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Lecture 2: Uniform Entropy
Lecturer: Fang Han April 16

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Lecturer.

“God help us — for art is long, and life so short.”

— Faust, Part I

The ultimate goal of this chapter is to determine, for a given possibly very general function class F, the
values of

(Glivenko — Cantalli property) E sup |(P,, — P)f|
feFx

and

(Donsker property) E( sup IVn(P, — P)(f — 9)‘)
f.9€F:dp(f,g)<é

It is clear that they both reduce to proving a maximal inequality, which is literally the core of empirical
processes techniques.

2.1 VC classes of sets

2.1.1 Basic properties
Consider a class of sets C := {C € C,C C X} and any sample z} = {z1,...,2,} C X of size n. We define

C’s growth function as follows.

Definition 1. The growth function Il¢(n) is defined as

I (n) = ;n?cug((\m? NCl.
1

Definition 2 (shattering). C is said to shatter a class T C X if |T NC| = 271

Definition 3 (VC dimension). The VC dimension (or called VC index) of C, written as v(C), is the largest
n such that there exists a set T C X, |T| =n, and C shatters it.

When the quantity v(C) is finite, the class of sets C is said to be a VC-class.

Example 4. Consider the class Ciefr, := {(—00,a];a € R}. We have v(Ciet) = 1. On the other hand, it is
easy to derive that ¢, (n) <n+1=(n+ 1)”(Cleft).

Example 5. Consider the class Ciwo := {(b,a];a,b € R}. We have v(Ciwo) = 2. On the other hand, it is
easy to derive that Tle, , (n) < (n+1)% = (n + 1)¥(Cowo),

The following result shows that, for any VC class, the cardinality of ] NC can grow at most polynomially
in n. This is named the Sauer’s Lemma.

2-1
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Lemma 6 (Vapnik-Chervonenkis, Sauer, and Shelah). Consider a set class C with v(C) < co. Then, for
any collection of points 7 = (x1,...,2y), we have

. v(C) n ' e en \v(©)
ulm:gsz>gmm{m+n<h(M®) }.
1=0

Proof. The first inequality could be established through the following more general inequality. The rest two
are simple algebra and are left to the readers.

Lemma 7. Let A be a finite set and let U be a class of subsets of A. Then
U] < HB C A | B is shattered by Z/l}’

To see how this lemma immediately proves Sauer’s lemma, note that B C A is shattered by C meaning that
|B] < v(C). Consequently, if we let A = 27 and set & = C N A, then Lemma 7 yields

?

ZPNC|=|CNA| < HBCA | Bgy(C)H gljz(cj)(@).
=0

It remains to prove Lemma 7. For a given x € A, let’s define an operator on sets U € U via

U\N{z} fzecUandU\{z} ¢U

U otherwise.

T (U) = {

We let T, (U) be the new class of sets defined by applying T, to each member of U, namely, T, (U) =
@Hm\Ueu}

(1) We first show that T, is a one-to-one map between U and T,(U), and hence |[U| = |T,(U)|. This is
equivalent to proving that, for any sets U,U’ € U such that T,(U) = T,(U’), we must have U = U’ (the
reverse is simple). This is by the following case-by-case investigation:

e Case 1: ¢ ¢ U and x ¢ U'. We then have U =T, (U) =T, (U') =U".

e Case 2: z ¢ U and x € U’. In this case, we have U = T,,(U) = T, (U’), so that z € U’ but = ¢ T,,(U").
But this means that T,,(U’) = U’ \ {z} & U, which contradicts the fact that T,(U') = U € U. By
symmetry, the case x € U and z ¢ U’ is identical.

e Case 3: x e UNVU'. If both U \ {z} and U’ \ {z} belong to U, then U = T,(U) = T,(U') =U'. It
neither U \ {z} nor U \ {x} belongs to U, then we also have U \ {z} = U’ \ {z}, yielding U = U".
Lastly, if U\ {z} € U but U’ \ {z} € U, then T,(U) = U\ {z} € U but T,,(U’) = U’ € U, which is a
contradiction.

(2) We secondly show that if T, (i) shatters a set B, then so does U. If x ¢ B, then both U and T, (U) pick
out the same set of subsets of B, and the claim must be true. Otherwise, if © € B, since T, (i) shatters B,
for any subset B’ C B\ {z}, there is a subset T" € T, (1) such that TN B = B’ U {z}. Since T = T,(U)
for some subset U € Y and = € T, we conclude that both U and U \ {z} must belong to U, so that U also
shatters B.

