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“Don’t get involved in partial problems, but always take flight to where there is a free view over the whole
single great problem, even if this view is still not a clear one.”

— Ludwig Wittgenstein, on his notebook (November 01, 1914).

3.1 M-estimators

Recalling the theory on M-estimation in Chapter 1, we now finally have the language to state and verify it
in its full generality.

Theorem 1 (Linearization of M-estimator, Theorem 3.2.16 in VW1996). Let Γn be a stochastic processes
indexed by an open subset Θ of Euclidean space and Γ : Θ→ R be a deterministic function. Assume θ → Γ(θ)
is twice continuously differentiable at a point of maximum θ0 with nonsingular second-derivative matrix V .
Suppose that

rn(Γn − Γ)(θ̃n)− rn(Γn − Γ)(θ0) = (θ̃n − θ0)TZn + oP (‖θ̃n − θ0‖+ rn‖θ̃n − θ0‖2 + r−1
n ), (3.1)

for every random sequence θ̃n = θ0 + oP (1) and a uniformly tight sequence of random vectors Zn. If the

sequence θ̂n
P→ θ0 and satisfies Γn(θ̂n) ≥ supθ Γn(θ)− oP (r−2

n ) for every n, then

rn(θ̂n − θ0) = −V −1Zn + oP (1).

Remark 2. The M-estimation linearization theorem, in its full generality, does not require θ̂n to be a
regular root-n type estimator, does not require the data X1, . . . , Xn to be either identically or independently
distributed. There is, however, one constraint: Equation (3.1) does require a certain notion of “stochastic
differentiability” for Γn, and hence rules out estimators like Manski’s score estimator:

β̂Manski
n := max

β∈Rp,β1=1

n∑
i=1

1(Yi > 0)1(XT
i β > 0).

For this, Pollard’s cube root asymptotics kicks in (“Cube Root Asymptotics”, Kim and Pollard, AoS 1990).

Proof of Theorem 1. Step 1. We first prove θ̂n is rn-consistent estimator of θ0. Equation (3.1) and Taylor

expanding Γ (in Peano form) yield, for every sequence h̃n = oP (1),

Γn(θ0 + h̃n)− Γn(θ0) = Γ(θ0 + h̃n)− Γ(θ0) + r−1
n h̃TnZn + oP (r−1

n ‖h̃n‖+ ‖h̃n‖2 + r−2
n )

=
1

2
h̃TnV h̃n + r−1

n h̃TnZn + oP (‖h̃n‖2 + r−1
n ‖h̃n‖+ r−2

n ).
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Choosing ĥn = θ̂n − θ0, using the condition Γn(θ̂n) ≥ supθ Γn(θ) − oP (r−2
n ) and λmax(V ) ≤ −c for some

universal constant c > 0, we have

−OP (r−2
n ) ≤ 1

2
ĥTnV ĥn + r−1

n ĥTnZn + oP (‖ĥn‖2 + r−1
n ‖ĥn‖+ r−2

n )

≤ −c‖ĥn‖2 + r−1
n ‖ĥn‖OP (1) + oP (‖ĥn‖2 + r−2

n ),

implying
{c+ oP (1)}{‖ĥn‖ −OP (r−1

n )}2 ≤ OP (r−2
n ),

and completes the first part’s proof.

Step 2. As soon as we proved ‖ĥn‖ = OP (r−1
n ), we have

oP (r−1
n ‖h̃n‖+ ‖h̃n‖2 + r−2

n ) = oP (r−2
n ).

We then have

Γn(θ0 + ĥn)− Γn(θ0) =
1

2
ĥTnV ĥn + r−1

n ĥTnZn + oP (r−2
n ),

Γn(θ0 − r−1
n V −1Zn)− Γn(θ0) = −1

2
r−2
n ZTn V

−1Zn + oP (r−2
n ).

Subtracting the second from the first and noticing that

Γn(θ0 + ĥn)− Γn(θ0 − r−1
n V −1Zn) ≥ −oP (r−2

n ),

we have

0 ≥ 1

2
(ĥn + r−1

n V −1Zn)TV (ĥn + r−1
n V −1Zn) ≥ −oP (r−2

n ).

Since V is strictly negative, we conclude

rn(θ̂n − θ0) = −V −1Zn + oP (1).

