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“God help us – for art is long, and life so short.”

— Faust, Part I

The ultimate goal of this chapter is to determine, for a given possibly very general function class F , the
values of

(Glivenko− Cantalli property) E sup
f∈F
|(Pn − P )f |

and
(Donsker property) E

(
sup

f,g∈F :dP (f,g)≤δ
|
√
n(Pn − P )(f − g)|

)
.

It is clear that they both reduce to proving a maximal inequality, which is literally the core of empirical
processes techniques.

2.1 VC classes of sets

2.1.1 Basic properties

Consider a class of sets C := {C ∈ C, C ⊂ X} and any sample xn1 = {x1, . . . , xn} ⊂ X of size n. We define
C’s growth function as follows.

Definition 1. The growth function ΠC(n) is defined as

ΠC(n) := max
xn1⊂X

|xn1 ∩ C|.

Definition 2 (shattering). C is said to shatter a class T ⊂ X if |T ∩ C| = 2|T |.

Definition 3 (VC dimension). The VC dimension (or called VC index) of C, written as ν(C), is the largest
n such that there exists a set T ⊂ X , |T | = n, and C shatters it.

When the quantity ν(C) is finite, the class of sets C is said to be a VC-class.

Example 4. Consider the class Cleft := {(−∞, a]; a ∈ R}. We have ν(Cleft) = 1. On the other hand, it is
easy to derive that ΠCleft(n) ≤ n+ 1 = (n+ 1)ν(Cleft).

Example 5. Consider the class Ctwo := {(b, a]; a, b ∈ R}. We have ν(Ctwo) = 2. On the other hand, it is
easy to derive that ΠCleft(n) ≤ (n+ 1)2 = (n+ 1)ν(Ctwo).

The following result shows that, for any VC class, the cardinality of xn1 ∩ C can grow at most polynomially
in n. This is named the Sauer’s Lemma.
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Lemma 6 (Vapnik-Chervonenkis, Sauer, and Shelah). Consider a set class C with ν(C) < ∞. Then, for
any collection of points xn1 = (x1, . . . , xn), we have

|xn1 ∩ C| ≤
ν(C)∑
i=0

(
n

i

)
≤ min

{
(n+ 1)ν(C),

( en

ν(C)

)ν(C)}
.

Proof. The first inequality could be established through the following more general inequality. The rest two
are simple algebra and are left to the readers.

Lemma 7. Let A be a finite set and let U be a class of subsets of A. Then

|U| ≤
∣∣∣{B ⊂ A | B is shattered by U

}∣∣∣.
To see how this lemma immediately proves Sauer’s lemma, note that B ⊂ A is shattered by C meaning that
|B| ≤ ν(C). Consequently, if we let A = xn1 and set U = C ∩A, then Lemma 7 yields

|xn1 ∩ C| = |C ∩A| ≤
∣∣∣{B ⊂ A | B ≤ ν(C)

}∣∣∣ ≤ ν(C)∑
i=0

(
n

i

)
.

It remains to prove Lemma 7. For a given x ∈ A, let’s define an operator on sets U ∈ U via

Tx(U) =

{
U \ {x} if x ∈ U and U \ {x} 6∈ U
U otherwise.

We let Tx(U) be the new class of sets defined by applying Tx to each member of U , namely, Tx(U) :={
Tx(U) | U ∈ U

}
.

(1) We first show that Tx is a one-to-one map between U and Tx(U), and hence |U| = |Tx(U)|. This is
equivalent to proving that, for any sets U,U ′ ∈ U such that Tx(U) = Tx(U ′), we must have U = U ′ (the
reverse is simple). This is by the following case-by-case investigation:

• Case 1: x 6∈ U and x 6∈ U ′. We then have U = Tx(U) = Tx(U ′) = U ′.

• Case 2: x 6∈ U and x ∈ U ′. In this case, we have U = Tx(U) = Tx(U ′), so that x ∈ U ′ but x 6∈ Tx(U ′).
But this means that Tx(U ′) = U ′ \ {x} 6∈ U , which contradicts the fact that Tx(U ′) = U ∈ U . By
symmetry, the case x ∈ U and x 6∈ U ′ is identical.