(3) We now conclude the lemma. Define the weight function w(U) = > ¢, |U|. Note that applying a
transformation 7, can only reduce this weight function: w(7,(U)) < w(U). Consequently, by applying the
transformations {7} to U repeatedly, we can obtain a new class of sets U’ such that |U| = |U’'| and the
weight w(U’) is minimal. Then, for any U € U’ and any = € U, we have U \ {z} € U’ (otherwise, we have
w(Tx(U")) < w(Ud’), contradicting minimality). Therefore, the set class U’ shatters any one of its elements.
Noting that U shatters at least as many subsets as U’, and |[U| = |U'|, the proof is complete. O
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2.1.2 VC stability

The property of having finite VC-dimension is preserved under a number of basic operations, as summarized
in the following (refer to, for example, Lemma 9.7 in K2008, Proposition 3.6.7 in GN2015, and Theorem
13.5 in “A Probabilistic Theory of Pattern Recognition” by Luc Devroye, Lszl Gyorfi, and Gabor Lugosi).
They are also known as stability results in David Pollard’s sense.

Theorem 8 (Stability). Let C and D be VC-classes on X with growth functions Il¢(n) and p(n) and VC
dimensions Ve and Vp. Let € be VC-class on W with growth function Ilg(n) and VC dimension Vg. We
then have

(1) C° has VC-dimension Ve and growth function Tl¢(n);

(2) CND={CnNnD;CeC,D e D} has growth function < Il¢(n)lIp(n);

(8) CUD={CUD;C e€C,D e D} has growth function < Il¢c(n)lIp(n);

(4) D x & has growth function < I¢(n)lp(n);

(5) &(C) has VC-dimension V¢ if ¢ is one-to-one;

(6) ¥»=1(C) has VC-dimension < Ve.

Remark 9. When you have an upper bound on the growth function of a given class of sets, by the definition
of VC dimension, you also obtain an upper bound on that class by noticing that v(C) is the largest n such
that 2" = Tl¢(n), and for any n € N, Te(n) < (n+ 1)¥©),

Theorem 8 is a nice result, but we still need something to begin with. Regarding any given real-valued
function g : X — R, it defines a “classification” function by the set S, := {z € X | g(z) < 0}. In this way,
we can associate the function class G with the collection of subsets S(G) := {Sg;9 € G}.

In case the function class G is a vector space, the following result upper bounds the VC-dimension of the
associated “classification” class S(G).

Proposition 10. Let G be a vector space of functions g : RY — R with dimension dim(G) < oco. Then the
class S(G) has VC-dimension at most dim(G).

Proof. By definition of VC-dimension, we need to show that no collection of n = dim(G) + 1 points in R?
can be shattered by S(G). To this end, fix a collection x7 of n points in R?, and consider the following sets:

{g@).....g@)" g€ g}.

We then have, the range of the above sets is a linear subspace of R” with dimension at most dim(G) =
n — 1 < n. Therefore, there must exist a non-zero vector a € R™ such that (a, (g(z1),...,g(zs))T) = 0 for
all g € G. We may assume, W.L.O.G., that at least one entry a; of a is positive, and then write

Z a;g(x;) = Z (—a;)g(x;) forall g €g.

{ila; >0} {i;a;<0}

Now suppose that there exists some g € G such that the associate classification class Sy = {x € R%; g(z) < 0}
includes only the subset {z; : a; < 0}. For such a function g, the LHS of the above equation would be strictly
positive, while the RHS would be non-positive, which is a contradiction. We thus proved that S(G) cannot
shatter z7, and finish the proof. O
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Example 11 (Linear functions in R?). For a pair (a,b) € R? x R, consider the function class fop(z) =
aTx +b, and consider the family L = {f.p | (a,b) € R x R}. The associated classification is the collection
of all half-spaces of the form Hyp = {x € R? | ax 4+ b < 0}. Since the family L forms a vector space of
dimension d + 1, we have S(L?) has VC-dimension at most d + 1.

