
STAT 583: Advanced Theory of Statistical Inference Spring 2018

Lecture 0: Some useful inequalities
Lecturer: Fang Han

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Lecturer.

“The good men of every age are those who go to the roots of the old thoughts and bear fruit with them.”

— Friedrich Nietzsche, The Gay Science

0.1 LLN and CLT

LLN, in its simplest format, is one of the easiest proofs we will ever meet in statistics, involving only the
Markov’s inequality.

Theorem 1 (WLLN). Suppose X1, . . . , Xn
i.i.d.∼ F with EF |X|2 < ∞, then Xn

P→ EFX. In other words,
for arbitrary ε > 0,

lim
n→∞

PF (|Xn − EFX| > ε) = 0.

Proof. In-class exercise.

SLLN is much more interesting. In the following we give its comprehensive version.

Theorem 2 (SLLN). (i) If EF |X| <∞, then Xn
a.s.→ EFX. In other words, for arbitrary ε > 0,

PF ( lim
n→∞

Xn = EFX) = 1.

(ii) (Zygmund-Marcinkiewicz SLLN.) If for some 0 < δ < 1, EF |X|δ <∞, then we have

n−1/δ
∑

Xi
a.s.→ 0.

CLT is a fundamental theory. However, its proof, in its simplest form (moment-based one or characteristic-
function-based one), has been out of fashion, since it tells us so little about Xn. But anyway, let’s write
down the theorem at first.

Theorem 3 (Lindeberg-Levy CLT). Given X1, X2, . . . , Xn
i.i.d.∼ F with EFX = µ and EF (X − µ)2 = σ2 <

∞. Then we have √
n(Xn − µ)

d→ N(0, σ2),

or in other words, for arbitrary x ∈ R,

lim
n→∞

P (
√
n(Xn − µ) ≤ x) = Φ(x/σ). (pointwise convergence)

Proof. In-class exercise.

0-1
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0.2 Berry-Esseen theorem and Edgeworth expansion

CLT tells us the limiting behavior of Xn as n → ∞. However, it never tells us how fast Xn − µ converges
to N(0, σ2). Actually, a result like

|P (
√
n(Xn − µ) ≤ x)− Φ(x/σ)| = O(1/ log n)

would be useless. Gladly, Berry-Esseen Theorem tells us the convergence rate is usually not that disappoint-
ing.

Theorem 4 (Berry-Esseen Theorem (Esseen 1956)). Suppose EF |X − µ|3 <∞. We then have

sup
x
|P (
√
n(Xn − µ)/σ ≤ x)− Φ(x)| ≤ 0.4785 · E|X − µ|3

σ3
√
n

.

(An interesting story on how the constant is sharpened from 7.59 (the original proof of Esseen) to the current
one by Tyurin (2010) could be found at the wikipedia.)

Berry-Esseen theorem gives us the first-order (root-n) approximation for CLT. Its proof is based on the
Fourier expansion and is very revealing. I won’t cover it in this lecture. However, persons could easily find
it online, or drop me an email (I have a proof by myself).

Let’s move on to characterizing the higher-order approximation for CLT. This is known as the Edgeworth
expansion, and is celebrated for its application to proving the second-order accuracy of the bootstrap.

Theorem 5 (Edgeworth expansion). Let X1, . . . , Xn
i.i.d.∼ F . Write

γ := EF (X − µ)3/σ3 (skewness) and κ := EF (X − µ)4/σ4 (kurtosis).

We then have

Gn(x) := PF (
√
n(Xn − µ)/σ ≤ x)

= Φ(x)− φ(x)

(
γ(x2 − 1)

6
√
n

+
(κ− 3)(x3 − 3x)

24n
+
γ2(x5 − 10x3 + 15x)

72n

)
+ o(1/n).

Proof. See the blackboard, LOL.

Some implications are immediate.

Remark 6. When F is symmetric, we have γ = 0, so that Φ(x) approximates Gn(x) in the rate O(1/n)
(This justifies the intuition that “30 is good enough for CLT to work”).

Remark 7. When F is asymmetric, generally γ 6= 0 and the CLT can only attain O(1/
√
n) rate of conver-

gence. However, say, if we are interested in calculating the confidence interval of
√
n(Xn−µ)/σ, a balanced

interval gives us

Gn(x)−Gn(−x) = Φ(x)− Φ(−x) +O(1/n),

with the first term cancelled out. This is the intuition why balanced confidence interval is more preferred.