• Case 3: x ∈ U ∩ U ′. If both U \ {x} and U ′ \ {x} belong to U , then U = Tx(U) = Tx(U ′) = U ′. If
neither U \ {x} nor U \ {x} belongs to U , then we also have U \ {x} = U ′ \ {x}, yielding U = U ′.
Lastly, if U \ {x} 6∈ U but U ′ \ {x} ∈ U , then Tx(U) = U \ {x} 6∈ U but Tx(U ′) = U ′ ∈ U , which is a
contradiction.

(2) We secondly show that if Tx(U) shatters a set B, then so does U . If x 6∈ B, then both U and Tx(U) pick
out the same set of subsets of B, and the claim must be true. Otherwise, if x ∈ B, since Tx(U) shatters B,
for any subset B′ ⊂ B \ {x}, there is a subset T ∈ Tx(U) such that T ∩ B = B′ ∪ {x}. Since T = Tx(U)
for some subset U ∈ U and x ∈ T , we conclude that both U and U \ {x} must belong to U , so that U also
shatters B.

(3) We now conclude the lemma. Define the weight function ω(U) =
∑
U∈U |U |. Note that applying a

transformation Tx can only reduce this weight function: ω(Tx(U)) ≤ ω(U). Consequently, by applying the
transformations {Tx} to U repeatedly, we can obtain a new class of sets U ′ such that |U| = |U ′| and the
weight ω(U ′) is minimal. Then, for any U ∈ U ′ and any x ∈ U , we have U \ {x} ∈ U ′ (otherwise, we have
ω(Tx(U ′)) < ω(U ′), contradicting minimality). Therefore, the set class U ′ shatters any one of its elements.
Noting that U shatters at least as many subsets as U ′, and |U| = |U ′|, the proof is complete.



Lecture 2: Uniform Entropy 2-3

2.1.2 VC stability

The property of having finite VC-dimension is preserved under a number of basic operations, as summarized
in the following (refer to, for example, Lemma 9.7 in K2008, Proposition 3.6.7 in GN2015, and Theorem
13.5 in “A Probabilistic Theory of Pattern Recognition” by Luc Devroye, Lszl Gyorfi, and Gabor Lugosi).
They are also known as stability results in David Pollard’s sense.

Theorem 8 (Stability). Let C and D be VC-classes on X with growth functions ΠC(n) and ΠD(n) and VC
dimensions VC and VD. Let E be VC-class on W with growth function ΠE(n) and VC dimension VE . We
then have

(1) CC has VC-dimension VC and growth function ΠC(n);

(2) C ∩ D = {C ∩D;C ∈ C, D ∈ D} has growth function ≤ ΠC(n)ΠD(n);

(3) C ∪ D = {C ∪D;C ∈ C, D ∈ D} has growth function ≤ ΠC(n)ΠD(n);

(4) D × E has growth function ≤ ΠC(n)ΠD(n);

(5) φ(C) has VC-dimension VC if φ is one-to-one;

(6) ψ−1(C) has VC-dimension ≤ VC.

Remark 9. When you have an upper bound on the growth function of a given class of sets, by the definition
of VC dimension, you also obtain an upper bound on that class by noticing that ν(C) is the largest n such
that 2n = ΠC(n), and for any n ∈ N, ΠC(n) ≤ (n+ 1)ν(C).

Theorem 8 is a nice result, but we still need something to begin with. Regarding any given real-valued
function g : X → R, it defines a “classification” function by the set Sg := {x ∈ X | g(x) ≤ 0}. In this way,
we can associate the function class G with the collection of subsets S(G) := {Sg; g ∈ G}.

In case the function class G is a vector space, the following result upper bounds the VC-dimension of the
associated “classification” class S(G).

Proposition 10. Let G be a vector space of functions g : Rd → R with dimension dim(G) < ∞. Then the
class S(G) has VC-dimension at most dim(G).

Proof. By definition of VC-dimension, we need to show that no collection of n = dim(G) + 1 points in Rd
can be shattered by S(G). To this end, fix a collection xn1 of n points in Rd, and consider the following sets:{

(g(x1), . . . , g(xn))T , g ∈ G
}
.

We then have, the range of the above sets is a linear subspace of Rn with dimension at most dim(G) =
n − 1 < n. Therefore, there must exist a non-zero vector a ∈ Rn such that 〈a, (g(x1), . . . , g(xn))T 〉 = 0 for
all g ∈ G. We may assume, W.L.O.G., that at least one entry ai of a is positive, and then write∑

{i|ai>0}

aig(xi) =
∑

{i;ai<0}

(−ai)g(xi) for all g ∈ G.