Example 12 (Sphere in R?). Consider the sphere S, := {x € R%; ||z — al|2 < b} where (a,b) € RY x RT.
Let S¢ denote the collection of all such spheres. If we define the function

d
Fapl@) = lzl3 — 2 ajz; + llall3 — b

j=1

Then we have S, p = {x € R%; f, ,(z) < 0}, so that the sphere is a classification set of the function fop. In
order to leverage Proposition 10, we define a feature map ¢ : R* — R yiq

¢($) = (1’1, <oy Xdy 1)3
and then consider the functions of the form
ge(x) :== T p(x) + ||z]|3, where 2 € R,

The family of functions {g.;c € R¥*1Y is a vector space of dimension d + 2, and it contains the functions
fap. We thus conclude v(S?) < d+2.

Remark 13. The VC-dimension should never be confused with the degree of freedom (or simply the number
of parameters) in statistics. in fact, if you have a nonlinear classification function class, it is very possible
that you will have a much higher VC-dimension than the number of parameters in your function. As an
extreme case, the function class {1(sinax > 0);a € R} can have infinite VC-dimension.

2.2 VC subgraph

2.2.1 Subgaussian processes and the chaining

Below is a quick glance of the chaining technique.

Definition 14 (Definition 2.3.5 in GN2015). A centered stochastic process {X (t),t € T} is subgaussian with
respect to a pseudo-distance d on T if its increments satisfy the subgaussian inequality:

Eexp(MX(t) — X(5))) < exp(A\2d?(s,t)/2) for A€ R,s,t€T.

Remark 15. As has been highlighted in Lecture 0, the process {\/n(P, — P)f; f € F} is strongly related to
the following associated process (called randomized empirical process):

{\}ﬁieif(Xi)§f € ]-'},

where {¢;} is the Rademacher sequence. Conditionally on the data {X;}, it is a subgaussian process with
respect to d(f,9) = |f = 9llLace.)-

Given a pseudo-metric space (T, d), for any € > 0, its covering number N(T,d,¢) stands for the smallest
number of closed ball with radius € that could cover T'. Analogously, its packing D(T,d,€) stands for the
largest number of closes balls with radius €/2 such that they could be packed into T. Tt is hence clear that

N(T,d,¢) < D(T,d,e) < N(T,d,</2).

Its metric entropy is defined as log N(T, d, €).
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Theorem 16 (Theorems 2.3.6 and 2.3.7 in GN2015). Let (T, d) be a pseudo-metric space, and let {X (t),t €
T} be a subgaussian process w.r.t the pseudo-metric d. Then,

(1) For all finite subset S C T and points ty € T,
D/2
Er{leagc | X(t)| < E|X(to)] + 4\/5/ V010g2N(T,d, €)de,
0

where D is the diameter of (T,d).

(2) Assume that
/ Vieg N(T,d, €)de < .
0
Then

D/2
Esup |X(t)] < E|X (o) + 4\/5/ V9og 2N (T, d, €)de.
teT 0

2.2.2 VC subgraph classes of functions

Viewing Remark 15 and Theorem 16, for tackling a given maximal inequality P sup ¢+ |G, f], the remaining
part is to derive an upper bound for the metric entropy log N(F,|| - ||z,@,),€). This is doable via the
Dudley-Pollard-Koltchinskii Universality Theorem by noticing that

log N(F, || - |y, €) < sgp log N(F, || - [|o(q) €)s

where @ is any finitely discrete probability measure such that || F'[|z,q) > 0.
Definition 17 (Definition 3.6.8 in GN2015). The subgraph of a real function f on X is the set
Gy = {(a:,t) rxeX,teRt < f(:L')}
A class of functions F is VC subgraph of index (VC dimension) v if the class of sets C := {Gy; f € F} is
VC of index v.

Example 18. Suppose C is a VC class of index v(C), then by definition the class of functions F := {1¢;C €
C} is VC subgraph of index v(C).

Example 19 (Lemma 2.6.15 in VW1996). Any finite-dimensional vector space F of measurable functions
f: X = R is VC-subgraph of index < dim(F) + 1.

Proof. The proof resembles that of Proposition 10. Take any collection of n = dim(F)+2 points (z1, 1), ..., (Tn, tn)
in X x R. Since F is a vector space, we have

{(f(xl)_tla“wf(wn)_tn)T?fE]:}

are contained in a (dim F + 1) = (n — 1)-dimensional subspace of R™. Hence, there exists a nondegenerate
vector a # 0 such that

Z ai(f(mi) — ti) = Z (—a;)(f(x;) — t;), forevery feF,

a; >0 a;<0

where by default the sum over an empty set is set to be 0. WLOG, we pick out an a such that there exists at
least one positive entry. For this vector, the set {(x;,t;) : a; > 0} cannot be of the form {(x;,t;) : t; < f(z:)},
since if then the LHS of the equation would be positive, and the RHS will be nonpositive. This concludes
that the F is VC-subgraph of index < dim F + 1. O
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We are now ready to state the main theorem in this chapter.