Remark 8. The first two-order approximation is involved with κ only through κ − 3. This is the intuition
why the excess kurtosis is defined as κ− 3.
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0.3 A case study: the bootstrap theory built on Berry-Esseen
theorem and Edgeworth expansion

Suppose T (X1, . . . , Xn;F ) is a functional (e.g., T (X1, . . . , Xn;F ) =
√
n(Xn − µ)). Each time, the boot-

strapped sample X∗1 , . . . , X
∗
n is sampled from X1, . . . , Xn with replacement. In other words, the boot-

strap sample is drawn from the ECDF Fn with point mass on X1, . . . , Xn. The corresponding statistic is
T (X∗1 , . . . , X

∗
n;Fn). It is set up to approximate the true distribution of T (X1, . . . , Xn;F ).

Let’s consider the simplest case, where T (X1, . . . , Xn;F ) =
√
n(Xn − µ). It is truely surprising that we can

prove the bootstrap consistency based on such few results we have known. The following proof is due to
Professor Anirban DasGupta.

Theorem 9. Provided EFX2 <∞ and T (X1, . . . , Xn;F ) :=
√
n(Xn − µ), we have

sup
x
|PF (Tn ≤ x)− P∗(T ∗n ≤ x)| a.s.→ 0,

where P∗ corresponds to the uniform distribution over all the nn possible replacement resamples from (X1, . . . , Xn),
and T ∗n :=

√
n(
∑
X∗i /n−Xn).

Proof. By triangle inequality, we have

sup
x
|PF (Tn ≤ x)− P∗(T ∗n ≤ x)| ≤ sup

x
|PF (Tn/σ ≤ x/σ)− Φ(x/σ)|+ sup

x
|Φ(x/σ)− Φ(x/s)|

+ sup
x
|Φ(x/s)− P∗(T ∗n/s ≤ x/s)|

= An +Bn + Cn,

where s is the sample standard deviation, and is the standard deviation of (X1, . . . , Xn) under P∗. Here

An → 0 by CLT. Bn → 0 by the fact s
a.s.→ σ and the continuous mapping theorem. Finally, applying the

Berry-Esseen theorem to P∗, we have

Cn ≤
C√
n
· EFn(X∗1 −Xn)3

[VarFn
(X∗1 )]3/2

=
C√
n
·
∑
|Xi −Xn|3

ns3
≤ 8C

n3/2s3
· (
∑
|Xi − µ|3 + n|Xn − µ|3),

where in the last inequality we use the fact (a+ b)3 ≤ 8(a3 + b3) for any a, b > 0. We then continue to have

8C

n3/2s3
· (
∑
|Xi − µ|3 + n|Xn − µ|3) ≤ C ′

s3

(
1

n3/2

∑
|Xi − µ|3 +

|Xn − µ|3√
n

)
.

Clearly, these two terms will vanish by Zygmund-Marcinkiewicz SLLN.

We then move to study the so-called second-order accuracy of the bootstrap. In particular, we aim to
rigorously answer the following question: why the bootstrap is more preferred even when CLT-type results
are available. For example, even if we know

√
n(Xn−µ)/σ converges to N(0, 1), why should we still use the

bootstrapped sample to approximate its distribution.

In short, under some assumptions, the bootstrap convergence rate is O(1/n) compared to O(1/
√
n) for CLT.

The following argument is due to Eric Lehmann.

Consider T =
√
n(Xn − µ)/σ. By Edgeworth expansion, we have

PF (T ≤ x) = Φ(x) + φ(x)(p1(x|F )/
√
n+ p2(x|F )/n) + o(1/n)

PF∗(T
∗ ≤ x) = Φ(x) + φ(x)(p1(x|Fn)/

√
n+ p2(x|Fn)/n) + o(1/n)

PF (T ≤ x)− PF∗(T ∗ ≤ x) = φ(x)

(
p1(x|F )− p1(x|Fn)√

n
+
p2(x|F )− p2(x|Fn)

n

)
+ o(1/n),
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with

p1(x|F ) =
γ

6
(1− x2), p2(x|F ) =

κ− 3

24
(3x− x3)− γ2

72
(x5 − 10x3 + 15x).