Now suppose that there exists some g ∈ G such that the associate classification class Sg = {x ∈ Rd; g(x) ≤ 0}
includes only the subset {xi : ai ≤ 0}. For such a function g, the LHS of the above equation would be strictly
positive, while the RHS would be non-positive, which is a contradiction. We thus proved that S(G) cannot
shatter xn1 , and finish the proof.
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Example 11 (Linear functions in Rd). For a pair (a, b) ∈ Rd × R, consider the function class fa,b(x) =
aTx+ b, and consider the family Ld = {fa,b | (a, b) ∈ Rd×R}. The associated classification is the collection
of all half-spaces of the form Ha,b := {x ∈ Rd | aTx + b ≤ 0}. Since the family Ld forms a vector space of
dimension d+ 1, we have S(Ld) has VC-dimension at most d+ 1.

Example 12 (Sphere in Rd). Consider the sphere Sa,b := {x ∈ Rd; ‖x − a‖2 ≤ b} where (a, b) ∈ Rd × R+.
Let Sd denote the collection of all such spheres. If we define the function

fa,b(x) := ‖x‖22 − 2

d∑
j=1

ajxj + ‖a‖22 − b2

Then we have Sa,b = {x ∈ Rd; fa,b(x) ≤ 0}, so that the sphere is a classification set of the function fa,b. In
order to leverage Proposition 10, we define a feature map φ : Rd → Rd+1 via

φ(x) = (x1, . . . , xd, 1),

and then consider the functions of the form

gc(x) := cTφ(x) + ‖x‖22, where x ∈ Rd+1.

The family of functions {gc; c ∈ Rd+1} is a vector space of dimension d + 2, and it contains the functions
fa,b. We thus conclude ν(Sd) ≤ d+ 2.

Remark 13. The VC-dimension should never be confused with the degree of freedom (or simply the number
of parameters) in statistics. in fact, if you have a nonlinear classification function class, it is very possible
that you will have a much higher VC-dimension than the number of parameters in your function. As an
extreme case, the function class {1(sin ax > 0); a ∈ R} can have infinite VC-dimension.

2.2 VC subgraph

2.2.1 Subgaussian processes and the chaining

Below is a quick glance of the chaining technique.

Definition 14 (Definition 2.3.5 in GN2015). A centered stochastic process {X(t), t ∈ T} is subgaussian with
respect to a pseudo-distance d on T if its increments satisfy the subgaussian inequality:

E exp(λ(X(t)−X(s))) ≤ exp(λ2d2(s, t)/2) for λ ∈ R, s, t ∈ T.

Remark 15. As has been highlighted in Lecture 0, the process {
√
n(Pn − P )f ; f ∈ F} is strongly related to

the following associated process (called randomized empirical process):{ 1√
n

n∑
i=1

εif(Xi); f ∈ F
}
,

where {εi} is the Rademacher sequence. Conditionally on the data {Xi}, it is a subgaussian process with
respect to d(f, g) = ‖f − g‖L2(Pn).

Given a pseudo-metric space (T, d), for any ε > 0, its covering number N(T, d, ε) stands for the smallest
number of closed ball with radius ε that could cover T . Analogously, its packing D(T, d, ε) stands for the
largest number of closes balls with radius ε/2 such that they could be packed into T . It is hence clear that

N(T, d, ε) ≤ D(T, d, ε) ≤ N(T, d, ε/2).

Its metric entropy is defined as logN(T, d, ε).
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Theorem 16 (Theorems 2.3.6 and 2.3.7 in GN2015). Let (T, d) be a pseudo-metric space, and let {X(t), t ∈
T} be a subgaussian process w.r.t the pseudo-metric d. Then,

(1) For all finite subset S ⊂ T and points t0 ∈ T ,

Emax
t∈S
|X(t)| ≤ E|X(t0)|+ 4

√
2

∫ D/2

0

√
log 2N(T, d, ε)dε,

where D is the diameter of (T, d).

(2) Assume that ∫ ∞
0

√
logN(T, d, ε)dε <∞.