Theorem 20 (Dudley-Pollard-Koltchinskii-vanderVaart-Wellner Universality Theorem, Theorem 3.6.9 in
GN2015). Let F be a non-empty VC subgraph class of index v, and have an envelop F € LP(Q, A, Q) for
some 1 < p < oo. Set

My = Max {m € N:logm > ml/”*l/W}

for some w > v. We then have

DF 17(Q). el Fllg) < muw v [227(220)"].

(24

Proof. The proof uses probabilistic method tracing back to Paul Erdos and many other mathematicians
who worked on number theory via probabilistic construction techniques. We omit ) in the norm when no
confusion is made.

Let fi1,..., fm be a maximal collection of functions in F satisfying

Q|f1 - fj|p > GPQFpa for i 7é j7
so that m = D(F,LP(Q),€||F|p). For some k to be specified later, let {(z;,¢;);7 € [k]} be i.i.d. random
vectors with law

Ja )V a, F(x) ANb]FP~1(2)dQ(x)
20F"

Pr{( 1) € Axla, b]}

for A C X, real numbers a < b, and Lebesgue measure A. In other words, x; is chosen according to the law
Pr(A) = Q(14FP)/QFP, and given x;, t; is chosen uniformly on [—F(x;), F(x;)].

The probability that at least two graphs have the same intersection with the sample {(x;,t;),¢ € [k]} is at
most

<7721) mjx Pr(C; and C; have the same intersection with the sample)
i#]

m

<2>maXHPr{wr, ) & C;ACS}

m k
:<2) max 1;[1 [1 - Pr{(mr,tr) e CZ-ACJ-H

m k
:<2> max 11 {1 — Pr{(x,, t.) : t,. is between f;(s,), fj(s,.)H
_ m _ ‘f’b fj D
~(5) masl HFIIP [t e

m ‘fz f]
< P
(5 ) ma - g [ Vi ]

m Pk
= < 2) [ a 277}

m

where in the last equation we use 1 — z < exp(—z).
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Let k£ be such that this probability is less than 1. Then there exists a set of k elements such that graphs
C; € C, 1 <i < m, intersect different subsets of this set, which implies that [[.(k) > m. On the other hand,
the smallest k such that (7)) exp(—€Pk/2P) < 1 satisfies k < (2PF!/eP)logm. Then, by Sauer’s Lemma, we

have
9op+1

m§2k”§2( logm) .
ep

Some algebra then gives the desired bound. O

The Universality Theorem, combined with the chaining theorem, renders the following corollary.

Corollary 21 (Theorems 3.5.1 and 3.5.4 in GN2015). Assuming 0 € F, we have

EVn|P, - P|r <8V2-E

VP, F?
/ VIog2D(F, Lo(P,). 7)dr]

-J0

- 1
— 82 E HFHM/ \1082D(F, La(Py), l|F s, 20e]
- 0

) 1
<8V3-B[|Fle,s- [ sup \/log 2D(F. L:(@). | Fllq.2)a¢
L 0

1
< 8V3||F|ps / sup \log 2D(F, £5(Q). | Fllg.2)de
0

1
< ||F||p,2/ V/olog(AJe)de.
0
Example 22. Using the above corollary, it is immediate to prove that
Ev/n||P, — Pllg = O(1)

by noticing that G is a VC-subgraph of index 1 and fol 1og(A/e)de < .

We close this section with the VC-subgraph stability result, which is left for the students to verify.

Lemma 23 (VC-subgraph stability, Lemma 2.6.18 in VW1996). Let F and G be VC-subgraph classes of
functions on a set X and g: X - R, ¢ :R—=> R, and ¥ : Z — X fized functions. Then

(i) FNG:={fANg:feF,geq}is VC-subgraph;
(i) FN G is VC-subgraph;
(iii) {F >0} :={{f>0}:feF}is VC;
(iv) —F is VC-subgraph;
(w) F+g:={f+g:[feF}is VC-subgraph;
(vi) F-g:=1{fg: feF} is VC-subgraph;
(vii) Fow = {f(1): f € F} is VC-subgraph;

(viti) ¢ o F is VC-subgraph for monotone ¢.
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2.2.3 VC-hull and VC-major

This section briefly introduces the VC-hull and VC-major classes, without touching too much detail due to
the time limit. VC-hull and VC-major classes generalize the VC-subgraph (sometimes just referred to as
VC) classes of functions.

