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Lecture 1: Big Picture (Addendum)
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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Lecturer.

1.1 First proof of GC Theorem

We consider
g = {gt X — ]l(,oo,,g](:lﬁ)}7
and can rewrite
sup |, (t) — F(£)] = sup | Eng — Egl.
t Y

We are now ready to rigorously prove the GC Theorem:

2log 2(n + 1
Esup |Fa(t) — F(t)] < 21/ 2082+ D
t n

Proof. The proof is twofold. First is a classic symmetrization (we will repeatedly rediscover this trick
everywhere). Secondly, we will employ the celebrated Massart’s finite class lemma.

Step I. Let Z3,..., Z, be an independent copy of Xi,...,X,,. We then have
1 1
Esup |Eng — Egl =Esup|— » g(X;) — —FEg(Z;)|
g€g geg N ; n
1 n
=Esup|=> {9(X;) - Elg(Z)| X1, ..., X}
9€6 i

=Esup |E(
g€eg

3=

Z{Q(Xi) —9(Z)} X1, ..., X0

<EBp | Y (0(X) - o(Z)|1Xs, ... Xl

n

—Esup|~ 3 (9(X,) — 9(2).

9€6 i
We then employ the Rademacher sequence €1, ..., ¢€,, where ¢; € {—1,1} is symmetric around 0. We then
have
1 n 1 n 1 n
Esup|= > (9(Xi) —g(Z))| = Esup|— > €i(g9(Xi) —g(Z))| <2Esup|— ) eg(Xi)|,

where the last inequality is via the triangle inequality.

Step II. Secondly, we employ Massart’s finite class lemma.
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Lemma 1 (Massart’s finite class lemma). Let A C R™ with |A| < oo and R := max,ca ||all2. We then have

1 & R\/21og|A
FE max ( E eiai> < i”
acA n Pt n
and
1 « R+\/21og2|A
FEmax |— €a;| < 70g||
acA |n Pt n

Proof. Define Z, := Y. | €;a;. We have
exp(tE max Za) < Eexp(t max Zy) = Ergleaj( exp(tZ,) < E ;exp(tZa).
Using Hoeffding’s inequality, we have
EY exp(tZ,) <Y exp(t? zn:af /2) <> exp(t*R?/2) = |A| exp(t*R?/2).
a€A a€A i=1 a€A

Accoridngly, we have

log|A| tR?
Emax Z, < inf og | |+£ .
acA t>0 t 2

Setting t = /2log |A|/R?, we have the desired bound for the first term. The second inequality comes from
enriching the class A to {A, —A}. O

Now applying Massart’s lemma, we have

1 1 2log2(n+1)
Esup|—» €g(X;)|=EEsup|— » €g(Xi)|X1,..., Xy </ ——>.
geg | M ; geg | M ; n
This completes the proof. O

1.2 Second proof of GC Theorem

Theorem 2 (Glivenko-Cantalli). Suppose X1,...,X,, be n i.i.d. random variables, and

n

Fo(t) :== % DX <t) = % zn: Zi(t) and F(t):= P(X; <t)

i=1

are the empirical and population cdf. We then have

Esup|F,(t) — F(1)] <
teR

Bl

Proof. Using the standard symmetrization argument, we have

n n

1 — 1 ~ 1 ~
Esup|F,(t)—F(t)| = Esup|— Zi(t)-EZ;(t)| < Esup|— Z:(t)—Z;(t))| = Esup|— e (Z;(t)—Z;(t))|,
p |F()-F0)] = Baupls 3 Zi0-BZ(0)] < Bsup |2 3 (Z0)-Z(0)] = Baupls 3 a(Z:0-Zio)
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where €1, ..., €, are i.i.d. Bernoulli random variables of P(e; = 1) = P(e; = —1) = 1/2. We hence have

Esup |F,(t < Esu 61(X; <) < Emax el < — Emax € 1/2,
te}g\ (t) = F(t)] pIZ =~ IZ k| IZ k)

We then employ Doob’s L, maximal inequality.

Theorem 3 (Doob’s L, maximal inequality, Theorem (4.3) of Chapter 4.4 in D2005). IfY,, is a martingale,

then for any p € (1, 00),
p p
Em Ymp<(7)Ean.
max (Vo < (S2) E(YP)

which yields
4 n
2 2 _
El?éiﬂ;eﬂ < 4E|;€k|

and hence completes the proof. O