This completes the proof.

Under i.i.d. models, usual choices of Γn and Γ are

Γ(θ) = Pmθ and Γn(θ) = Pnmθ,

where mθ is a “pseudo-likelihood” function indexed by the parameter θ ∈ Θ. For this, picking rn =
√
n,

Equation (3.1) translates to

Gn(mθ̃n
−mθ0) = (θ̃n − θ0)TGnṁθ0 + oP (‖θ̃n − θ0‖+

√
n‖θ̃n − θ0‖2 + n−1/2), (3.2)

which is technically ready to be verified using empirical processes techniques.

Proposition 3 (Lemma 3.2.19 in VW1996). Suppose there exists a vector-valued function ṁθ0 such that,
for some δ > 0, {mθ −mθ0 − (θ − θ0)T ṁθ0

‖θ − θ0‖
: ‖θ − θ0‖ < δ

}
is P -Donsker,

and P
[
mθ −mθ0 − (θ − θ0)T ṁθ0

]2
= o(‖θ − θ0‖2).

Then Equation (3.2) is satisfied with the remainder as oP (‖θ̃ − θ0‖), and hence we have
√
n(θ̂n − θ0) =

−V −1Gnṁθ0 + oP (1).
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Proof. It is equivalent to proving

lim
δ→0

sup
θ:‖θ−θ0‖<δ

∣∣∣Gn{mθ −mθ0 − (θ − θ0)T ṁθ0

‖θ − θ0‖

}
︸ ︷︷ ︸

Zn(θ)

∣∣∣ P→ 0.

Let Z be the Gaussian sequence as the weak convergence limit of Zn. By the Donsker’s property, we remain
to verify, defining ρ2(θ1, θ2) = P (Z(θ1)− Z(θ2))2, we have

ρ(θ, θ0)→ 0 if θ → θ0.

Noticing that

P (Z(θ)− Z(θ0))2 =
P
[
mθ −mθ0 − (θ − θ0)T ṁθ0

]2
‖θ − θ0‖2

,

we immediately have the property holds.

The Donsker property in Proposition 3 is arguably difficult to verify in certain cases. If we have established
θ̂n as a

√
n-consistent estimator of θ0, then a more straightforward criterion could be built. Indeed, if so,

verifying (3.2) is equivalent to verifying, for any sequence θ̃n = θ0 +OP (1/
√
n),

Gn
√
n(mθ̃n

−mθ0) =
√
n(θ̃n − θ0)TGnṁθ0 + oP (1).

The result to verify it is Lemma 3.2.21 in VW1996, which we shall not cover due to the scope limit. However,
it renders an important corollary.

Corollary 4 (Lipschitz class, Example 3.2.22 in VW1996). Let X1, . . . , Xn be i.i.d. random variables with
common law P , and let mθ be measurable functions indexed by θ ∈ Θ. Assume, for every θ1, θ2 in a
neighborhood of θ0 (the maximum of Pmθ),

|mθ1(x)−mθ2(x)| ≤ ṁ(x)‖θ1 − θ2‖,
P [mθ −mθ0 − (θ − θ0)T ṁθ0 ]2 = o(‖θ − θ0‖2), (3.3)

for functions ṁ and mθ0 , with Pṁ2(x) <∞. Further assume θ → Pmθ is twice continuously differentiable at

θ0 with a nonsingular second-derivative matrix V . Then, if θ̂n maximizes θ → Pnmθ (up to an oP (1/n)-term)
and is consistent for θ0, then √

n(θ̂n − θ0) = −V −1Gnṁθ0 + oP (1).

Remark 5. If we have the Hessian of mθ to be Lipschitz, then everything is nice and clear. However,
it requires a marvelous amount of work to extend the result to the case that the first derivative of mθ is
Lipschitz.

Example 6 (Example 3.2.23 in VW1996, LAD regression, a proof scratch). We are now finally ready to
study the motivating example: least absolute deviation regression (LAD) estimator for the linear regression
model Y = XTβ + ε:

θ̂n = argmin
θ∈Rp

1

n

n∑
i=1

|Yi −XT
i θ| = Pnmθ,

where Pn is the empirical measure of the pairs (Xi, Yi) and mθ(x, y) = |y − xT θ|. We remains to verify

(1) θ0 is the minimum of P |Y − θTX| = P |ε− (θ − θ0)TX|, which holds if P |ε| <∞ and median(ε) = 0.