Hence, since γFn
− γF = OP (1/

√
n), we obtain O(1/n) rate of convergence given the finiteness of the

moments, which is called the second-order accuracy, in comparison to the first-order accuracy (O(1/
√
n)) in

CLT.

However, when we do not standardize the data, the second-order accuracy is lost, since additional effort is
required to bound Φ(x/σ)− Φ(x/s). Therefore, a rule of thumb is as follows:

Proposition 10 (DasGupta). If T (X1, . . . , Xn;F )
d→ N(0, τ2) with τ independent of F and an Edgeworth

expansion is available to T , then the second order accuracy is likely.

[Talk about the bootstrap inconsistency.]

0.4 LIL and Cramer’s moderate deviation theory

I do not expect that we will have the time to cover these. But they are interesting, and extremely useful in
high dimensional statistics (I have quite a few papers built on these two types of theories). So here they are.

0.4.1 LIL

SLLN tells us Xn will converge to µ, but it does not tell us how fast the convergence rate is. In this sense,
CLT tells us more things, since it intuitively shows us the rate would be very close to root-n. The sharpest
result in this sense is LIL, which gives us the exact convergence rate.

Theorem 11 (Law of the iterated lograthim). Assume mean zero and variance 1. We then have

lim sup
n→∞

∑
Xi√

2n log log n
= 1 a.s.,

and

lim inf
n→∞

∑
Xi√

2n log log n
= −1 a.s..

The proof is surprisingly simple, and can be found everywhere. This result is relatively less touched recently.
However, a very useful result does stem from it, called the Erdos’ inequality. It gives us the convergence rate
for partial mean:

max
k≤n

∣∣∣∣∣ 1√
k

k∑
i=1

Xi

∣∣∣∣∣ = OP (
√

log log n),

which is in contrast to the typical
√

log n rate for extreme value. This result is repeatedly used in change
point detection.

0.4.2 Cramer’s moderate deviation theory

Berry-Esseen and Edgeworth indeed give us a lot of understanding on the performance of the sample mean.
However, the usefulness of the bound is very restricted in the tails when Φ(x) approximates 0 or 1. The
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reason is because, at this area, Φ(x) (1-Φ(x)) itself is too small to be considered as a constant. However,
concentration inequalities (introduced in the next section) do tell us the convergence to Φ(x) could even hold
in the far tails. This intuition is fixed by the following theorem.

Theorem 12. (i) Let X1, . . . , Xn be i.i.d. with mean zero and E exp(t0|X|) <∞ for some t0 > 0. Then for
x ≥ 0 and x = o(n1/2), we have

P (
√
nXn/σ ≥ x)

1− Φ(x)
= exp

(
x2λ

(
x√
n

))(
1 +O

(
1 + x√
n

))
,

where λ(t) is the Cramer series.
(ii) If we further have E exp(t0

√
|X|) <∞, then

sup
x∈[0,o(n1/6))

P (
√
nXn/σ ≥ x)

1− Φ(x)
→ 1.

0.5 Markov and Chernoff

Theorem 13 (Markov). For any random variable X ≥ 0 and t > 0, we have

P (X ≥ t) ≤ EX
t
.

Theorem 14 (Chernoff). For any random variable X, we have

P (X ≥ t) ≤ inf
s>0

E exp(sX)

exp(st)
.

Example 15. For X ∼ N(0, 1), we have

P (X ≥ t) ≤ inf
s>0

exp(s2/2− st) = exp(−t2/2)→ P (|X| ≥ t) ≤ 2 exp(−t2/2).

Another approach gives us:
P (|X| > t) ≤ 2 exp(−t2/2)/t

by

P (X > t) =

∫ ∞
t

φ(x)dx ≤ 1

t

∫ ∞
t

xφ(x)dx = −1

t

∫ ∞
t

φ′(x)dx =
φ(t)

t
.

Example 16. In the last example, consider Xn instead of X. Show the advantage of using the second
inequality.

Chernoff gives you a bound, but this bound is almost always a loose one when we consider parametric models.

Now we have been technically ready to prove the SLLN under the simplest case.

Example 17. Prove the SLLN for Gaussian distributions. For any t > 0, we have

∞∑
n=1

P (|Xn| > t) ≤ 2

∞∑
n=1

exp(−nt2/2) ≤ 2(1− e−1)−1 exp(−t2/2) <∞. (0.1)

This implies Xn
a.s.→ 0 by the Borel-Cantelli Lemma.