Then

E sup
t∈T
|X(t)| ≤ E|X(t0)|+ 4

√
2

∫ D/2

0

√
log 2N(T, d, ε)dε.

2.2.2 VC subgraph classes of functions

Viewing Remark 15 and Theorem 16, for tackling a given maximal inequality P supf∈F |Gnf |, the remaining
part is to derive an upper bound for the metric entropy logN(F , ‖ · ‖L2(Pn), ε). This is doable via the
Dudley-Pollard-Koltchinskii Universality Theorem by noticing that

logN(F , ‖ · ‖L2(Pn), ε) ≤ sup
Q

logN(F , ‖ · ‖L2(Q), ε),

where Q is any finitely discrete probability measure such that ‖F‖L2(Q) > 0.

Definition 17 (Definition 3.6.8 in GN2015). The subgraph of a real function f on X is the set

Gf :=
{

(x, t) : x ∈ X , t ∈ R, t ≤ f(x)
}
.

A class of functions F is VC subgraph of index (VC dimension) ν if the class of sets C := {Gf ; f ∈ F} is
VC of index ν.

Example 18. Suppose C is a VC class of index ν(C), then by definition the class of functions F := {1C ;C ∈
C} is VC subgraph of index ν(C).

Example 19 (Lemma 2.6.15 in VW1996). Any finite-dimensional vector space F of measurable functions
f : X → R is VC-subgraph of index ≤ dim(F) + 1.

Proof. The proof resembles that of Proposition 10. Take any collection of n = dim(F)+2 points (x1, t1), . . . , (xn, tn)
in X × R. Since F is a vector space, we have

{(f(x1)− t1, . . . , f(xn)− tn)T , f ∈ F}

are contained in a (dimF + 1) = (n − 1)-dimensional subspace of Rn. Hence, there exists a nondegenerate
vector a 6= 0 such that ∑

ai>0

ai
(
f(xi)− ti

)
=
∑
ai<0

(−ai)(f(xi)− ti), for every f ∈ F ,

where by default the sum over an empty set is set to be 0. WLOG, we pick out an a such that there exists at
least one positive entry. For this vector, the set {(xi, ti) : ai > 0} cannot be of the form {(xi, ti) : ti < f(xi)},
since if then the LHS of the equation would be positive, and the RHS will be nonpositive. This concludes
that the F is VC-subgraph of index ≤ dimF + 1.
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We are now ready to state the main theorem in this chapter.

Theorem 20 (Dudley-Pollard-Koltchinskii-vanderVaart-Wellner Universality Theorem, Theorem 3.6.9 in
GN2015). Let F be a non-empty VC subgraph class of index ν, and have an envelop F ∈ Lp(Ω,A, Q) for
some 1 ≤ p <∞. Set

mv,w := max
{
m ∈ N : logm ≥ m1/ν−1/w

}
for some w > ν. We then have

D(F , Lp(Q), ε‖F‖p,Q) ≤ mv,w ∨
[
2w/ν

(2p+1

εp

)w]
.

Proof. The proof uses probabilistic method tracing back to Paul Erdos and many other mathematicians
who worked on number theory via probabilistic construction techniques. We omit Q in the norm when no
confusion is made.

Let f1, . . . , fm be a maximal collection of functions in F satisfying

Q|fi − fj |p > εpQF p, for i 6= j,

so that m = D(F , Lp(Q), ε‖F‖p). For some k to be specified later, let {(xi, ti); i ∈ [k]} be i.i.d. random
vectors with law

Pr
{

(x, t) ∈ A× [a, b]
}

=

∫
A
λ[(−F (x)) ∨ a, F (x) ∧ b]F p−1(x)dQ(x)

2QF p

for A ⊂ X , real numbers a < b, and Lebesgue measure λ. In other words, xi is chosen according to the law
PF (A) = Q(1AF

p)/QF p, and given xi, ti is chosen uniformly on [−F (xi), F (xi)].

