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“There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.”

— Hamlet Act 1, scene 5

1.1 Glivenko-Cantalli and Donsker on {1(· ≤ t), t ∈ R}

Classical empirical processes theory deals with the empirical distribution function based on n i.i.d. obser-
vations, X1, . . . , Xn, of X ∈ R with distribution function F , corresponding to a measure P on a triplet
(R,B(R), P ). Two elementary statistical functionals of everlasting interest are the empirical distribution
function

Pnft = Fn(t) :=
1

n

n∑
i=1

1(Xi < t) =
1

n

n∑
i=1

1(−∞,t](Xi),

and the corresponding empirical process, :

Gnft :=
√
n
( 1

n

n∑
i=1

ft(Xi)− Eft
)

=
√
n(Fn(x)− F (x)),

where ft(x) := 1(x ≤ t) for t ∈ R.

We first provide the GC property for Fn.

Theorem 1 (Glivenko-Cantalli Theorem). We have

‖Fn − F‖∞ = sup
t∈R
|Fn(t)− F (t)| a.s.→ 0.

Remark 2. Obviously, Glivenko-Cantalli is a UNIFORM version of the strong law of large numbers, applied
to a particular function that is extremely easy to handle, the indicator function. Of note, in STAT535, we
have also rigorously proven that

‖Fn − F‖∞ = OP (
√

log n/n)

using naive VC arguments. Later, we will show ‖Fn − F‖∞ = OP (
√

1/n) using the chaining argument
introduced in STAT 582. Since this root-n rate is impossible to improve any further (by Donsker Theorem),
the story is complete.

The next question is, do we have an analogous uniform central limit theorem? Note that GC Theorem was
proved in 1933. This next step takes another 20 years to be resolved (though not quite correctly) by Donsker
in 1952, and fully corrected in 1956 by Skorohod and Kolmogorov. This is now called the Donsker Theorem.

Before introducing the Donsker theorem, we have to first rigorously define what is a uniform central limit
theorem. For this, it is worthwhile to remind the following equivalent definitions of weak convergence (a.k.a.,
“convergence in law”):

1-1



1-2 Lecture 1: Big Picture

Lemma 3 (Portmanteau, Lemma 2.2 in V2000). For any r.v. Xn and X, the following are equivalent:

(1) P (Xn ≤ x)→ P (X ≤ x) for all continuity points of x→ P (X ≤ x) (written as Xn ⇒ X);

(2) Ef(Xn)→ Ef(X) for all bounded continuous functions f ;

(3) Ef(Xn)→ Ef(X) for all bounded Lipschitz functions f .

Conditions (2) and (3) bear the potential for generalizing the notion of weak convergence w.r.t a single
element Xn to a stochastic process {Gnft : t ∈ R}, which takes values in the class of bounded functions from
R to R.

Theorem 4 (Donsker’s Theorem, version 1). Suppose X ∼ Unif(0, 1) (so that the law corresponds to the
Lebesgue measure on [0, 1]), then {Gnft, t ∈ [0, 1]} ⇒ G as a process in the space D(0, 1), where D(0, 1) is
the space of cadlag functions on [0, 1] equipped with the Borel σ-algebra generated by the Skorohod topology,
and G is a tight Brownian bridge process on [0, 1], i.e., G is mean zero Gaussian process indexed by [0, 1]
with covariance structure K(s, t) = Cov(G(s),G(t)) = s ∧ t− st.

It is obvious that Theorem 4 is difficult to read, and the Skorohod topology is developed to answer some
mathematically subtle questions you may never be interested in. Hence, for simplicity, we could instead
think about each realization of {Gnft, t ∈ R} as an element of the space L∞(R), the space of bounded
functions from R to R, and impose a topology (for introducing continuity) by using the uniform entropy: for
f, g ∈ L∞(R), posing d(f, g) = ‖f − g‖∞. Then, abandoning the measurability issue hereafter, we have the
following “nicer” version of the Donsker’s Theorem.

Theorem 5 (Donsker’s Theorem, version 2). Suppose Xi’s have a continuous distribution F supported on
R. Consider the process G ◦ F . Then {Gnft, t ∈ R} ⇒ G ◦ F as a process in L∞(R), namely,

EH({Gnft, t ∈ R})→ EH(G ◦ F )

for all bounded continuous functions H : L∞(R)→ R.

1.2 Glivenko-Cantalli and Donsker on general function classes

The modern empirical processes theory aims to generalize the classic GC and Donsker results to general
function classes besides {1(· ≤ t), t ∈ R}. In other words, the goal is to investigate which function classes F
satisfy the same GC and Donsker properties:

‖Pn − P‖F := sup
f∈F
|Pnf − Pf |

a.s.→ 0 and Gn(F)⇒ GP (F) in L∞(F).

