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8.1 Overview on minimax lower bound

This lecture note is focused on introducing the general framework for constructing lower bounds for any
given statistical problem. Such a framework, formulated by Lucien LeCam and many others in 1970s-80s,
aims to mathematically rigorously understand statistical problems’ challenge via a worst-case analysis.

We define a “statistical problem” as follows. It contains three components: (1) a parameter space Θ; (2) a
class of probability measures {Pθ, θ ∈ Θ}; (3) a semi-distance d(·, ·) : Θ×Θ→ R on Θ. A statistical problem
aims to recover θ, measured by d(·, ·), given Pθ.

Example 8.1.1. Throughout this note, we will repeatedly visit the sparse normal mean estimation problem:
estimate θ ∈ Θs := {v ∈ Rp : |supp(v)| ≤ s} based on Pθ := Np(θ, σ

2Id)
⊗n. Here d(·, ·) is commonly

adopted to be the Euclidean distance on Rp space.

Regarding a general statistical problem, we aim to know how hard, at worst, it is to recover any given θ ∈ Θ.
This is formulated by the maximum risk of the estimator on Θ:

r(θ̂n) := sup
θ∈Θ

Eθd2(θ̂n, θ).

8.1.1 Upper bounding the maximum risk

By the techniques we have learnt so far, usually it is not too hard to upper bound r(θ̂n). For example, in
Example 8.1.1, let’s consider the MLE (also called the least square estimator):

θ̂n := argmin
v∈Θs

n∑
i=1

‖Xi − v‖2.

We then have the following theorem.

Theorem 8.1.2 (Sparse normal mean estimation - upper bound). For Example 8.1.1, we have

sup
θ∈Θs

Eθ‖θ̂n − θ‖22 ≤ C ·
σ2s log(ep/s)

n
,

where C is an absolute constant.

Remark 8.1.3. Note that the upper bound does not depend on the scale of θ, which is a little bit surprising.
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Proof. For any θ ∈ Θs, by definition of θ̂n, we have

n∑
i=1

‖Xi − θ̂n‖2 ≤
n∑
i=1

‖Xi − θ‖2,

which implies

‖θ̂n − θ‖22 ≤ 2〈X − θ, θ̂n − θ〉 ⇒ ‖θ̂n − θ‖2 ≤ 2

〈
X − θ, θ̂n − θ

‖θ̂n − θ‖2

〉

where X := 1
n

∑
Xi. By the standard uniform consistency argument in EP, using the fact that |supp(θ̂n −

θ)| ≤ 2s, we can continue writing

‖θ̂n − θ‖2 ≤ 2 sup
v∈B(2s)

|vT (X − θ)| where B(s) := {v ∈ Rp : |supp(v)| ≤ s, ‖v‖2 = 1}.

We then employ a covering net argument as in Lecture note #4. In particular, for any a ∈ Rq, ‖v1−v2‖2 ≤ ε,
and ‖v1‖2 = ‖v2‖ = 1, we have

|(vT1 a)2 − (vT2 a)2| ≤ 2ε sup
‖v‖2=1

(vTa)2.

This implies

sup
‖v‖2=1

|vTa|2 ≤ (1− 2ε)−1 sup
v∈Nε

|vTa|2.

Here Nε is the ε-net on Sq−1, with the cardinality smaller than (1 + 2/ε)q. This further implies

Pθ(‖θ̂n − θ‖2 ≥ 2
√

2t) ≤ Pθ( sup
v∈B(2s)

|vT (X − θ)| ≥
√

2t)

≤
(
p

2s

)
92sPθ(|vT (X − θ)| ≥ t)

≤ 2

(
9p

2s

)2s

exp(−nt2/2σ2)

where the last inequality is due to the fact that X − θ ∼ Np(0, σ
2Id/n) under Pθ, implying vT (X − θ) ∼

Nq(0, σ
2/n). This implies

‖θ̂n − θ‖2 = OP (
√
s log(ep/s)/n).

The expectation version is by EX =
∫
t>0

P (X ≥ t)dt for any positive r.v. X.