The probability that at least two graphs have the same intersection with the sample {(xi, ti), i ∈ [k]} is at
most (

m

2

)
max
i6=j

Pr(Ci and Cj have the same intersection with the sample)

=

(
m

2

)
max
i6=j

k∏
r=1

Pr{(xr, tr) 6∈ Ci∆Cj}

=

(
m

2

)
max
i6=j

k∏
r=1

[
1− Pr

{
(xr, tr) ∈ Ci∆Cj

}]
=

(
m

2

)
max
i6=j

k∏
r=1

[
1− Pr

{
(xr, tr) : tr is between fi(sr), fj(sr)

}]
=

(
m

2

)
max
i6=j

[
1− 1

‖F‖pp

∫
|fi − fj |

2F
F pdQ

]k
≤
(
m

2

)
max
i6=j

[
1− 1

‖F‖pp

∫
|fi − fj |p

(2F )p
F pdQ

]k
≤
(
m

2

)[
1− εp

2p

]k
≤
(
m

2

)
exp(−εpk/2p),

where in the last equation we use 1− x ≤ exp(−x).
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Let k be such that this probability is less than 1. Then there exists a set of k elements such that graphs
Ci ∈ C, 1 ≤ i ≤ m, intersect different subsets of this set, which implies that

∏
C(k) ≥ m. On the other hand,

the smallest k such that
(
m
2

)
exp(−εpk/2p) < 1 satisfies k ≤ (2p+1/εp) logm. Then, by Sauer’s Lemma, we

have

m ≤ 2kν ≤ 2
(2p+1

εp
logm

)ν
.

Some algebra then gives the desired bound.

The Universality Theorem, combined with the chaining theorem, renders the following corollary.

Corollary 21 (Theorems 3.5.1 and 3.5.4 in GN2015). Assuming 0 ∈ F , we have

E
√
n‖Pn − P‖F ≤ 8

√
2 · E

[ ∫ √PnF 2

0

√
log 2D(F , L2(Pn), τ)dτ

]
= 8
√

2 · E
[
‖F‖Pn,2

∫ 1

0

√
log 2D(F , L2(Pn), ε‖F‖Pn,2dε

]
≤ 8
√

2 · E
[
‖F‖Pn,2 ·

∫ 1

0

sup
Q

√
log 2D(F , L2(Q), ε‖F‖Q,2)dε

]
≤ 8
√

2‖F‖P,2
∫ 1

0

sup
Q

√
log 2D(F , L2(Q), ε‖F‖Q,2)dε

. ‖F‖P,2
∫ 1

0

√
v log(A/ε)dε.

Example 22. Using the above corollary, it is immediate to prove that

E
√
n‖Pn − P‖G = O(1)

by noticing that G is a VC-subgraph of index 1 and
∫ 1

0

√
log(A/ε)dε <∞.

We close this section with the VC-subgraph stability result, which is left for the students to verify.

Lemma 23 (VC-subgraph stability, Lemma 2.6.18 in VW1996). Let F and G be VC-subgraph classes of
functions on a set X and g : X → R, φ : R→ R, and ψ : Z → X fixed functions. Then

(i) F ∧ G := {f ∧ g : f ∈ F , g ∈ G} is VC-subgraph;

(ii) F ∨ G is VC-subgraph;

(iii) {F > 0} := {{f > 0} : f ∈ F} is VC;

(iv) −F is VC-subgraph;

(v) F + g := {f + g : f ∈ F} is VC-subgraph;

(vi) F · g := {fg : f ∈ F} is VC-subgraph;

(vii) F ◦ ψ := {f(ψ) : f ∈ F} is VC-subgraph;

(viii) φ ◦ F is VC-subgraph for monotone φ.
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2.2.3 VC-hull and VC-major

This section briefly introduces the VC-hull and VC-major classes, without touching too much detail due to
the time limit. VC-hull and VC-major classes generalize the VC-subgraph (sometimes just referred to as
VC) classes of functions.

Definition 24 (convex hull, Definition 3.6.13 in GN2015). Given a class of functions F , co(F) is defined
as the convex hull of F , that is

co(F) =
{∑
f∈F

λff : f ∈ F ,
∑
f

λf = 1, λf > 0, λf 6= 0 only for finitely many f
}
,

and co(F) is defined as the pointwise sequential closure of co(F), that is, f ∈ co(F) if there exist fn ∈ co(F)
such that fn(x)→ f(x) for all x ∈ X as n→∞.

Definition 25 (VC-hull, Definition 3.6.13 in GN2015). If the class F is VC-subgraph, then we say that
co(F) is a VC-hull class of functions.