0-6 Lecture 0: Some useful inequalities

Definition 18. A r.v. X is said to be subgaussian of subgaussian (David Pollard calls it “scale”) constant
σ if for any t ∈ R,

E exp(t(X − EX)) ≤ exp(σ2t2/2).

Gaussian distribution X ∼ N(µ, σ2) has subgaussian constant σ.

It is obvious, if X is subgaussian of subgaussian constant σ, by Chernoff,

P (|X| > t) ≤ 2 exp(−t2/2σ2).

0.6 Hoeffding and McDiarmid

We then consider bounded r.v. X ∈ [a, b] for some constants a, b ∈ R. Hoeffding managed to prove that X
is subgaussian of subgaussian constant (b− a)/2.

Lemma 19 (Hoeffding’s Lemma). Suppose EX = 0 (why WLOG?) and P(X ∈ [a, b]) = 1. Then

E exp(tX) ≤ exp(t2(b− a)2/8).

Proof. By the convexity of the exponential function, we have

E exp(tX) ≤ − a

b− a
exp(tb) +

b

b− a
exp(ta) = exp(g(u))

where u = t(b− a), g(u) = −γu+ log(1− γ + γeu), and γ = −a/(b− a). By Taylor expansion, there exists
ξ ∈ (0, u) such that

g(u) = g(0) + ug′(0) +
u2

2
g′′(ξ).

By calculation, we have g(0) = g′(0) = 0 and g′′(u) ≤ 1/4 for all u > 0. Therefore, we continue the above
equation to have g(u) ≤ u2/8 = t2(b− a)2/8. This completes the proof.

Theorem 20 (Hoeffding’s Inequality). For X1, . . . , Xn as independent (not necessarily identically dis-
tributed) r.v.’s satisfying Xi ∈ [a, b] for i = 1, . . . , n. for any t > 0, we have

P

(∣∣∣∣∣Xn −
1

n

n∑
i=1

EXi

∣∣∣∣∣ > t

)
≤ 2 exp

(
− 2nt2

(b− a)2

)
,

Proof. In-class exercise.

We then proceed to a generalization of the Hoeffding, called the McDiarmid. We will repeatedly use it in
the future.

Theorem 21 (McDiarmid’s inequality). Let X1, . . . , Xn be n independent r.v.’s (again, not necessarily
identically distributed) taking values from a general set A. Let f : An → R satisfy the following bounded gap
condition:

sup
x1,...,xn,x′i

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤Mi for i = 1, . . . , n.

Then for any t > 0, we have

P (f(X1, . . . , Xn)− Ef(X1, . . . , Xn) ≥ t) ≤ exp

(
− 2t2∑

M2
i

)
.
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Example 22. Show that McDiarmid can imply Hoeffding.

Proof. We write X = {X1, . . . , Xn}, Z0 = Ef(X), Zi = E(f(X)|X1, . . . , Xi), and Zn = f(X) (Is Z1, . . . , Zn
a martingale?). Then by the bounded gap condition, it is easy to derive, for any s > 0,

E(exp(s(Zk − Zk−1))|X1, . . . , Xk−1) ≤ exp(s2M2
k/8).

(Prove it by yourself, LOL)

We then have

P (f(X)− Ef(X) ≥ t) ≤ exp(−st)E(exp(s(f(X)− Ef(X))))

= exp(−st)E exp(s(Zn − Zn−1 + Zn−1 − Z0))

= exp(−st)E exp(s
∑

(Zi − Zi−1))

= exp(−st)E

{
exp s

n−1∑
i=1

(Zi − Zi−1)E(exp(s(Zn − Zn−1))|X1, . . . , Xn−1)

}

≤ exp(−st) exp(s2M2
n/8)E exp(s

n−1∑
i=1

(Zi − Zi−1))

≤ exp(−st)
∏

exp(s2M2
i /8).

The rest is straightforward.

Example 23. For i.i.d. (X1, Y1), . . . , (Xn, Yn) ∼ (X,Y ), the correlation between X,Y is calculated by
Kendall’s tau:

τ̂ :=
2

n(n− 1)

∑
sign(Xi −Xi′) sign(Yi − Yi′).

