D2 > 0, γ2 > 0 and all ξ > 0, t ≥ 1. Define γ0 := γ1γ2/(γ1 + γ2). Suppose

γ0 < 1. Then there exist positive constants D3, D4, D5, D6, D7, depending on D1, D2, γ1, and γ2,

such that, for all T ≥ 4,

P
( 1

T
|
T∑
t=1

Xt| ≥ η
)
≤T exp

(
− (Tη)γ0

D3

)
+ exp

(
− (Tη)2

D4(1 +D5T )

)
+ exp

(
− (Tη)2

D6T
exp

( (Tη)γ0(1−γ0)

D7(log Tη)γ0

))
.

The following two lemmas, coming from Lemmas 4.3 and 4.4 in Wegkamp and Zhao (2016), are

used in the proof of Theorem 3.4.

Lemma A2.8. Let M and N be any m by m square matrices. If sin(π2 M) is positive semidefinite

with its diagonal elements all equal to one, then we have

‖ cos
(π

2
M
)
◦ (N−M)‖2 ≤ 2‖N−M‖2. (A2.35)

Lemma A2.9. For any two matrices M,N ∈ Rm×n, if |Mjk| ≤ Njk for all 1 ≤ j ≤ m and

1 ≤ k ≤ n, then ‖M‖2 ≤ ‖N‖2.
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