(2) The first condition in Equation (3.3) is automatically satisfied.
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(3) The second condition in Equation (3.3) holds by noticing

P
[
|Y −XT θ| − |Y −XT θ0| − (θ − θ0)TX sign(Y −XT θ0)

]2
= o(‖θ − θ0‖2).

We end up proving that
√
n(θ̂n − θ0) is ASN with mean 0 and covariance V −1P (XXT )V −1, with V the

second derivative matrix of θ → P |Y −XT θ|.

Remark 7. We only slightly touch the M-estimation theory. As a matter of fact, M-estimation theory is
one of the most exciting and fruitful fields in mathematical statistics. People of interest to learn more are
highly recommended to attend ECON583, which introduces topics on estimation and testing in linear and
nonlinear regression models, with asymptotic theory and bootstrapping.

3.2 Z-estimation

As has been discussed in Chapter 1, M-estimation usually could be reduced to Z-estimation, which motivates
Z-estimation theory. Another reason for considering Z-estimations is the popularity of estimating equation
methods, which do not explicitly impose a loss function to solve. As will be seen soon, Z-estimation theory
is interestingly much simpler than M-estimation theory provided a simple condition holds, which, however,
is arguably strong.

Theorem 8 (Linearization of Z-estimator, Theorem 3.3.1 in VW1996). Let Ψn and Ψ be random maps and
a fixed map, respectively, from Θ to a Banach space such that

√
n(Ψn −Ψ)(θ̂n)−

√
n(Ψn −Ψ)(θ0) = oP (1 +

√
n‖θ̂n − θ0‖), (3.4)

and such that the sequence
√
n(Ψn−Ψ)(θ0) weakly converges to a tight random element Z. Let θ → Ψ(θ) be

Frechet-differentiable at θ0, namely,

‖Ψ(θ)−Ψ(θ0)− Ψ̇θ0(θ − θ0)‖ = o(‖θ − θ0‖),

with a continuously invertible derivative Ψ̇θ0 . If Ψ(θ0) = 0 and θ̂n satisfies Ψn(θ̂n) = oP (n−1/2) and converges
in probability to θ0, then √

nΨ̇θ0(θ̂n − θ0) = −
√
n(Ψn −Ψ)(θ0) + oP (1),

and √
n(θ̂n − θ0) = −Ψ̇−1

θ0
{
√
n(Ψn −Ψ)(θ0)}+ oP (1).

Proof. Step I. We first prove that θ̂n is a root-n consistent estimator of θ0. By the definition of θ̂n and
Equation (3.4),

√
n(Ψ(θ̂n)−Ψ(θ0)) =

√
n(Ψ(θ̂n)−Ψn(θ̂n)) + oP (1)

= −
√
n(Ψn −Ψ)(θ0) + oP (1 +

√
n‖θ̂n − θ0‖). (3.5)

Since the derivative Ψ̇θ0 is continuously invertible (you could picture Ψ̇θ0 as the Hessian matrix of a certain
loss function), there exists a positive constant c such that

‖Ψ̇θ0(θ − θ0)‖ ≥ c‖θ − θ0‖

for every θ and θ0. Frechet differentiability condition then yields

‖Ψ(θ)−Ψ(θ0)‖ ≥ c‖θ − θ0‖+ o(‖θ − θ0‖).
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Applying it to (3.5) yields

√
n‖θ̂n − θ0‖(c+ oP (1)) ≤ OP (1) + oP (1 +

√
n‖θ̂n − θ0‖).

This proves that θ̂n is a
√
n-consistent estimator of θ0 in norm.

Step II. We then prove the ASN of θ̂n. Applying Frechet differentiability condition again to LHS of (3.5),
we obtain

√
n(Ψ(θ̂n)−Ψ(θ0)) =

√
nΨ̇θ0(θ̂n − θ0) + oP (

√
n‖θ̂n − θ0‖)

=
√
nΨ̇θ0(θ̂n − θ0) + oP (1),

which is further equal to −
√
n(Ψn − Ψ)(θ0) + oP (1). Finally, the continuous mapping theorem closes the

proof.