We will soon realize that verifying the GC and Donsker for a certain function class F is equivalent to
measuring the “complexity” of function classes, usually by the so-called “metric entropy” and VC dimensions.

But first, a concrete probability framework is in line.

Let (Ω,A, P ) be the studied probability space of the samples, with realizations X1, X2, . . . that are i.i.d.
X -valued and could be thought as co-ordinate projections on a product space Ω := (Ω∞,A∞, P∞): thinking
about a generic sample point ω = (x1, x2, x3, . . . , ) we have Xi(ω) = xi. Consider now a class of functions F
with domain X and range R and envelop function F (meaning that f(x) ≤ F (x) for any x ∈ X and f ∈ F).
Let

Pn =
1

n

n∑
i=1

δXi
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denote the empirical measure. Hence, Pnf − Pf could be well understood as

Pnf − Pf =

∫
fdPn −

∫
fdP =

1

n

n∑
i=1

f(Xi)− Ef.

Definition 6. F is called P -Glivenko-Cantalli if ‖Pn − P‖F
a.s.→ 0.

Similarly, the empirical process Gn(·) is viewed as a map from Ω to L∞(F) and is defined as

Gωn(f) :=
√
n(Pωn − P )f =

1√
n

n∑
i=1

(f(Xi(ω))− Pf).

Thusly, for each fixed ω, Gωn(·) is a bounded function from F to R. We often omit ω when no confusion
exists.

We next establish weak convergence regarding Gn(F) := {Gnf, f ∈ F}. By the finite-dimensional central
limit theorem,

1√
n

n∑
i=1

[
{f1(Xi)− Pf1(Xi)}, . . . , {fm(Xi)− Pfm(Xi)}

]
⇒ (GP f1, . . . ,GP fm), fi ∈ F ,m ∈ N,

where GP (f), f ∈ F is a centered Gaussian process with the same covariance as the process {f(X) : f ∈ F}:

EGP (f)GP (g) = P (f − Pf)(g − Pf).

Recalling Theorem 4, we may refer to GP (F) as the P -bridge process indexed by F .

For weak convergence w.r.t. F to make any sense, we may have to first require the corresponding Gaussian
process GP (F) to be well-defined and nice in a certain sense.

Definition 7. We say that F is P -pre-Gaussian if the P -bridge process GP (F) admits a version (i.e.,
equivalent in distribution) whose sample paths are all bounded and uniformly continuous for its intrinsic
L2-distance

d2
P (f, g) := P (f − g)2 − {P (f − g)}2, f, g ∈ F ,

which further produces a pseudo-metric space (F , dP ).

Definition 8. We say that the class F ⊂ L2(Ω,A, P ) satisfying

sup
f∈F
|f(x)− Pf | <∞, for all x ∈ X (1.1)

is a P -Donsker class if F is P -pre-Gaussian and Gn(F) weakly converges in L∞(F) to the Gaussian process
GP (F) as n→∞.

We are now finally ready to state the profound Donsker theorem for general function class.

By Theorem 3.7.23 in GN2015 (I also heard that Jon proved it in STAT 522 last year) given below, weak
convergence in L∞(T ) is equivalent to uniform asymptotic equicontinuity (w.r.t. the pseudo metric space
(T, d)) of Gn(F), a property naturally characterizing the smoothness of stochastic process.

Theorem 9 (Theorem 3.7.23 in GN2015). Let {Xn(t), t ∈ T}n∈N be a sequence of bounded processes. Then
the following statements are equivalent:
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(a) The finite-dimensional distributions of the processes Xn converges in law, and there exists a pseudo-
metric d on T such that (T, d) is totally bounded, and

lim
δ→0

lim sup
n→∞

P
{

sup
d(s,t)≤δ

|Xn(t)−Xn(s)| ≥ ε
}

= 0,

for all ε > 0.

(b) There exists a process X whose law is tight and Xn ⇒ X in L∞(T ).

Theorem 9 immediately gives rise to the following theorem, which states the Donsker theorem for general
function class.

Theorem 10 (Theorem 3.7.31 in GN2015). Assume that F ∈ L2(Ω,A, P ) satisfying (1.1). Then the
following three conditions are equivalent:

(a) F is a P -Donsker class.

(b) The pseudo-metric space (F , dP ) is totally bounded and

lim
δ→0

lim sup
n→∞

P
{

sup
dP (f,g)≤δ

|Gnf −Gng| ≥ ε
}

= 0,

for all ε > 0.