Example 26 (Example 3.6.14 in GN2015). Let F be the class of all monotone nondecreasing functions
f : R→ [0, 1]. Then F ∈ co(G), where G := {1(x,∞),1[x,∞) : x ∈ R}.

Proof. For any f : R→ [0, 1], we could define

fn =
1

n

n−1∑
i=1

1{f>i/n} =

n−1∑
j=0

j

n
1{j/n<f≤(j+1)/n}.

It is immediate that
sup
x∈R
|fn(x)− f(x)| ≤ 1/n.

On the other hand, since f is monotone nondecreasing (with possible jumps), we have the sets {f > i/n}
are all half lines, rendering that 1{f>i/n} ∈ G.

Definition 27 (VC-major). F is a VC-major class if the collection of set {x : f(x) ≥ t}t∈R,f∈F is a
VC-class.

Lemma 28 (Lemma 2.6.13 in VW1996). A bounded VC-major class is a scalar multiple of a VC-hull class.

Proof. A given function f : X → [0, 1] is the uniform limit of the sequence

fm =

m∑
i=1

1

m
1(f > i/m).

Thus, a given class of functions f : X → [0, 1] is contained in the pointwise sequential closure of the convex
hull of {1(f > t) : f ∈ F , t ∈ R}, which is VC-subgraph using Example 18 and the definition of VC-major
class. This then finishes the proof.

The last result in this chapter, which we shall not prove, is the Universality Theorem on VC-hull, and hence
also on bounded VC-major classes.

Theorem 29 (Universality Theorem on VC-hull, Theorem 3.6.17 in GN2015). Let Q be a probability measure
on (X , σ(X )), and let F be a collection of measurable functions with envelop F ∈ L2(Q) such that

N(F , L2(Q), ε‖F‖L2(Q)) ≤ Cε−w, for 0 < ε ≤ 1.

Then there exists a constant K depending only on C and w such that

logN(co(F), L2(Q), ε‖F‖L2(Q)) ≤ Kε−2w/(w+1), for 0 < ε ≤ 1.
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2.3 Donsker preservation

Following Chapter 1, in this section we will provide sufficient conditions for a class of measurable functions
F to be Donsker. As a consequence of the Universality Theorem, let’s consider the following uniform
entropy integral (Equation (3.169) in GN2015, named as Kolchinskii-Pollard entropy) of a class of measurable
functions F with envelope F :

J(F , F, δ) :=

∫ δ

0

sup
Q

√
log 2N(F , L2(Q), ε‖F‖L2(Q))dε.

Obviously, there is no need to consider δ > 1.

2.3.1 Donsker Theorem

The following theorem states a sufficient condition for F to be Donsker (asymptotic equicontinuity plus
totally bounded).

Theorem 30 (Theorem 2.5.2 in VW1996). Let F be a class of measurable functions that satisfies

(1) J(F , F, 1) <∞;

(2) the function classes

Fδ := {f − g : f, g ∈ F , ‖f − g‖P,2 < δ} and F2
∞ := {(f − g)2 : f, g ∈ F}

are P-measruable for every δ > 0;

(3) PF 2 <∞.

Then F is P -Donsker.

Proof. (i) We first prove asymptotic equicontinuity. Proving it is equivalent to proving

P (‖Gn‖Fδn > x)→ 0

for every fixed x and sequence δn → 0. Using Markov inequality, symmetrization, and chaining, we have

P (‖Gn‖Fδn > x) ≤ 2

x
E
∥∥∥ 1√

n

n∑
i=1

εif(Xi)
∥∥∥
Fδn
≤ C

x
· E
∫ θn

0

√
logN(Fδn , L2(Pn), ε)dε,

where
θ2n := sup

f∈Fδn
‖f‖2Pn,2 := sup

f∈Fδn
‖f‖2n.

Noticing that, for any probability measure Q,

N(Fδn , L2(Q), ε) ≤ N(F∞, L2(Q), ε) ≤ N2(F , L2(Q), ε/2),

we have ∫ θn

0

√
logN(Fδn , L2(Pn), ε)dε ≤ C‖F‖n

∫ θn/2‖F‖n

0

sup
Q

√
logN(F , L2(Q), ε‖F‖Q,2)dε.
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By Cauchy-Swartz and dominated convergence theorem, via Condition (1), it now suffices to proving θn
P→ 0

as δn → 0.

