STAT 583: Advanced Theory of Statistical Inference

Spring 2018

Lecture 1: Big Picture (Addendum)

Lecturer: Fang Han Apr 02

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Lecturer.

1.1 First proof of GC Theorem

We consider

$$\mathcal{G} := \{ g_t : x \to \mathbb{1}_{(-\infty,t]}(x) \},$$

and can rewrite

$$\sup_{t} |F_n(t) - F(t)| = \sup_{g \in \mathcal{G}} |E_n g - Eg|.$$

We are now ready to rigorously prove the GC Theorem:

$$E \sup_{t} |F_n(t) - F(t)| \le 2\sqrt{\frac{2\log 2(n+1)}{n}}.$$

Proof. The proof is twofold. First is a classic symmetrization (we will repeatedly rediscover this trick everywhere). Secondly, we will employ the celebrated Massart's finite class lemma.

Step I. Let Z_1, \ldots, Z_n be an independent copy of X_1, \ldots, X_n . We then have

$$E \sup_{g \in \mathcal{G}} |E_n g - Eg| = E \sup_{g \in \mathcal{G}} \left| \frac{1}{n} \sum_{i=1}^n g(X_i) - \frac{1}{n} Eg(Z_i) \right|$$

$$= E \sup_{g \in \mathcal{G}} \left| \frac{1}{n} \sum_{i=1}^n \{g(X_i) - E[g(Z_i) | X_1, \dots, X_n] \} \right|$$

$$= E \sup_{g \in \mathcal{G}} \left| E(\frac{1}{n} \sum_{i=1}^n \{g(X_i) - g(Z_i) \} | X_1, \dots, X_n) \right|$$

$$\leq E E[\sup_{g \in \mathcal{G}} \left| \frac{1}{n} \sum_{i=1}^n (g(X_i) - g(Z_i)) | | X_1, \dots, X_n \right]$$

$$= E \sup_{g \in \mathcal{G}} \left| \frac{1}{n} \sum_{i=1}^n (g(X_i) - g(Z_i)) | .$$

We then employ the Rademacher sequence $\epsilon_1, \ldots, \epsilon_n$, where $\epsilon_i \in \{-1, 1\}$ is symmetric around 0. We then have

$$E\sup_{g\in\mathcal{G}}\left|\frac{1}{n}\sum_{i=1}^{n}(g(X_i)-g(Z_i))\right| = E\sup_{g\in\mathcal{G}}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_i(g(X_i)-g(Z_i))\right| \le 2E\sup_{g\in\mathcal{G}}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_ig(X_i)\right|,$$

where the last inequality is via the triangle inequality.

Step II. Secondly, we employ Massart's finite class lemma.

Lemma 1 (Massart's finite class lemma). Let $A \subset \mathbb{R}^n$ with $|A| < \infty$ and $R := \max_{a \in A} ||a||_2$. We then have

$$E \max_{a \in A} \left(\frac{1}{n} \sum_{i=1}^{n} \epsilon_i a_i \right) \le \frac{R\sqrt{2\log|A|}}{n}$$

and

$$E \max_{a \in A} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i a_i \right| \le \frac{R\sqrt{2 \log 2|A|}}{n}$$

Proof. Define $Z_a := \sum_{i=1}^n \epsilon_i a_i$. We have

$$\exp(tE\max_{a\in A} Z_a) \le E\exp(t\max_{a\in A} Z_a) = E\max_{a\in A} \exp(tZ_a) \le E\sum_{a\in A} \exp(tZ_a).$$

Using Hoeffding's inequality, we have

$$E\sum_{a\in A} \exp(tZ_a) \le \sum_{a\in A} \exp(t^2 \sum_{i=1}^n a_i^2/2) \le \sum_{a\in A} \exp(t^2 R^2/2) = |A| \exp(t^2 R^2/2).$$

Accordingly, we have

$$E \max_{a \in A} Z_a \le \inf_{t>0} \left(\frac{\log |A|}{t} + \frac{tR^2}{2} \right).$$

Setting $t = \sqrt{2 \log |A|/R^2}$, we have the desired bound for the first term. The second inequality comes from enriching the class A to $\{A, -A\}$.

Now applying Massart's lemma, we have

$$E\sup_{g\in\mathcal{G}}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}g(X_{i})\right| = EE\sup_{g\in\mathcal{G}}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}g(X_{i})|X_{1},\ldots,X_{n}\right| \leq \sqrt{\frac{2\log 2(n+1)}{n}}.$$

This completes the proof.

1.2 Second proof of GC Theorem

Theorem 2 (Glivenko-Cantalli). Suppose X_1, \ldots, X_n be n i.i.d. random variables, and

$$F_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \le t) = \frac{1}{n} \sum_{i=1}^n Z_i(t)$$
 and $F(t) := P(X_i \le t)$

are the empirical and population cdf. We then have

$$E\sup_{t\in\mathbb{R}}|F_n(t)-F(t)|\leq \frac{4}{\sqrt{n}}.$$

Proof. Using the standard symmetrization argument, we have

$$E \sup_{t \in \mathbb{R}} |F_n(t) - F(t)| = E \sup_{t \in \mathbb{R}} |\frac{1}{n} \sum_{i=1}^n Z_i(t) - EZ_i(t)| \le E \sup_{t \in \mathbb{R}} |\frac{1}{n} \sum_{i=1}^n (Z_i(t) - \widetilde{Z}_i(t))| = E \sup_{t \in \mathbb{R}} |\frac{1}{n} \sum_{i=1}^n \epsilon_i(Z_i(t) - \widetilde{Z}_i(t))|,$$

where $\epsilon_1, \ldots, \epsilon_n$ are i.i.d. Bernoulli random variables of $P(\epsilon_1 = 1) = P(\epsilon_1 = -1) = 1/2$. We hence have

$$E \sup_{t \in \mathbb{R}} |F_n(t) - F(t)| \le \frac{2}{n} E \sup_{t \in \mathbb{R}} |\sum_{i=1}^n \epsilon_i \mathbb{1}(X_i \le t)| \le \frac{2}{n} E \max_{\ell \le n} |\sum_{k=1}^\ell \epsilon_k| \le \frac{2}{n} (E \max_{\ell \le n} |\sum_{k=1}^\ell \epsilon_k|^2)^{1/2}.$$

We then employ Doob's L_p maximal inequality.

Theorem 3 (Doob's L_p maximal inequality, Theorem (4.3) of Chapter 4.4 in D2005). If Y_n is a martingale, then for any $p \in (1, \infty)$,

$$E \max_{m \le n} |Y_m|^p \le \left(\frac{p}{p-1}\right)^p E(|Y_n|^p).$$

which yields

$$E \max_{\ell \le n} |\sum_{k=1}^{\ell} \epsilon_k|^2 \le 4E |\sum_{k=1}^{n} \epsilon_k|^2 = 4n,$$

and hence completes the proof.