
Statistical Simulations on Parallel Computers

Hana ŠEVČÍKOVÁ

The potential benefits of parallel computing for time-consuming statistical applica-
tions are well known, but have not been widely realized in practice, perhaps in part due to
associated technical obstacles. This article develops a simple framework for programming
statistical simulations using parallel processing, which does not require changing program-
ming language or forgoing the use of standard statistical libraries. The basic idea of using
parallel computing for statistical simulation studies is straightforward in principle, and is
based on the standard master-slave model. However, there are several technical obstacles
that can make it difficult to implement in practice. These include: nonreproducibility of
results due to variations in the distribution of random numbers among processes, creation
of excessive numbers of slaves, proliferation of slaves with very short lifetimes, and slaves
destroyed due to hardware failures. This article proposes solutions for each of these diffi-
culties, and together these solutions constitute an overall parallel computing framework for
statistical simulation studies.

In an experiment with 15 processors, the methods detailed here led to increases in speed
by factors that can actually exceed the maximum expected factor of 15, due to the efficiencies
of the proposed problem decomposition methods. Different gains may be achieved with
different strategies, depending on the problem decomposition used and heterogeneity of the
processors. Fault tolerance is an important feature of the framework. In an experiment with
faults, a non-fault-tolerant version of our method took almost twice as long, and did not
produce any results, while the fault-tolerant method dealt efficiently with the faults.

We conclude that parallel computing can greatly improve the efficiency of statistical
computation without greatly increasing programming complexity, and that it deserves wider
investigation for such applications. Software to implement the proposed framework in R is
available from http://www.stat.washington.edu/hana.

Key Words: Distributed systems; Fault tolerance; Master-slave model; Mixture models;
Parallel processing; Random number generation; Statistical applications.

1. INTRODUCTION

Rapid technological development, particularly in the areas of processors and network-

ing, now allows computationally expensive applications to run in times that would not have

Hana Ševčíková is Research Associate, Department of Statistics, University of Washington, Box 354322, Seattle,
WA 98195-4322 (E-mail: hana@stat.washington.edu).

©2004 American Statistical Association, Institute of Mathematical Statistics,
and Interface Foundation of North America

Journal of Computational and Graphical Statistics, Volume 13, Number 4, Pages 1–21
DOI: 10.1198/106186004X12605

1

2 H. ŠEVČÍKOVÁ

been conceivable some years ago. This is due in part to more powerful processors, but

the sharing of resources has also played a major role in saving processor time. Adapting

programming to the available capacity of resources can increase this effect even further.

The benefits of parallel computing are well known and have been documented in the

literature for years. In mathematical and statistical research, parallel processing allows

scientists to address more complex problems. There are many publications about parallel

processing for statistical computing mostly concerning specific methods and applications;

see Adams, Kirby, Harris, and Clegg (1996) for a review. Nevertheless, programs for parallel

computers in statistics have not been as widely developed as would seem worthwhile given

the huge time cost of many statistical applications. Adams et al. (1996) gave some possible

reasons for the limited use of parallel computers in statistics, such as belief in the difficulty

of programming and hence a need for extra programming skills, the lack of libraries of

parallel routines, the wide variety of parallel architectures, and the lack of wide availability

of parallel computers.

This article presents a simple framework for programming statistical simulations for

parallel processing. The focus is on hardware architecture available to most scientists: a

cluster of workstations or personal computers. Moreover, the suggested approach requires

neither changing the accustomed programming language, nor forgoing the use of standard

libraries such as NAG.

We focus specifically on the problem of simulation studies for assessing the properties

of statistical tests and estimators, because this is an area where sequential studies can be

very time-consuming and where there is a clear potential for large gains in computation

time from parallel computing. However, we believe that the ideas developed here may well

be more generally applicable.

The basic idea of using parallel computing for statistical simulation studies is straight-

forward in principle, and is based on the standard master-slave model. However, there are

several technical obstacles that can make it difficult to implement in practice. These include:

nonreproducibility of results due to variations in the distribution of random numbers among

processes, creation of excessive numbers of slaves, proliferation of slaves with very short

lifetimes, and slaves destroyed due to hardware failures. We propose solutions for each

of these difficulties, and together these solutions constitute an overall parallel computing

framework for statistical simulation studies. Fault tolerance is an important feature of our

framework. In an experiment with faults, we found that a non-fault-tolerant version of our

method took almost twice as long, and did not produce any results, while our method dealt

efficiently with the faults.