(b) There exists a totally bounded pseudo-metric space (F , e) such that

lim
δ→0

lim sup
n→∞

P
{

sup
e(f,g)≤δ

|Gnf −Gng| ≥ ε
}

= 0,

for all ε > 0. (A typical e(f, g) = ‖f − g‖L2(P ).)

Theorem 10 effectively reduces proving Donsker property to proving a maximal inequality, which shall be
comparably much easier to handle, and will be the subject of the next chapter using the uniform entropy.

1.3 Examples

You might wonder why we wish to establish such fancy results, especially if you are less exposed to statistics.
It turns out that the GC and Donsker properties and the related techniques are the center of modern
statistics, and many seemingly simple procedures cannot be well understood without them.

A commonly recurring theme in statistics is to prove (a) consistency; (b) asymptotic normality (ASN) of a
given statistic, which is not necessarily the mean of independent random variables.

1.3.1 A toy example

In the future you will see many more statistics without a closed form. But even if the studied statistic enjoys
a closed form and looks extremely nice and easy, you might still find yourself powerless in analyzing it unless
you master the EP technique.

The following example comes from Pollard.
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Let X1, . . . , Xn be i.i.d. P on the real line. Set µ = EX1. Consider the mean absolute sample deviation,

Mn =
1

n

n∑
i=1

|Xi −Xn|.

A near-trivial argument shows that Mn
P→M := E|X−µ|. The next question is, how to prove

√
n(Mn−M)

is asymptotically normal (which is a natural conjecture)? Surprisingly, it is very difficult to prove without
resorting to EP techniques. Let’s outline a proof below.

Consider F := {|x− t| =: ft(x) : t ∈ [µ− δ0, µ+ δ0]} for some δ0 > 0. We then have
√
n(Mn −M) =

√
n(PnfXn

− Pfµ)

=
√
n(Pn − P )fµ +

√
n[PnfXn

− Pnfµ]

=
√
n(Pn − P )fµ +

√
n(Pn − P )(fXn

− fµ) +
√
n(ψ(Xn)− ψ(µ))

= An +Bn + Cn,

where ψ(t) = Pft = EP |X − t|. Assume that P has a density. Then

ψ(t) = µ− 2

∫ t

−∞
xf(x)dx− t+ 2tFP (t)

with derivative 2FP (t)− 1. Hence, the delta method implies

Cn =
√
n(Xn − µ)ψ′(µ) + oP (1),

yielding
An + Cn = Gn(fµ(x) + ψ′(µ)x).

Lastly, we claim Bn = oP (1) to finish the proof. This is where the empirical processes techniques kick in.
To this end, we need the following nice proposition of the Donsker class.

Proposition 11. Let F be a P -Donsker class. Let f0 be a fixed function and f̂n be a random function

depending on X1, . . . , Xn such that dP (f̂n, f0)
P→ 0. Then

|Gnf̂n −Gnf0|
P→ 0.

Proof. Let η, ε > 0 be given. Since F is Donsker, we have

lim
δ→0

lim sup
n→∞

P ( sup
dP (f,g)<δ

|Gn(f − g)| > η) = 0.

Thusly, we can find η0 > 0 such that

lim sup
n→∞

P ( sup
dP (f,g)<δ

|Gn(f − g)| > η) < ε,

implying that, for all sufficiently large n,

P ( sup
dP (f,g)<δ

|Gn(f − g)| > η) < 2ε.

Let Ωn := {dP (f̂n, f0) < δ0}. By hypothesis, P (Ωn) ≥ 1 − ε eventually. Let Ω̃n := {supdP (f,g)<δ0 |Gn(f −
g)| ≤ η}. Then P (Ω̃n) ≥ 1− 2ε. Thus,

P (Ωn ∩ Ω̃n) ≥ 1− 3ε

eventually. However, we know Ωn ∩ Ω̃n ⊂ {|Gn(f̂n − f0)| ≤ η}. This implies that P (|Gn(f̂n − f0)| > η) is
eventually less than 3ε.
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We are now technically ready to prove Bn = oP (1). To this end, we take Θ = [µ − δ0, µ + δ0]. Then
{fθ(x) : θ ∈ Θ} is a P -Donsker class of functions provided EPX

2 < ∞ (as it is a VC-class of square-

integrable envelop). Let θ̂n = Xn1(Xn ∈ [µ − δ0, µ + δ0]) + µ1(Xn 6∈ [µ − δ0, µ + δ0]) be the truncated
version of Xn (you will repeatedly see this simple technique everywhere), and θ0 = µ. We then have

Bn = Gn(fθ̂n − fθ0) + Gn(fXn
− fθ̂n).