Under i.i.d. models, the usual choices of Ψn and Ψ are

Ψn(θ) = Pnψθ and Ψ(θ) = Pψθ,

for given measurable functions ψθ indexed by Θ. If so, for proving the stochastic differentiable condition
(3.4), it is sufficient to prove

‖Gn(ψθ − ψθ0)‖Θδ → 0 as δ → 0, (3.6)

where Θδ := {θ : ‖θ − θ0‖ < δ}. The following lemma verifies (3.6).

Lemma 9 (Lemma 3.3.5 in VW1996). Suppose the class of function{
ψθ − ψθ0 : ‖θ − θ0‖ < ε

}
is P-Donsker for some ε > 0 and that

P (ψθ − ψθ0)2 → 0, as θ → θ0.

Then (3.6) holds.

The proof is just rephrasing the definitions.

Corollary 10 (HW problem). Consider the score function ψθ satisfies that, for every θ1, θ2 in a neighborhood
of θ0,

‖ψθ1(x)− ψθ2(x)‖ ≤ ψ̇(x)‖θ1 − θ2‖.

Then under some sufficient conditions, we have θ̂n is an ASN estimator of θ0.

3.3 Bootstrapping theory

We close this chapter with a slight touch on the bootstrap theory. There are essentially three perspectives
to understand the advantage of bootstrap inference over the classic ones:

1. Bootstrap has the so-called second-order accuracy for studentized functionals (in Peter Hall’s sense,
referred to his seminal book “The Bootstrap and Edgeworth Expansion”, and three wonderful papers
in 1980’s);
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2. In most applications, bootstrap consistency (meaning that the bootstrapped statistic’s distribution is
consistent to the statistic’s own distribution) holds as soon as ASN holds;

3. There exist cases when bootstrap is consistent while ASN does not hold (Bickel and Freedman, 1983,
”Bootstrapping regression models with many parameters”).

A good introductory book to bootstrap inference theory is “When does bootstrap work?”, written by Pro-
fessor Enno Mammen.

3.3.1 Peter Hall’s view

CLT tells us the limiting behavior of Xn as n → ∞. However, it never tells us how fast Xn − µ converges
to N(0, σ2). Actually, a result like

|P (
√
n(Xn − µ) ≤ x)− Φ(x/σ)| = O(1/ log n)

would be useless. Gladly, Berry-Esseen Theorem tells us the convergence rate is usually not that disappoint-
ing.

Theorem 11 (Berry-Esseen Theorem (Esseen 1956)). Suppose EF |X − µ|3 <∞. We then have

sup
x
|P (
√
n(Xn − µ)/σ ≤ x)− Φ(x)| ≤ 0.4785 · E|X − µ|3

σ3
√
n

.

Let’s move on to characterizing the higher-order approximation for CLT. This is known as the Edgeworth
expansion, and is celebrated for its application to proving the second-order accuracy of the bootstrap.

Theorem 12 (Edgeworth expansion). Let X1, . . . , Xn
i.i.d.∼ F . Write

γ := EF (X − µ)3/σ3 (skewness) and κ := EF (X − µ)4/σ4 (kurtosis).

We then have

Gn(x) := PF (
√
n(Xn − µ)/σ ≤ x)

= Φ(x)− φ(x)

(
γ(x2 − 1)

6
√
n

+
(κ− 3)(x3 − 3x)

24n
+
γ2(x5 − 10x3 + 15x)

72n

)
+ o(1/n).

Remark 13. When F is symmetric, we have γ = 0, so that Φ(x) approximates Gn(x) in the rate O(1/n)
(This justifies the intuition that “30 is good enough for CLT to work”).

Remark 14. When F is asymmetric, generally γ 6= 0 and the CLT can only attain O(1/
√
n) rate of

convergence. However, say, if we are interested in calculating the confidence interval of
√
n(Xn − µ)/σ, a

balanced interval gives us
Gn(x)−Gn(−x) = Φ(x)− Φ(−x) +O(1/n),

with the first term cancelled out. This is the intuition why balanced confidence interval is more preferred.

Remark 15. The first two-order approximation is involved with κ only through κ− 3. This is the intuition
why the excess kurtosis is defined as κ− 3.