8.1.2 A general reduction scheme

In this section, we introduce a general framework to calculate lower bounds for any given statistical problem.
This section largely follows Tsybakov’s wonderful book “Introduction to Nonparametric Estimation”.

Our aim is to lower bound the minimax error:

inf
θ̃n

sup
θ∈Θ

Eθd2(θ̃n, θ),

where θ̃n is any measurable statistic on Pθ for any given θ.
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(1) The first step is to reduce the expectation bounds to probability. This is via the Markov’s inequality:

Eθd(θ̃n, θ) ≥ APθ(d(θ̃n, θ) ≥ A).

Therefore, as long as we can find a A such that inf θ̃n supθ∈Θ Pθ(d(θ̃n, θ) ≥ A) ≥ C > 0 for some absolute
constant C, we have

inf
θ̃n

sup
θ∈Θ

Eθd2(θ̃n, θ) ≥ C2A2.

(2) The second step is to find a worst-case parameter space {θ0, θ1, . . . , θM} ∈ Θ of infinite number of
elements (θ0 is made to be the reference value). This is usually the key step. By the property of infimum,
we must have

inf
θ̃n

sup
θ∈Θ

Pθ(d(θ̃n, θ) ≥ A) ≥ inf
θ̃n

sup
θ∈{θ0,...,θM}

Pθ(d(θ̃n, θ) ≥ A).

(3) The third step is to make θ0, . . . , θM uniformly distinguishable, so that we could transfer the estimation
problem to a testing problem. In detail, we must have to construct θ0, . . . , θM such that

d(θj , θk) ≥ 2A, for any k 6= j.

Accordingly, for any estimator θ̃n, if there exists θk such that d(θ̃n, θk) ≤ d(θ̃n, θj), then we must have

d(θ̃n, θj) ≥ A (otherwise d(θj , θk) ≤ d(θ̃n, θk) + d(θ̃n, θk) ≤ 2A). In other words, we must have

Pθj (d(θ̃n, θj) ≥ A) ≥ Pθj (Ψ∗ 6= j), for j = 0, . . . ,M,

where Ψ∗ is the minimum distance test:

Ψ∗ := argmin
0≤j≤M

d(θ̃n, θj).

Therefore, we have successfully transferred the estimation problems to testing problems:

inf
θ̃n

sup
θ∈Θ

Pθ(d(θ̃n, θ) ≥ A) ≥ inf
Ψ

sup
0≤j≤M

Pθj (Ψ 6= j),

The testing problem on the righthand side has been very nice to deal with. In particular, when M = 1,
we have recovered the two-class hypothesis testing problem, which by intuition we know Nayman-Pearson
Lemma could get in to give a sharp lower bound (actually, this is one of the major motivations to bring
information theory to statistics: MLE is exactly the projection estimator regarding the K-L divergence!).
The lower bound for multiple (but finite) hypothesis testing problem is constructed by LeCam. As you can
imagine, it is still based on likelihood ratios.

8.2 LeCam’s approach

In the following, we drop the absolute continuous issue. Please check Tsybakov’s book for the complete
version.

Theorem 8.2.1. Let P0, P1, . . . , PM be probability measures on (X ,A). We then have

inf
Ψ

sup
0≤j≤M

Pj(Ψ 6= j) ≥ sup
τ>0

τM

1 + τM

 1

M

M∑
j=1

Pj

(
dP0

dPj
≥ τ

) .
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Proof. Let’s write Ψ be the test taking values {0, 1, . . . ,M}. Let

Tj :=

{
dP0

dPj
≥ τ

}
.

We then have

P0(Ψ 6= 0) =

M∑
j=1

P0(Ψ = j) =

M∑
j=1

∫
I(Ψj)dP0 =

M∑
j=1

∫
I(Ψj)

dP0

dPj
dPj ≥

M∑
j=1

τPj({Ψ = j} ∩ Tj)

≥ τM

 1

M

M∑
j=1

Pj(Ψ 6= j)

− τ M∑
j=1

Pj(T
C
j ) = τM(p0 − α),

where

p0 :=
1

M

M∑
j=1

Pj(Ψ = j) and α :=
1

M

M∑
j=1

Pj

(
dP0

dPj
< τ

)
.