The second term is clearly oP (1) since P (θ̂n 6= Xn) = o(1). For the first term, Proposition 11 directly applies
to solve the problem by noticing

d2
P (fθ1 , fθ2) = VarP (|X − θ1| − |X − θ2|) ≤ P (|X − θ1| − |X − θ2|)2 ≤ (θ1 − θ2)2.

This finishes the proof.

1.3.2 M-estimators

Later, following VW1996, we will give the analysis of M-estimators in its full power. Some popular regression
procedures, such as the least absolute deviation regression,

β̂ = argmin
β∈Rp

1

n

n∑
i=1

|Yi −XT
i β|, (1.2)

have to be analyzed using these powerful EP techniques.

However, a more elementary version does exist and is very revealing. The following framework is explicitly
stated in Sherman (1993), credited to Pollard, and originally comes from Huber.

Suppose θ0 maximizes a function Γ(θ) defined on Θ, and θ̂n maximizes Γn(θ), which is a sample analogue
of Γ. The following three theorems separately establish consistency, rate of convergence, and ASN.

Theorem 12 (Theorem 5.7 in V2000). Suppose for every ε > 0,

sup
θ∈Θ
|Γn(θ)− Γ(θ)| P→ 0 and sup

θ:d(θ,θ0)≥ε
Γ(θ) < Γ(θ0). (1.3)

Then d(θ̂n, θ0)
P→ 0.

Remark 13. The first equation in (1.3) is the GC property, and calls for EP techniques to verify.

Theorem 14. Suppose that θ̂n converges in probability to θ0, and also

(1) (Strong convexity on Γ(·)) There exists a neighborhood N of θ0 and an absolute constant κ > 0
such that

Γ(θ)− Γ(θ0) ≤ −κ‖θ − θ0‖2

for all θ in N .

(2) (Uniform smoothness) Uniformly over oP (1) neighborhood of θ0,

Γn(θ)− Γn(θ0) = Γ(θ)− Γ(θ0) +OP (‖θ − θ0‖/
√
n) + oP (‖θ − θ0‖2) +OP (1/n).

Then
‖θ̂n − θ0‖ = OP (1/

√
n).
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Proof. In-class presentation.

Theorem 15. Suppose θ̂n is
√
n-consistent for θ0, an interior point of Θ. Suppose also that uniformly over

OP (1/
√
n) neighborhood of θ0,

Γn(θ)− Γn(θ0) =
1

2
(θ − θ0)TV (θ − θ0) +

1√
n

(θ − θ0)TWn + oP (1/n),

where V is a negative definite matrix, and Wn weakly converges to a N(0,∆) random vector. Then

√
n(θ̂n − θ0)⇒ N(0, V −1∆V −1).

Proof. Let’s construct θ̃n := θ0 − V −1Wn/
√
n so that

−V (θ̃n − θ0) = Wn/
√
n.

Our aim is to prove
‖θ̂n − θ̃n‖ = oP (1/

√
n).

By the given condition, with high probability we have

Γn(θ̂n)− Γn(θ0) =
1

2
(θ̂n − θ0)TV (θ̂n − θ0) +

1√
n

(θ̂n − θ0)TWn + oP (1/n)

=
1

2
(θ̂n − θ0)TV (θ̂n − θ0)− (θ̂n − θ0)TV (θ̃n − θ0) + oP (1/n)

and also

Γn(θ̃n)− Γn(θ0) = −1

2
(θ̃n − θ0)TV (θ̃n − θ0) + oP (1/n).

By definition, Γn(θ̂n) ≥ Γn(θ̃n) so that

1

2
(θ̂n − θ0)TV (θ̂n − θ0)− (θ̂n − θ0)TV (θ̃n − θ0) +

1

2
(θ̃n − θ0)TV (θ̃n − θ0) + oP (1/n) ≥ 0,

or in other words,

oP (1/n) ≤ 1

2
(θ̂n − θ̃n)TV (θ̂n − θ̃n) ≤ 0,

where the last inequality is due to negative-definiteness of V . This implies the desired result.

The above framework can work perfectly when the hessian of Γn enjoys a Lipschitz property, i.e., ‖∇2Γn(θ1)−
∇2Γn(θ2)‖F ≤M(X1, . . . , Xn)‖θ1−θ2‖, which applies to simple linear regression. However, it cannot handle
the quantile regression estimators given in (1.2). For this, we have to stick to the strongest version, which
we will introduce in the third chapter. People of interest could read Chapter 3.2.4 in VW1996.