Definition 24 (convex hull, Definition 3.6.13 in GN2015). Given a class of functions F, co(F) is defined
as the convex hull of F, that is

co(F) = { Z/\ffiféf,z)\f =1,y > 0,A; # 0 only for finitely many f},
fer f

and €o(F) is defined as the pointwise sequential closure of co(F), that is, f € ¢o(F) if there ezist f, € co(F)
such that fn(z) — f(z) for allz € X as n — co.

Definition 25 (VC-hull, Definition 3.6.13 in GN2015). If the class F is VC-subgraph, then we say that
Co(F) is a VC-hull class of functions.

Example 26 (Example 3.6.14 in GN2015). Let F be the class of all monotone nondecreasing functions
f:R—=[0,1]. Then F €o(G), where G := {1 (5 00}, L[z,00) : © € R}.

Proof. For any f: R — [0, 1], we could define

1 SF
fn= n Z Lipsimy = Z ﬁﬂ{j/n<f£(a‘+1>/n}'
i=1 J=0

It is immediate that

sup|fu(z) — f(z)| < 1/n.

z€R
On the other hand, since f is monotone nondecreasing (with possible jumps), we have the sets {f > i/n}
are all half lines, rendering that lys~;/ny € G. O

Definition 27 (VC-major). F is a VC-major class if the collection of set {x : f(x) > tlier,fer is a
VC-class.

Lemma 28 (Lemma 2.6.13 in VW1996). A bounded VC-major class is a scalar multiple of a VC-hull class.

Proof. A given function f : X — [0,1] is the uniform limit of the sequence

m

f = 320 > ifm).

i=1

Thus, a given class of functions f : X — [0, 1] is contained in the pointwise sequential closure of the convex
hull of {1(f > t) : f € F,t € R}, which is VC-subgraph using Example 18 and the definition of VC-major
class. This then finishes the proof. O

The last result in this chapter, which we shall not prove, is the Universality Theorem on VC-hull, and hence
also on bounded VC-major classes.

Theorem 29 (Universality Theorem on VC-hull, Theorem 3.6.17 in GN2015). Let Q be a probability measure
on (X,0(X)), and let F be a collection of measurable functions with envelop F' € Lo(Q) such that

N(F, L2(Q), €l Fllz,@)) £ Ce™, for 0 <e< 1.
Then there exists a constant K depending only on C' and w such that

log N(T0(F), L2(Q), || F| y(q)) < Ke 2/ for 0 < e < 1.
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2.3 Donsker preservation

Following Chapter 1, in this section we will provide sufficient conditions for a class of measurable functions
F to be Donsker. As a consequence of the Universality Theorem, let’s consider the following uniform
entropy integral (Equation (3.169) in GN2015, named as Kolchinskii-Pollard entropy) of a class of measurable
functions F with envelope F:

6
J(F,F,8) = / sup V082N (F, Lo (Q), €| Fl 1.0 de.
0

Obviously, there is no need to consider § > 1.

2.3.1 Donsker Theorem

The following theorem states a sufficient condition for F to be Donsker (asymptotic equicontinuity plus
totally bounded).

Theorem 30 (Theorem 2.5.2 in VW1996). Let F be a class of measurable functions that satisfies

(1) J(F,F,1) < oo;
(2) the function classes
Fo={f—g:f.g€ F.\f—glp2 <6} and F2 :={(f—9)°:fgeF}
are P-measruable for every § > 0;
(3) PF? < .

Then F is P-Donsker.

Proof. (1) We first prove asymptotic equicontinuity. Proving it is equivalent to proving
P(IGnll7s, > =) =0

for every fixed x and sequence §,, — 0. Using Markov inequality, symmetrization, and chaining, we have

2 11 & C On
P(|Gulr, > <—EH— (X, <Z.E log N (Fs. La(Py), ¢)de,
(IGnlz;, > ) < = ﬁ;ezﬂ M, <5 E [ VigN(Fs, Lo(P), )de
where
02 = sup |fllz, o= sup I1£115-
Sn Sn

Noticing that, for any probability measure @,
N(f6n>L2(Q)7 6) < N(fooa LZ(Q)a 6) < N2(fv L2(Q)7 6/2)7

we have

0 On /2| Flln
| Vi N, LaP),de < Il [ sup \flog N(F, L3(Q). l|Fllg.2)de
0 0
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By Cauchy-Swartz and dominated convergence theorem, via Condition (1), it now suffices to proving 6, 5o
as 0, — 0.