We then move on to prove bootstrap consistency and its second-order accuracy. Suppose T (X1, . . . , Xn;F )
is a functional (e.g., T (X1, . . . , Xn;F ) =

√
n(Xn − µ)). Each time, the (nonparametric, multinomial, or

Efron) bootstrapped sample X∗1 , . . . , X
∗
n is sampled from X1, . . . , Xn with replacement. In other words, the
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bootstrap sample is drawn from the ECDF Fn with point mass on X1, . . . , Xn. The corresponding statistic
is T (X∗1 , . . . , X

∗
n;Fn). It is set up to approximate the true distribution of T (X1, . . . , Xn;F ).

Let’s consider the simplest case, where T (X1, . . . , Xn;F ) =
√
n(Xn − µ). The bootstrap consistency is

established as follows. Its proof is due to Professor Anirban DasGupta.

Theorem 16. Provided EFX
2 <∞ and T (X1, . . . , Xn;F ) :=

√
n(Xn − µ), we have

sup
x
|PF (Tn ≤ x)− P∗(T ∗n ≤ x)| a.s.→ 0,

where P∗ corresponds to the uniform distribution over all the nn possible replacement resamples from (X1, . . . , Xn),
and T ∗n :=

√
n(
∑
X∗i /n−Xn).

Proof. By triangle inequality, we have

sup
x
|PF (Tn ≤ x)− P∗(T ∗n ≤ x)| ≤ sup

x
|PF (Tn/σ ≤ x/σ)− Φ(x/σ)|+ sup

x
|Φ(x/σ)− Φ(x/s)|

+ sup
x
|Φ(x/s)− P∗(T ∗n/s ≤ x/s)|

= An +Bn + Cn,

where s is the sample standard deviation, and is the standard deviation of (X1, . . . , Xn) under P∗. Here

An → 0 by CLT. Bn → 0 by the fact s
a.s.→ σ and the continuous mapping theorem. Finally, applying the

Berry-Esseen theorem to P∗, we have

Cn ≤
C√
n
· EFn(X∗1 −Xn)3

[VarFn(X∗1 )]3/2
=

C√
n
·
∑
|Xi −Xn|3

ns3
≤ 8C

n3/2s3
· (
∑
|Xi − µ|3 + n|Xn − µ|3),

where in the last inequality we use the fact (a+ b)3 ≤ 8(a3 + b3) for any a, b > 0. We then continue to have

8C

n3/2s3
· (
∑
|Xi − µ|3 + n|Xn − µ|3) ≤ C ′

s3

(
1

n3/2

∑
|Xi − µ|3 +

|Xn − µ|3√
n

)
.

Viewing the SLLN:

Theorem 17 (SLLN). (i) If EF |X| <∞, then Xn
a.s.→ EFX. In other words, for arbitrary ε > 0,

PF ( lim
n→∞

Xn = EFX) = 1.

(ii) (Zygmund-Marcinkiewicz SLLN.) If for some 0 < δ < 1, EF |X|δ <∞, then we have

n−1/δ
∑

Xi
a.s.→ 0.

Clearly, these two terms will vanish by Zygmund-Marcinkiewicz SLLN.

We then move to study the so-called second-order accuracy of the bootstrap. In short, under some assump-
tions, the bootstrap convergence rate is O(1/n) compared to O(1/

√
n) for CLT. The following argument is

due to Eric Lehmann.

Consider T =
√
n(Xn − µ)/σ. By Edgeworth expansion, we have

PF (T ≤ x) = Φ(x) + φ(x)(p1(x|F )/
√
n+ p2(x|F )/n) + o(1/n)

PF∗(T ∗ ≤ x) = Φ(x) + φ(x)(p1(x|Fn)/
√
n+ p2(x|Fn)/n) + o(1/n)

PF (T ≤ x)− PF∗(T ∗ ≤ x) = φ(x)

(
p1(x|F )− p1(x|Fn)√

n
+
p2(x|F )− p2(x|Fn)

n

)
+ o(1/n),
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with

p1(x|F ) =
γ

6
(1− x2), p2(x|F ) =

κ− 3

24
(3x− x3)− γ2

72
(x5 − 10x3 + 15x).