Prove the concentration for τ̂ − Eτ̂ by using the McDiarmid’s inequality. [In-class exercise]

0.7 Subgaussian and subexponential

In the previous sections, we have introduced the subgaussian distribution. In this section, we will present
some more fundamental relations between subgaussian and the r.v.’s Lp norms. To this end, we first define
the subgaussian norm:

Definition 24 (subgaussian norm). The subgaussian norm of a r.v. X ∈ R is defined as follows:

‖X‖ψ2 := sup
p≥1

p−1/2(E|X|p)1/p.

Lemma 25. The following assertions are equivalent:

1. P (|X − EX| > t) ≤ − exp(−t2/C2
1 ) for all t ≥ 0;

2. (E|X − EX|p)1/p ≤ C2
√
p for all p ≥ 1;

3. E exp((X − EX)2/C2
3 ) ≤ e;

4. E exp(t(X − EX)) ≤ exp(C2
4 t

2).
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Lemma 25 shows ‖X‖ψ2
<∞ is equivalent to saying X is subgaussian. The proof is the proof of Lemma 5.5

in Roman Vershynin’s note “Introduction to the non-asymptotic analysis of random matrices”.

In statistics, we are not only interested in deriving Gaussian sample mean estimation, but also Gaussian
sample variance estimation. Accordingly, we also need to study the chi-square-type distributions. It is well
known that the chi-square distribution is much more tricky than the Gaussian distribution. Fortunately, we
have a unified framework to tackle it.

Let’s first define the subexponential norm.

Definition 26 (subexponential norm). The subexponential norm of a r.v. X ∈ R is defined as follows:

‖X‖ψ1
:= sup

p≥1
p−1(E|X|p)1/p.

Similar to the subgaussian, a r.v. X is said to be subexponential iff ‖X‖ψ1
<∞.

Example 27. Show that chi-square distribution is subexponential.

Lemma 28. A r.v. X is subgaussian if and only if X2 is subexponential:

‖X‖2ψ2
≤ ‖X2‖ψ1

≤ 2‖X‖2ψ2
.

The most useful result regarding subexponential distributions is that they have similar tail performance as
the subgaussian.

Lemma 29. Assume X is subexponential. Then, for any t s.t. |t| ≤ c/‖X − EX‖ψ1
, we have

E exp(t(X − EX)) ≤ exp(Ct2‖X − EX‖2ψ1
).

0.8 Dimension-free and Talagrand concentration inequalities

0.8.1 A motivating example

In many cases, we wish to reduce the data dimension while preserving the topology of the original data. A
natural way is to reduce the dimension while preserving the original data’s pairwise distances (up to the
scale). MDS is a way for doing so deterministically. Another track, called the random projection, aims to
achieve this goal using the probabilistic method (Paul Erdos!).

Theorem 30 (Johnson-Lindenstrauss Lemma). Let t ∈ (0, 1/2). Let Q ⊂ Rp be a set of n points and
k = 20 log n/t2. Then there exists a mapping f : Rp → Rk s.t. for any u, v ∈ Q, we have

(1− t)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + t)‖u− v‖2.

Proof. The proof is constructive and a classic use of the probabilistic method. We choose f as follows:

f(x) =
1√
k
Ax
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where A ∈ Rk×d with entries as i.i.d. N(0, 1). Then we have

P (there exist u, v, s.t. (1− t)‖u− v‖2 ≤ ‖ 1√
k
A(u− v)‖2 ≤ (1 + t)‖u− v‖2 does not hold)

≤
∑
u,v∈Q

P ((1− t)‖u− v‖2 ≤ ‖ 1√
k
A(u− v)‖2 ≤ (1 + t)‖u− v‖2 does not hold)

≤2n2 exp(−(t2 − t3)k/4)

<1,

when we choose k = 20 log n/t2. In the second inequality we use the fact Ax/‖x‖ ∼ N(0, Ik), the Gaus-
sian dimension-free concentration inequality, and the subexponential concentration inequality introduced in
Lemma 29.

0.8.2 Dimension-free and Talagrand inequalities

Recall that, in establishing the random projection properties, we require the χ2
k distribution of df k,

∑k
i=1X

2
i ,

to be sub-exponential distributed, where Xi
i.i.d∼ N(0, 1) and k is arbitrary (in particular, k could increase

to infinity).

At the first sight, this is a very counter-intuitive phenomenon: it implies, though the mean of the χ2
k increases

to infinity, the variance remains stable.