Accordingly, we have

max
0≤j≤M

Pj(Ψ 6= j) = max

{
P0(Ψ 6= 0), max

1≤j≤M
Pj(Ψ 6= j)

}
≥ max

τM(p0 − α),
1

M

M∑
j=1

Pj(Ψ 6= j)


= max{τM(p0 − α), 1− p0} ≥ min

0≤p≤1
max{τM(p− α), 1− p} =

τM(1− α)

1 + τM
.

This completes the proof.

This then gives us the desired result.

Theorem 8.2.2 (LeCam). Assume Θ = {θ0, θ1, . . . , θM} is constructed such that

(1) d(θj , θk) ≥ 2A > 0 for any 0 ≤ j < k ≤M ;

(2) there exists τ > 0 and 0 < α < 1 such that

1

M

M∑
j=1

Pj

(
dP0

dPj
≥ τ

)
≥ 1− α.

We then have

inf
θ̃n

sup
θ∈Θ

Pθ(d(θ̃n, θ) ≥ A) ≥ τM

1 + τM
(1− α).

8.2.1 Elementary information theory

Given Theorem 8.2.2, what is left is to determine the value of Pj

(
dP0

dPj
≥ τ

)
. This is, naturally, the problem of

determining the distance between two probability measures P0 and Pj , which plays a key role in information
theory.

Of note, there is a track in probability to rethink everything in statistics from the perspective of the
information theory. One motivating example is Stein’s method, which is a flexible way in determining
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the rate for weak convergence in weak topology. People of interest should read Ramon von Handel’s
note (https://www.princeton.edu/~rvan/ORF570.pdf) as well as John Duchi’s (http://stanford.edu/
class/stats311/Lectures/full_notes.pdf).

Nevertheless, let’s restrict our interest to studying Pj

(
dP0

dPj
≥ τ

)
. To this end, let’s introduce the following

concepts.

Definition 8.2.3. For any two probability measures P and Q on (X ,A), suppose ν is a σ-filed measure on
(X ,A) satisfying P � ν and Q� ν. We define p = dP/dν and q = dQ/dν, and

• f -divergence:

Df (P,Q) :=

∫
f

(
dP

dQ

)
dQ.

• Hellinger distance (H2 as a special case of f -divergence by taking f(x) = (
√
x− 1)2):

H(P,Q) :=

(∫
(
√
p−√q)2dν

)1/2

=

(∫
[
√
dP −

√
dQ]2

)1/2

.

The last equality is the famous Sheffe’s theorem.

• Total variation distance (taking f(x) = |x− 1|/2):

V (P,Q) := sup
T∈A
|P (T )−Q(T )| = sup

T∈A

∣∣∣∣∫
T

(p− q)dν
∣∣∣∣ =

1

2

∫
|p− q|dν.

• Kullback-Leibler (K-L) divergence (taking f(x) = x log x):

K(P,Q) =

∫
log

dP

dQ
dP for P � Q.

• χ2 divergence (by taking f(x) = (x− 1)2):

ξ2(P,Q) :=

∫ (
dP

dQ
− 1

)2

.

There are a bunch of useful inequalities within the f -divergence family. However, due to the scope limit,
let’s focus on the one of the most useful, Pinsker’s inequalities.

Lemma 8.2.4 (Pinsker’s inequalities). (1) V (P,Q) ≤
√
K(P,Q)/2.

(2) If P � Q, then ∫ ∣∣∣∣log
dP

dQ

∣∣∣∣ dP :=

∫
pq>0

p

∣∣∣∣log
p

q

∣∣∣∣ dν ≤ K(P,Q) +
√

2K(P,Q),

and ∫ (
log

dP

dQ

)
+

dP ≤ K(P,Q) +
√
K(P,Q)/2,

where a+ := max(a, 0).

Proof. Left as a good exercise.
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8.2.2 Back to Theorem 8.2.2

Using the Pinsker’s inequalities, we are now well equipped to provide a more user-friendly version of LeCam’s
theorem.