We have, by Condition (2), sup{Pf2, f ∈ Fδ} → 0 and Fδn ⊂ F∞. Thusly, proving θn
P→ 0 can be reduced

to proving

‖Pnf2 − Pf2‖F∞
P→ 0.

This is to prove G-C property for F2
∞. By Condition (3) it has integrable envelope (2F )2 and is measurable.

In addition, for any pair f, g ∈ F∞,

Pn|f2 − g2| ≤ Pn|f − g|4F ≤ ‖f − g‖n‖4F‖n,

entailing

N(F2
∞, L1(Pn), ε‖2F‖2n) ≤ N(F∞, L2(Pn), ε‖F‖n) ≤ N2(F , L2(Pn), ε‖F‖n/2).

Theorem 2.4.3 in VW1996 then kicks in to conclude.

(ii) Total boundedness is a direct consequence of the previous arguments. In detail, previously we proved
there exists a sequence of discrete (non-random) measures Pn such that ‖(Pn−P )f2‖F∞ → 0, we could take
n sufficiently large such that ‖(Pn − P )f2‖F∞ ≤ ε2. Triangle inequality then yields that the ε-net for F in
L2(Pn) is a

√
2ε-net in L2(P ). By assumption, N(F , L2(Pn), ε) <∞, which then rendersN(F , L2(P ), ε) <∞

and completes the proof.

Theorem 31 (Theorem 2.4.3 in VW1996). Let F be a measurable class of measurable functions with envelop

F such that PF <∞. If logN(F , L1(Pn), ε) = oP (n) for every ε > 0, then ‖Pn − P‖F
a.s.→ 0.

2.3.2 BUEI classes

A key part in Donsker preservation is the preservation of the boundedness of uniform entropy integrals. In
the sequel, following K2008, we call F to have bounded uniform entropy integral (BUEI) with envelope F if
J(F , F, 1) <∞.

Lemma 32 (Lemma 9.14 in K2008). Let F and G be BUEI with envelopes F and G, and let φ : R→ R be
a Lipschitz continuous function with Lipschitz constant c <∞. Then

(i) F ∧ G is BUEI with envelope F +G;

(ii) F ∨ G is BUEI with envelope F +G;

(iii) F + G is BUEI with envelope F +G;

(iv) φ(F) is BUEI with envelope |φ(f0)|+ c(|f0|+ F ), provided f0 ∈ F .

Its proof is a HW problem.

An important property of BUEI is that it is closed w.r.t. multiplication. This, combined with Theorem 30,
will give a set of sufficient conditions for F · G to be Donsker (which is a very useful result).

Theorem 33 (Theorem 9.15 in K2008). Let F and G be BUEI classes with envelopes F and G. Then
F · G := {fg : f ∈ F , g ∈ G} is BUEI with envelope FG.

Its proof is pretty cute, yet straightforward. It is left for the readers to verify.
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2.3.3 Donsker preservation

Donsker class is preserved under several function operators.

For a class F of real-valued, measurable functions on the sample space X , let F be the set of all functions
f : X → R for which there exists a sequence of functions fm ∈ F such that fm → f both pointwise and in
L2(P ). Let sconvF denote the set of convex combinations

∑∞
i=1 λifi with fi ∈ F and

∑
|λi| ≤ 1 and the

series converges both pointwise and in L2(P ).

Theorem 34 (Theorem 2.10.1-3 in VW1996, Theorem 9.30 in K2008). Let F be a P -Donsker class. Then

(i) For any G ⊂ F , G is P -Donsker.

(ii) F is P -Donsker.

(iii) sconvF is P -Donsker.

Theorem 35 (Corollary 9.32 in K2008). Let F and G be Donsker classes. Then

(i) F ∪ G and F + G are Donsker.

(ii) If ‖P‖F∪G <∞, then F ∨ G and F ∧ G are both Donsker.

(iii) If F and G are both uniformly bounded, then F · G is Donsker (a stronger version exists via Theorems
33 and 30).

(iv) If ψ : R→ R is Lipschitz continuous, where R is the range of functions in F , and ‖ψ(f)‖P,2 <∞ for
at least one f ∈ F , then ψ(F) is Donsker.

(v) If ‖P‖F <∞ and g is a uniformly bounded and measurable function, then F · g is Donsker.


