Homework 3

• Please send the electronic copies of your HW to Yandi Shen's email box (ydshen@uw.edu).

3.1 VC-stability

Problem 1

Prove Lemma 32 in Chapter 2 (Lemma 9.14 in K2008).

3.2 Covering number

Problem 2

Prove, if \mathcal{F} is compact, then the function $\epsilon \to N(\mathcal{F}, L_2(P), \epsilon)$ is left-continuous (it is covering with open balls).

3.3 M-estimation and Z-estimation

Problem 3

Following Example 6 in Chapter 3 (Example 3.2.23 in VW1996), please formulate a rigorous statement for the ASN of the quantile regression estimator. In detail, you should lay out sufficient conditions under which $\hat{\theta}_n$ is ASN, calculate the asymptotic covariance of $\hat{\theta}_n$, and prove your result.

Problem 4

Prove Corollary 10 in Chapter 3: please formulate a rigorous statement for the ASN of the Z-estimator satisfying the Lipschitz condition. In detail, you should lay out sufficient conditions under which $\hat{\theta}_n$ is ASN, calculate the asymptotic covariance of $\hat{\theta}_n$, and prove your result.

3.4 Tail bounds

In the following, you might consider using the following V-C theorem.

Theorem (Vapnik and Chervonenkis (1971)). For any probability measure P and class of sets A, and for any n and $\epsilon > 0$,

$$P\left(\sup_{A\in\mathcal{A}} |\mathbb{P}_n(A) - P(A)| > \epsilon\right) \le 8\Pi_{\mathcal{A}}(n) \exp(-n\epsilon^2/32),$$

where \mathbb{P}_n stands for the empirical measure.

Problem 5 (k-means clustering)

Let X_1, \ldots, X_n be *n* i.i.d. random variables from a distribution supported on $[-B, B]^d$ for some $B < \infty$. The *k*-means method of clustering is based on choosing a set of *k* vectors a_1, \ldots, a_k in \mathbb{R}^d (representing centers of *k* clusters) to minimize the empirical risk:

$$\widehat{M}_n(a_1, \dots, a_k) := \frac{1}{n} \sum_{i=1}^n \min_j \|X_i - a_j\|_2^2.$$

The population error of the clustering can be measured by the quantity:

$$M(a_1, \dots, a_k) = \mathbb{E}[\min_{i} ||X - a_j||_2^2 | X_1, \dots, X_n]$$

where X is an independent draw from the same distribution. Note that $M(a_1, \ldots, a_k)$ is still a random variable w.r.t. X_1, \ldots, X_n .

a. If (a_1, \ldots, a_k) are a set of empirically optimal cluster centers (a.k.a., the ERM) satisfying

$$\widehat{M}_n(a_1,\ldots,a_k) = \inf_{b_1,\ldots,b_k} \widehat{M}_n(b_1,\ldots,b_k),$$

show that

$$M(a_1, \dots, a_k) - \inf_{b_1, \dots, b_k \in \mathbb{R}^d} M(b_1, \dots, b_k) \le 2 \sup_{b_1, \dots, b_k \in \mathbb{R}^d} |\widehat{M}_n(b_1, \dots, b_k) - M(b_1, \dots, b_k)|.$$

b. Define $f_b(x) := \min_{j=1,...,k} ||x - b_j||_2^2$. Prove that $0 \le f_b(x) \le 4dB^2$.

c. Prove that

$$\sup_{b \in (\mathbb{R}^d)^k} \left| \widehat{M}_n(b) - M(b) \right| \le 4dB^2 \sup_{b \in (\mathbb{R}^d)^k, 0 \le t \le 4dB^2} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}(f_b(X_i) > t) - \mathbb{P}(f_b(X) > t) \right|.$$

d. Show that, for all $\epsilon > 0$,

$$\mathbb{P}\left\{\sup_{b_1,\ldots,b_k\in\mathbb{R}^d}|\widehat{M}_n(b_1,\ldots,b_k)-M(b_1,\ldots,b_k)|>\epsilon\right\}\leq C(n+1)^{k(d+2)}\exp(-\frac{n\epsilon^2}{C'd^2B^4}),$$

for some absolute constants C, C' independent of (n, k, d, B).

e. Conclude that the population error of the ERM converges in probability to $\inf_{b_1,\ldots,b_k \in \mathbb{R}^d} M(b_1,\ldots,b_k)$ as $n \to \infty$ and k, d fixed.

Problem 6 (Generalized Glivenko-Cantelli Theorem)

Let \mathcal{F} be a class of bounded functions satisfying $0 \leq f(x) \leq M$ for all $x \in \mathbb{R}^d$. Define the class of sets

$$\mathcal{A} = \{A_{f,t} : f \in \mathcal{F}, t \in [0, M]\},\$$

where for every $f \in \mathcal{F}$ and $t \in [0, M]$, the set $A_{f,t} \in \mathbb{R}^d$ is defined as

$$A_{f,t} = \{z : f(z) > t\}$$

Prove

$$\mathbb{P}\left(\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\mathbb{E}f(X_{i})\right|>\epsilon\right)\leq 8\Pi_{\mathcal{A}}(n)e^{-n\epsilon^{2}/(32M^{2})}.$$

Problem 7

Use the result of Problem 5 or 6 to reconstruct a proof of the VC-major theorem: Suppose \mathcal{F} is a bounded VC-major class. Prove

$$\|\mathbb{P}_n - P\|_{\mathcal{F}} \stackrel{a.s.}{\to} 0.$$

Please also work out the rate of convergence (needs not be the sharpest).

3.5 Applications

Problem 8

Redo Problems 7 and 8 in HW1, but this time without assuming any Donsker property on any function class.