Hence, since γFn − γF = OP (1/
√
n), we obtain O(1/n) rate of convergence given the finiteness of the

moments, which is called the second-order accuracy, in comparison to the first-order accuracy (O(1/
√
n)) in

CLT.

However, when we do not standardize the data, the second-order accuracy is lost, since additional effort is
required to bound Φ(x/σ)− Φ(x/s). Therefore, a rule of thumb is as follows:

Proposition 18 (DasGupta). If T (X1, . . . , Xn;F )
d→ N(0, τ2) with τ independent of F and an Edgeworth

expansion is available to T , then the second order accuracy is likely.

3.3.2 Empirical processes’ view

Bootstrap usually works as long as ASN holds. This could be rigorously stated in the following grand
theorem. But before that, let’s first introduce the multiplier (wild) bootstrap: thinking about the example
in the last section, we could rewrite the nonparametric bootstrapped sample mean as:

1

n

n∑
i=1

X∗i =
1

n

n∑
i=1

WniXi,

where Wn = (Wn1, . . . ,Wnn)T is a multinomial vector with probability (1/n, . . . , 1/n) and number of trials
n, and Wn is independent of X1, . . . , Xn. This will then give rise to the nonparametric bootstrap empirical
measure:

P̂nf = n−1
n∑
i=1

Wnif(Xi).

An alternative to nonparametric bootstrap is the multiplier (wild) bootstrap: Let ξ1, ξ2, . . . , be an infinite
sequence of nonnegative i.i.d. random variables, independent of X1, . . . , Xn, having mean µ and variance τ2,
and satisfying ‖ξ‖2,1 :=

∫∞
0

√
P (|ξ| > x)dx < ∞. This will give rise to the multiplier bootstrap empirical

measure:

P̃nf = n−1
n∑
i=1

(ξi/ξn)f(Xi),

where ξn := n−1
∑n
i=1 ξi. Note that the weights add up to n for both bootstraps.

Let Ĝn =
√
n(P̂n − Pn), G̃n =

√
n(µ/τ)(P̂n − Pn), and G be the standard P -bridge in L∞(F).

Theorem 19 (Theorem 2.6 in K2008). The following are equivalent:

(i) F is P -Donsker;

(ii) Ĝn weakly converges to G conditionally on the data, and the sequence Ĝn is asymptotically measruable;

(iii) G̃nweakly converges to G conditionally on the data, and the sequence G̃n is asymptotically measruable.

Let’s consider θ ∈ Θ ⊂ Rp, ψθ : X → Rp, Ψ(θ) = Pψθ, Ψn(θ) = Pnψθ, and Ψb
n(θ) = Pbnψθ, where Pbn could

be either P̂n or P̃n. A simple Z-estimator bootstrap consistency theorem to close the whole chapter is as
follows.
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Theorem 20 (Z-estimator master theorem, Theorem 10.16 in K2008). Let Θ ⊂ Rp be open, and assume
θ0 ∈ Θ satisfies Ψ(θ0) = 0. Also assume the following:

(i) (Identifiability condition) For any sequence {θn} ∈ Θ, Ψ(θn)→ 0 implies ‖θn − θ0‖ → 0;

(ii) The class {ψθ : θ ∈ Θ} is P -GC;

(iii) For some δ > 0, the class Fδ := {ψθ −ψθ0 : θ ∈ Θ, ‖θ− θ0‖ ≤ δ} is P -Donsker and P‖ψθ −ψθ0‖2 → 0
as ‖θ − θ0‖ → 0;

(iv) P‖ψθ0‖2 < ∞, and Ψ(θ) is Frechet differentiable (in finite-dimensional real space, reduces to classic
differentiability) at θ0 with nonsingular derivative matrix Vθ0 ;

(v) Ψn(θ̂n) = oP (n−1/2) and Ψb
n(θ̂bn) = oP (n−1/2).

Then, we have √
n(θ̂n − θ0)

d→ Z ∼ N(0, V −1
θ0
P [ψθ0ψ

T
θ0 ][V −1

θ0
]T )

and conditionally on the data, √
n(θ̂bn − θ̂n)

P→ k0Z,

with k0 = 1 for nonparametirc bootstrap, and k0 = τ/µ for the multiplier bootstrap.

The whole proof is just a combination of the proof of Theorem 8 and the result in Theorem 19.