We have, by Condition (2), sup{Pf?, f € Fs} — 0 and F5, C Foo. Thusly, proving 0, 20 can be reduced
to proving

P
[Py f? = Pf2|| 7. = 0.

This is to prove G-C property for F2 . By Condition (3) it has integrable envelope (2F)? and is measurable.
In addition, for any pair f,g € Fuo,

I[Dn‘f2 792| <Pulf —gl4F < ||f — gllnll4F |,

entailing

N(FZ, L1(Py), €ll2F|12) < N(Foo, La(Pn), €| Flln) < N*(F, La(Py), €| F|n/2).
Theorem 2.4.3 in VW1996 then kicks in to conclude.

(ii) Total boundedness is a direct consequence of the previous arguments. In detail, previously we proved
there exists a sequence of discrete (non-random) measures P, such that ||(P, — P)f?|| . — 0, we could take
n sufficiently large such that ||(P, — P)f?||7. < €2. Triangle inequality then yields that the e-net for F in
Ly(P,) is av/2e-net in Ly(P). By assumption, N(F, Ly(P,), €) < oo, which then renders N (F, Ly(P),¢) < 0o
and completes the proof. O

Theorem 31 (Theorem 2.4.3 in VW1996). Let F be a measurable class of measurable functions with envelop
F such that PF < co. Iflog N(F,Li(P,),€) = op(n) for every e > 0, then ||P, — P||z “3 0.

2.3.2 BUEI classes

A key part in Donsker preservation is the preservation of the boundedness of uniform entropy integrals. In
the sequel, following K2008, we call F to have bounded uniform entropy integral (BUEI) with envelope F if
J(F,F,1) < oo.

Lemma 32 (Lemma 9.14 in K2008). Let F and G be BUEI with envelopes F' and G, and let ¢ : R — R be
a Lipschitz continuous function with Lipschitz constant ¢ < co. Then

(i) F NG is BUEI with envelope F + G;
(it) FV G is BUEI with envelope F + G;
(ii) F 4+ G is BUEI with envelope F + G;

() ¢(F) is BUEI with envelope |¢(fo)| + c(|fol + F'), provided fo € F.

Its proof is a HW problem.

An important property of BUEI is that it is closed w.r.t. multiplication. This, combined with Theorem 30,
will give a set of sufficient conditions for F - G to be Donsker (which is a very useful result).

Theorem 33 (Theorem 9.15 in K2008). Let F and G be BUEI classes with envelopes F' and G. Then
F-G:={fg:feF,geG}is BUEI with envelope FG.

Its proof is pretty cute, yet straightforward. It is left for the readers to verify.
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2.3.3 Donsker preservation

Donsker class is preserved under several function operators.

For a class F of real-valued, measurable functions on the sample space X, let F be the set of all functions
f X — R for which there exists a sequence of functions f,, € F such that f,, — f both pointwise and in
Ly(P). Let sconv.F denote the set of convex combinations Y .o, A;f; with f; € F and Y |A\;| < 1 and the
series converges both pointwise and in L (P).

Theorem 34 (Theorem 2.10.1-3 in VW1996, Theorem 9.30 in K2008). Let F be a P-Donsker class. Then

(i) For any G C F, G is P-Donsker.
(ii) F is P-Donsker.
(i11) sconvF is P-Donsker.

Theorem 35 (Corollary 9.32 in K2008). Let F and G be Donsker classes. Then

(i) FUG and F + G are Donsker.
(i1) If | Pllrug < o0, then FV G and F A G are both Donsker.

(iii) If F and G are both uniformly bounded, then F -G is Donsker (a stronger version exists via Theorems
33 and 30).

(iv) If ¢ : R — R is Lipschitz continuous, where R is the range of functions in F, and ||¢(f)|p2 < oo for
at least one f € F, then ¥(F) is Donsker.

(v) If ||P||lx < oo and g is a uniformly bounded and measurable function, then F - g is Donsker.