 Section 2 gives a brief overview of parallel processing, including a short description of

hardware and software aspects. Section 3 focuses on statistical simulations, their common

structure, and ways to decompose it for parallel processing. The issue of random numbers—

as well as making applications tolerant of system faults—is also discussed. Section 4 applies

our framework to a concrete application, namely the repeated execution of a chain of

statistical tests with bootstrap simulations.

STATISTICAL SIMULATIONS ON PARALLEL COMPUTERS 3

2. SETTINGS FOR PARALLEL PROGRAMMING

2.1 HARDWARE

The possibility of processing programs in parallel depends most of all on the available
hardware. For example, splitting a program up into a bunch of independent parts would not
increase its speed on a PC with a single CPU.

For a rough theoretical description of hardware architecture, Flynn’s classification
(Flynn 1972) has been widely used in the literature. It distinguishes between four broad
categories: SISD (single instruction single data), MISD (multiple instruction single data),
SIMD (single instruction multiple data), and MIMD (multiple instruction multiple data).
Most of today’s parallel computers work according to the MIMD principle. It describes a
computer with several processing units capable of operating on several data streams which
could be instructions or data.

A further classification of the MIMD model according to the memory organization is
useful, especially from the programmer’s point of view:

• Systems with shared memory: These consist of a set of processors that share access
to a common memory area. An example could be a personal computer with only few
CPUs (usually two or four), up to supercomputers with several hundred processors.
Process communication on these systems is usually done via shared variables.

• Systems with distributed memory: These consist of a set of processors each of which
has its own local memory. An example of this category is a cluster of workstations
or personal computers connected via a local area network (LAN), which are able
to communicate with each other with the help of appropriate software. Processes
exchange data via message passing.

Because the cost of parallel supercomputers is still enormous, a usual case of a hardware
platform for scientists is a system of the latter type, in most cases a cluster of linked
independent computers.

2.2 SOFTWARE

Having a parallel hardware architecture available, the programmer must be aware of
the supporting software, such as the operating system, available compilers and libraries for
parallel processing. This knowledge will determine his or her view of the system and will
affect his or her approach to parallel programming.

Concerning the operating system, computers with shared memory are normally
equipped with system software that manages cooperation between all processors and takes
care of load balancing. There are also usually software constructs available that help pro-
grammers to manage concurrent access to the shared memory, for example, semaphore and
lock-unlock mechanisms.

Such support from the operating system is usually not available in systems with dis-

4 H. ŠEVČÍKOVÁ

tributed memory. A network of personal computers will need additional software to build
a cluster of processors that can communicate with each other and share the network load.
An example of such software is MOSIX (Barak, Guday, and Wheeler 1993), a freeware
package for Unix/Linux platforms. This is able to migrate running processes automatically
between its nodes according to the current resource usage and thus to share the network
load to get the best performance.

Another important issue for the programmer is choosing the programming language.
This goes along with choosing the program decomposition approach. There are different
levels of parallelism:

• Instruction level—single instructions can be processed concurrently.
• Data level—the same instruction is processed on different data at the same time

(mostly operations on data arrays).
• Loop level—a block of instructions from a loop can be run for each loop iteration

in parallel.
• Procedure level—larger program parts (mostly program procedures) can be run

concurrently.

Each of these levels leads to a different program grain size. Grain size refers to the number
of instructions performed in parallel. Choice of grain size involves a tradeoff: a fine-grained
program provides considerable flexibility with respect to load balancing, but it also involves
a high overhead of processing time due to a larger management need and communication
expense. Thus, the available hardware architecture has to be taken into consideration. For
example, a program running in parallel at the instruction level would not benefit much in
a system with distributed memory where the cost for data transfer via a network is high
relative to the runtime of the instruction itself.

In addition, the following differentiation has to be considered:

• Implicit parallelism: The programmer writes a sequential program and uses an ad-
vanced compiler to create a parallel executable binary.

• Explicit parallelism with implicit decomposition: The programmer marks constructs
for parallel processing. Then, the compiler does not need to analyze data dependen-
cies as in the previous case but it saves the programmer from dealing with process
communication, and thus it allows the easy creation of programs of fine grain size.
Representatives of this class are extensions of standard sequential languages as
Fortran D, HPF (High Performance Fortran), C∗.