By the relation between subgaussian and subexponential distributions, we know it is equivalent to showing
‖X‖2 is subgaussian, where X = (X1, . . . , Xk)T ∼ Nk(0, Ik) and ‖ · ‖2 stands for the Euclidean norm.
This property is established by the celebrated Gaussian dimension-free concentration inequality, which is
repeatedly used in my research.

Theorem 31 (Gaussian dimension-free concentration inequality). Let X = (X1, . . . , Xp)
T ∼ Np(0, Ip) and

let f(·) : Rp → R be a 1-Lipschitz function (i.e., |f(x)−f(y)| ≤ ‖x−y‖2 for all x,y ∈ Rp for all x,y ∈ Rp).
Then for any t > 0, we have

P (|f(X)− Ef(X)| ≥ t) ≤ C exp(−ct2)

for some absolute constants C, c > 0.

There are one thousand ways to prove this famous result. The following proof, which is the most elementary
one, comes from Maurey and Pisier, stated in “Topics in Random Matrix Theory” by Terrence Tao. I
personally like the proof using the entropy method and log-Sobolev inequality the most. Please check the
note I wrote years ago on this topic.

Proof. WLOG, we assume Ef(X) = 0 and focus on proving

P (f(X) ≥ t) ≤ C exp(−ct2),

or equivalently,
E exp(tf(X)) ≤ exp(Ct2).

By a routine limiting argument, we may assume f(·) to be smooth. The Lipschiz condition then is equivalent
to the following one:

‖∇f(x)‖2 ≤ 1 for all x ∈ Rp.

We introduce a second copy of X: Y . Since Ef(Y ) = 0, Jensen’s inequality yields

E exp(−tf(Y )) ≥ 1
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and thus
E exp(tf(X)) ≤ E exp(t(f(X)− f(Y ))).

Using the routine Ornstein-Uhlenbeck process argument, we write

f(X)− f(Y ) =

∫ π/2

0

d

dθ
f(Y cos θ −X sin θ)dθ,

where we have

• Xθ := Y cos θ −X sin θ is another standard Gaussian;

• X ′θ := −Y sin θ −X cos θ is another standard Gaussian and independent of Xθ.

By Jensen’s inequality, we have

exp(t(f(X)− f(Y ))) ≤ 2

π

∫ π/2

0

exp

(
πt

2

d

dθ
f(Xθ)

)
dθ,

(This is via the argument

exp

(
t ·
∫ b

a

f(x)dx

)
= exp

(
t(b− a) ·

∫ b

a

f(x)

b− a
dx

)
≤
∫ b
a

exp(t(b− a)f(x))dx

b− a
.

) which further implies

E exp(t(f(X)− f(Y ))) ≤ 2

π

∫ π/2

0

E exp

(
πt

2
· 〈∇f(Xθ),X

′
θ〉
)
dθ.

Conditioning on Xθ (reminding Xθ is independent of X ′θ), 〈πt2 ∇f(Xθ),X
′
θ〉 is normally distributed with

standard deviation at most πt/2. This further implies

E exp

(
πt

2
· 〈∇f(Xθ),X

′
θ〉
)
≤ exp(Ct2),

and thus completes the proof.

Remark 32. Show that the Gaussian dimension-free concentration inequality is equivalent to the inequality

P (X ∈ A)P (X 6∈ At) ≤ C exp(−ct2), where X ∼ Np(0, Ip),

holding for all t > 0, all measurable set A, and At is the t-neighborhood of A.

The Gaussian dimension-free concentration inequality reveals another one of the magics surrounding the
Gaussian. However, this inequality, in a weaker version, can apply to a much more general family of
distributions. This is via the celebrated Talagrand concentration inequality.

Theorem 33. (Talagrand concentration inequality) Let K > 0 and X1, . . . , Xp be independent random
variables with |Xj | ≤ K for 1 ≤ j ≤ p. Let f(·) : Rp → R be a 1-Lipschitz convex function. Then for any
t > 0 one has

P (|f(X)− Ef(X)| ≥ tK) ≤ C exp(−ct2).

Here X1, . . . , Xp could also be complex-valued, and Ef(X) could be replaced by the median of f(X).

The proof is very simple, yet revealing via the entropy method. Due to the scope limit, I won’t cover the
details here. Students of interest should refer to Terrence Tao’s Random Matrix Theory book (Pages 86 to
91).


