
STAT 583: Advanced Theory of Statistical Inference Homework 1

Lecture 1: Homework
Lecturer: Fang Han Due Date: Apr. 23

• Please send the electronic copies of your HW to Yandi Shen’s email box (ydshen@uw.edu).

• All assignments are due at 11:59PM on the due date.

• Each student will be allotted FOUR free days which can be used throughout the semester to turn in
homework assignments late without penalty. For instance, you might choose to turn in HW1 two days
late, HW2 one day late, and HW3 two days late. Once your free days are used up, late homeworks
will be penalized 20% per day (For instance, a homework turned in two days late will receive only
60% credit.). Exceptions to these rules will of course be made for serious illness or other emergency
circumstances; in these cases, please contact me as soon as you are aware of the problem.

• Latex-ed solutions are preferred, though not required.

• You should attempt to solve all homework problems on your own before joining a group to solve them
together.

• Be sure to show your work and justify your answers in a mathematically rigorous fashion.

• It is a very good idea to start early on the problem sets, at least to read them over so that you can be
thinking about them in the background.

• The lecture notes might have been updated so download the most recent version.

1.1 Probability inequalities

Problem 1 (Hoeffding’s Lemma and Inequality)

(1) Prove, if EX = 0 and P(X ∈ [a, b]) = 1, then

E exp(tX) ≤ exp(t2(b− a)2/8).

(2) Use the above inequality to further show that, if X1, . . . , Xn are mean-zero independent random variables
with P(Xi ∈ [ai, bi]) = 1, then

E exp
(
t

n∑
i=1

Xi

)
≤ exp

(
t2

n∑
i=1

(bi − ai)2/8
)
.

(3) Use the above inequality to derive the following “Hoeffding’s inequality”: under the same setting as in
the Case (2), we have, for any t > 0,

P (|Xn| > t) ≤ 2 exp
(
− 2n2t2∑n

i=1(bi − ai)2

)
,

where Xn = n−1
∑n
i=1Xi represents the sample mean.
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Problem 2 (Exercise 3.1.10, Page 135, GN2015)

Let ξi, i ∈ N be independent centred random variables such that E exp(λξi) < ∞, for all 0 < λ < λ0 for

some λ0 < ∞. Set Sk =
∑k
i=1 ξi, k ∈ N. Show that, for 0 < λ < λ0, the sequence {(exp(λSk),Sk)}, where

Sk = σ(ξi : i ≤ k), is a positive submartingale, and apply Doob’s martingale inequality to obtain

P
(

max
k≤n

Sk > t
)
≤ E exp(λSn)/ exp(λt), for t > 0.

Use this to derive a Hoeffding’s inequality for maxk≤n Sk.

Problem 3 (Exercise 3.1.9, Page 135, GN2015)

Let ξi, i ≤ n be nonnegative independent random variables in Lp space, namely, Eξpi < ∞, for some p > 0.
Prove the following three assertions.

a. For all δ > 0,

E max
1≤i≤n

ξpi ≤ δ
p + p

∫ ∞
δ

tp−1
n∑
i=1

P (ξ > t)dt.

b. Use that 1− x ≤ exp(−x) and 1− exp(−x) ≥ x/(1 + x) to show that

P (max
i
ξi > t) ≥

∑
i P (ξi > t)

1 +
∑
i P (ξi > t)

.

c. Suppose that δ0 = inf{t :
∑n
i=1 P (ξi > t) ≤ λ} for some λ > 0. Use the preceding inequality and the

monotonicity of the function x/(1 + x) to deduce

P (max
i
ξi > t) ≥

∑
P (ξ > t)

1 + λ
for t ≥ δ0,

and

P (max
i
ξi > t) ≥ λ

1 + λ
otherwise.

Conclude

E max
1≤i≤n

ξp ≥ λ

1 + λ
δp0 +

p

1 + λ

∫ ∞
δ0

tp−1
n∑
i=1

P (ξi > t)dt.

1.2 Weak convergence

Problem 4 (Delta method)

a. State and prove the Slutsky’s Theorem;

b. State and prove the Delta’s method (the multivariate version);

c. Show that the Delta’s method implies the Slutsky’s Theorem.
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Problem 5 (Lemma 2.2, V2000)

Prove the Portmanteau Lemma (Lemma 2.2 in V2000), namely, for random vectors Xn and X, the following
statements are equivalent:

a. P (Xn ≤ x)→ P (X ≤ x) for all continuity points of x→ P (X ≤ x);

b. Ef(Xn)→ Ef(X) for all bounded continuous functions f ;

c. Ef(Xn)→ Ef(X) for all bounded Lipschitz functions f ;

d. lim inf Ef(Xn) ≥ Ef(X) for all nonnegative continuous functions f ;

e. lim inf P (Xn ∈ G) ≥ P (X ∈ G) for every open set G;

f. lim supP (Xn ∈ F ) ≤ P (X ∈ F ) for every closed set F ;

g. P (Xn ∈ B)→ P (X ∈ B) for all Borel sets B with P (X ∈ δB) = 0, where δB is the boundary of B.