Theorem 8.2.5. Assume that M ≥ 2 and Θ = {θ0, . . . , θM} satisfies

(1) d(θj , θk) ≥ 2A > 0 for any 0 ≤ j < k ≤M ;

(2) Pj � P0 and

1

M

M∑
j=1

K(Pj , P0) ≤ α logM,

with 0 < α < 1/8 (the upper bound 1/8 is to make sure the final lower bound is larger than 0).

We then have

inf
θ̃n

sup
θ∈Θ

Pθ(d(θ̃n, θ) ≥ A) ≥
√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
.

Proof. In Theorem 8.2.2, for any 0 < τ < 1, we have

Pj

(
dP0

dPj
≥ τ

)
= Pj

(
dPj
dP0

≤ 1

τ

)
= 1− Pj

(
log

dPj
dP0

> log
1

τ

)
≥ 1− 1

log(1/τ)

∫ (
log

dPj
dP0

)
+

dPj ,

where the last inequality is due to Markov’s inequality. We then can employ the second Pinsker’s inequality
to derive

Pj

(
dP0

dPj
≥ τ

)
≥ 1− 1

log 1/τ

[
K(Pj , P0) +

√
K(Pj , P0)/2

]
.

By Jensen’s inequality and Condition (2),

1

M

M∑
j=1

√
K(Pj , P0) ≤

 1

M

M∑
j=1

K(Pj , P0)

1/2

≤
√
α logM.

Accordingly, we have

1

M

M∑
j=1

Pj

(
dP0

dPj
≥ τ

)
≥ 1− 1

log 1/τ
(α logM +

√
α logM/2),

which, combined with Theorem 8.2.2, yields

inf
θ̃n

sup
θ∈Θ

Pθ(d(θ̃n, θ) ≥ A) ≥ τM

1 + τM

(
1− 1

log 1/τ
(α logM +

√
α logM/2)

)
.

Picking τ = 1/
√
M minimizes the above term and finalizes the proof.

8.2.3 Application to Example 8.1.1

Let’s then show the upper bound in Theorem 8.1.2 is rate-optimal in the minimax sense via using Theorem
8.2.5.
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Theorem 8.2.6. Regarding the statistical problem in Example 8.1.2, we have

inf
θ̃n

sup
θ∈Θs

Eθ‖θ̃n − θ‖22 & σ2s log(ep/s)/n.

To prove the result, we need a strong result in combinatorics. In detail, let

Ω := {ω = (ω1, . . . , ωm), ωi ∈ {0, 1}} = {0, 1}m.

We then have the Varshamov-Gilbert bound.

Lemma 8.2.7 (Varshamov-Gilbert bound). Let m > 8. Then there exists a subset {ω(0), . . . , ω(M)} of Ω
such that ω(0) = (0, . . . , 0) and

‖ω(j) − ω(k)‖0 ≥
m

8
for 0 ≤ j < k ≤M

(Here ‖ · ‖0 represents the Hamming distance) and

M ≥ 2m/8.

Proof of Theorem 8.2.6. To prove this theorem, we use a variation of the Varshamov-Gilbert bound. We
construct the parameter space Θ0 as follows

θ0 = 0, [θTi ]j = a · I(j ∈ Ti),

where Ti ∈ T , which includes all s distinct elements in {1, . . . , p} that pairwise have overlaps at, at most,
s/8 position, and a > 0 is a value to be determined later. Using a variation of the Varshamov-Gilbert bound
(a proof using probabilistic method like the proof of random projection. Maybe I will cover it in class), we
can prove

logM := log |Θ0| & s log(p/s).

Furthermore, for Gaussian distribution, we know

KL(Pj , P0) =
1

2
‖θj‖22 = nsa2/2σ2

and
‖θj − θk‖22 & sa2.

Accordingly, picking a2 � σ2 log(p/s)/n completes the proof.

8.3 Fano and Assouad

I do not believe I will have time to introduce them, but I can promise you they are very useful. Actually,
they are developed to handle the cases LeCam’s method cannot or is very difficult to handle. People of
interest should read Duchi’s note.