1.3.3 Z-estimators

Think about the generalized estimating equations (GEE). It belongs to a large family of estimators, called
the Z-estimators. Z-estimators are naturally connected to M-estimators, though not every M-estimator could
be written as a Z-estimator (e.g., Manski’s rank estimator).

Let’s nail down the framework. Consider Ψ : R × Θ → R. θ̂n solves PnΨ(·, θ) = 0, while θ0 satisfies

PΨ(·, θ0) = 0. The purpose is to establish ASN of θ̂n to θ0 provided that we know d(θ̂n, θ0)
P→ 0.
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To this end, expanding the identity
√
nPnΨ(·, θ̂n) = 0 yields

GnΨ(·, θ0) + Gn(Ψ(·, θ̂n)−Ψ(·, θ0)) +
√
n(Pθ0Ψ(·, θ̂n)− Pθ0Ψ(·, θ0)) = 0.

Assuming {Ψ(, θ)} is Pθ0 -Donsker in a neighborhood of Θ, similar to the argument in Section 1.3.1, it is

straightforward to establish Gn(Ψ(·, θ̂n)−Ψ(·, θ0)) = oP (1), which then yields

GnΨ(·, θ0) = −
√
n{Pθ0Ψ(·, θ̂n)− Pθ0Ψ(·, θ0)}+ oP (1).

Let’s write m(θ) = Pθ0Ψ(·, θ) and σ2(θ) = Varθ0(Ψ(·, θ)). We then have

GnΨ(·, θ0) = −
√
n(θ̂n − θ0) · m(θ̂n)−m(θ0)

θ̂n − θ0

+ oP (1). (1.4)

It is very easy (by Taylor expansion) to check that

m(θ̂n)−m(θ0)

θ̂n − θ0

P→ −I(θ0) := −m′(θ0),

where I(θ0) is known as the Fisher information matrix when Ψ is set to be the score function (derivative of
the likelihood). We then have the desired result that

√
n(θ̂n − θ0)⇒ N(0, I(θ0)−1),

which also proves the ASN of MLE.

Remark 16. For simplicity, we only prove the case when θ is one-dimensional. This is crucial in establishing
(1.4). For multidimensional θ, in order to establish a similar result, we have to “Taylor expand” Pθ0Ψ(·, θ̂n)−
Pθ0Ψ(·, θ0) in a vector space, which requires a certain version of differentiability. Details will be seen in the
near future. Readers of interest could read Chapter 3.3 in VW1996.

1.3.4 Von-mises calculus and functional delta method

We only give a very brief introduction to this topic. It is understood that Gn =
√
n(Pn − P ) and hence

Pn = P + n−1/2Gn. Then, for any function θ of measures as input, we have

√
n(θ(Pn)− θ(P )) =

√
n(θ(P + n−1/2Gn)− θ(P )) =

θ(P + n−1/2Gn)− θ(P )

n−1/2
.

For any fixed measure Q, it is understood that

lim
n→∞

θ(P + n−1/2Q)− θ(P )

n−1/2
= θ̇(Q)

when θ is smooth enough (a subtle concept since it involves arguments of infinite dimensions). By standard
functional analysis argument (or just think about the Taylor expansion), θ̇(·) is a linear operator, which
means θ̇(Q) has to take the form QΦ for some unknown function Φ that depends on P . Φ is then called
the “influence function” of the operator θ (slightly different from the original definition though: Φ versus
Φ− PΦ).

To continue, it has to be shown that Q could be taken to be Gn. This is through the idea of P -Donsker and
Hadamard differentiability. In detail, assuming the function θ : Q → R to be Hadamard differentiable at P
with respect to a certain metric d(·, ·), i.e., there exists θ̇(Q) continuous and linear such that∣∣∣θ(P + tQ)− θ(P )

t
− θ̇(Q)

∣∣∣ = o(1)
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for all {Q} such that d(Q,∆) → 0 for some measure ∆. Under some conditions, we then have, with
probability tending to 1, that d(Gn,G ◦ F ) → 0 by taking t = n−1/2 and using the Donsker property of
F = {ft, t ∈ R}. We thus have

√
n(θ(Pn)− θ(P )) = θ̇(Gn) + oP (1) = GnΦ + oP (1).

Let’s give an example. Consider the sample mean Xn :=
∫
xdPn = θ(Pn) with θ(Q) :=

∫
xdQ. We then

have

lim
ε→0

θ(P + εH)− θ(P )

ε
= lim
ε→0

∫
xd(εH)

ε
=

∫
xdH = Hx.

This implies that the influence function for the sample mean is just Φ(x) = x, and

√
n(Xn − µ) = Gnx+ oP (1),

which is a trivial argument.