1.3 Application of the Donsker

Problem 6

Derive the influence function of sample quantiles, and give a second proof of the ASN of sample quantiles.
(You are not required to verify the Hadamard differentiability of θ(Q) = Q−1).

Problem 7

Consider i.i.d. observations X1, . . . , Xn of X ∈ R. Outline the conditions such that Mn = n−1/2
∑n
i=1 |Xi−

Xn|p (for some p ∈ (0,∞)) is asymptotically normal under these conditions. Derive the explicit limiting
distribution of Mn under the given conditions.

Problem 8

Consider i.i.d. observationsX1, . . . , Xn ofX ∈ R. Outline the conditions such thatMn = n−1/2
∑n
i=1Xi1(Xi >

Xn) (where Xn := n−1
∑n
i=1Xi) is asymptotically normal under these conditions. Derive the explicit lim-

iting distribution of Mn under the given conditions.

Problem 9 (simple linear regression, fixed design)

Assume the standard linear regression model Yi = XT
i β0 + εi for i ∈ [n], where {Xi ∈ Rp, i ∈ [n]} are

deterministic (fixed design) and {εi ∈ R, i ∈ [n]} are i.i.d. copies of a mean-zero random variable ε. Consider
the simple linear regression estimator of β0 ∈ Rp:

β̂ := argmin
β∈Rp

1

n

n∑
i=1

(Yi −XT
i β)2.
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a. Show, under which conditions for {Xi, i ∈ [n]} and ε, we have ‖β̂ − β0‖2 = oP (1)?

b. Show, under which conditions for {Xi, i ∈ [n]} and ε, we have ‖β̂ − β0‖2 = OP (1/
√
n)?

c. Show, under which conditions for {Xi, i ∈ [n]} and ε, we have
√
n(β̂ − β0) is asymptotically normal?

Problem 10 (simple linear regression, fixed design)

Repeat the arguments in Problem 9, (b) and (c). But this time, instead of using the closed form of β̂, verify
the conditions in Theorems 14 and 15.

Problem 11 (simple linear regression, random design)

Assume the standard linear regression model Yi = XT
i β0 + εi for i ∈ [n], where {Xi ∈ Rp, i ∈ [n]} are

i.i.d. copies of a random vector X and {εi ∈ R, i ∈ [n]} are i.i.d. copies of a mean-zero random variable ε.
Consider the simple linear regression estimator of β0 ∈ Rp:

β̂ := argmin
β∈Rp

1

n

n∑
i=1

(Yi −XT
i β)2.

a. Show, under which conditions for X and ε, we have ‖β̂ − β0‖2 = oP (1)?

b. Show, under which conditions for X and ε, we have ‖β̂ − β0‖2 = OP (1/
√
n)?

c. Show, under which conditions for X and ε, we have
√
n(β̂ − β0) is asymptotically normal?

Problem 12 (simple linear regression, random design)

Repeat the arguments in Problem 11, (b) and (c). But this time, instead of using the closed form of β̂, verify
the conditions in Theorems 14 and 15.

Problem 13 (consistency of Z-estimators)

Let Ψn : Rp → Rq be a random vector-valued function, let Ψ be a fixed vector-valued function of θ ∈ Θ ⊂ Rp,
and let ‖ · ‖ be a norm in Rq that is not necessarily the Euclidean norm. Assume, for every ε > 0,

sup
θ∈Θ
‖Ψn(θ)−Ψ(θ)‖ = oP (1) and inf

θ:d(θ,θ0)≥ε
‖Ψ(θ)‖ > 0 = ‖Ψ(θ0)‖.

Prove that any sequence of estimators θ̂n such that Ψn(θ̂n) = oP (1) satisfies ‖θ̂n − θ0‖ = oP (1).

Problem 14 (one-step estimator)

Consider the Z-estimation theory described in Problem 13. Assume the following Frechet differentiability
condition: For any constant M > 0, we assume

sup√
n‖θ−θ0‖<M

‖
√
n(Ψn(θ)−Ψn(θ0))− Ψ̇0

√
n(θ − θ0)‖ = oP (1),
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where Ψ̇0 is a deterministic nonsingular matrix. Given a preliminary root-n estimator θ̃n of θ0 (namely,√
n‖θ̃n − θ0‖ = OP (1)), the one-step estimator θ̂n is defined as

θ̂n = θ̃n − Ψ̇−1
n,0Ψn(θ̃n),

where we assume Ψ̇n,0
P→ Ψ̇0. Prove, provided

√
nΨn(θ0)⇒ Z for some random variable Z,

√
n(θ̂n − θ0) = −Ψ̇−1

0

√
nΨn(θ0) + oP (1).

In other words, θ̂n is asymptotically equivalent to the solution of Ψn(θ) = 0.

Problem 15

Use the one-step idea described in Problem 14 to construct an asymptotically efficient estimator of the
median θ0 for the Cauchy distribution of density:

pθ0(x) =
1

π
· 1

1 + (x− θ0)2
.

You do not need to verify the Frechet differentiability condition. (Hint: a natural choice of θ̃ is the sample
median, and a difficult to solve Z-estimator is the MLE.)