• Explicit parallelism: The programmer handles the decomposition of the algorithm
as well as the communication between processes. The advantage of this type of
parallelism is that one can use a standard sequential programming language extended
by an appropriate software library such as PVM—parallel virtual machine (Geist et
al. 1994) or MPI (Dongarra, Hempel, Hey, and Walker 1994). This way of writing
programs is the most labor intensive and therefore useful on the procedure level of
parallelism. Nevertheless, it offers the possibility of creating very efficient code.

STATISTICAL SIMULATIONS ON PARALLEL COMPUTERS 5

The design proposed here focuses on systems with distributed memory. As mentioned
above, this is the kind of platform that is available to most statisticians. Moreover, programs
written for a computer cluster will work on a multiprocessor computer as well. For this
reason, the message-passing paradigm will be used for process communication.

2.3 PROGRAM STRUCTURE

Parallel programs consist of a set of tasks that are processed on a set of processors.
To get the correct algorithm the tasks have to be coordinated properly. There are different
organizational forms of tasks. We will focus on models that are common in systems with
distributed memory. In Geist et al. (1994), the following models are distinguished:

• Crowd computation—a collection of closely related processes, typically executing
the same code, perform computations on different portions of the workload. This
can be further subdivided into two categories:

– Master-slave model—one process has the “controlling” function. It is responsible
for program input, initialization, spawning slave processes, collection and display
of results. Slaves perform the actual computation.

– Node-only model—there is no master, only autonomous processes. One process
takes over the noncomputational responsibilities in addition to contributing to
the computation itself.

• Tree model—processes are created in a tree-like manner, thereby establishing a tree-
like, parent-child relationship. It can be useful for sorting algorithms, for example.

• Hybrid model—this is a combination of the crowd and tree models.

Choosing one of these models is strongly application dependent. It should best match the
natural structure of the parallelized program.

3. STATISTICAL APPLICATIONS

As mentioned earlier, among statisticians parallel computing has not become widely
used, even though the availability of hardware and software platforms for parallel processing
has increased rapidly in recent years. Moreover, there is a large need for parallel computing:
in modern statistics, there are often time-consuming methods (e.g. analysis of mixture mod-
els) with theoretical properties that are not fully known. These properties can be analyzed by
simulation. However, an adequate number of replications in such a simulation experiment
often requires an extremely long runtime if it is done sequentially. Thus, parallel processing
of simulations is often the only way to get reasonable application runtime.

Our experiences with parallel simulation computing show that only a little effort is
needed to get large returns in terms of saving computation time. This effort does not require
changing the accustomed programming language; also, we keep using standard libraries
(such as NAG) as well as sequential generation of random numbers. The only issue is

6 H. ŠEVČÍKOVÁ

how to decompose the problem into parallel tasks and handle their communication and
management. Because many statistical simulations have the same or very similar program
structure, this work can be done only once and may be used for a wide variety of other
simulation studies.

3.1 SIMPLE PARALLEL STRUCTURE OF STATISTICAL SIMULATIONS

Many simulation programs in statistics are of the following rough structure:

begin program

read input; initialization

for (i=1,. . .,r) do

generate random sample

compute results(i)
end for

evaluate results

print output

end program

The line compute results(i) represents computation of any complexity—from
simple expressions up to time-intensive branching simulations. In general, there is a set of
random numbers and the same computation is made on their partitions which are of the same
size (samples). Consequently, one can decompose the program along the data partitions and
thus, we get one task per replication. Typically the number of replications r is large, and
so the suggested decomposition will usually provide sufficient flexibility in terms of load
balancing. Furthermore, the number of tasks will scale with r, although not with the sample
size. We will show a possibility of further decomposition (e.g., for bootstrap simulations)
in the example of Section 4.

The structure of the program and its decomposition is a typical master-slave model.
The master process will handle input, initialization, creating and managing slave processes,
collecting and evaluating results, and printing the output. A slave receives parameters from
the master, performs the actual computation and sends the result back to the master. The
issue of generating random numbers will be discussed in Section 3.2. For now, we assume
that each slave is able to generate its own random sample. Thus, the sequential program
will be split into two parts:

Master:

begin program

read input; initialization

for (i=1,. . .,r) do

spawn slave si

send parameters to si

end for

receive results(1,. . .,r)

STATISTICAL SIMULATIONS ON PARALLEL COMPUTERS 7

evaluate results

print output

end program

Slave:

begin program

receive parameters from master

generate random sample

compute result

send result to master

end program

This design would not be very efficient in practical implementation. It has the following
drawbacks:

• In the normal case, many more slaves will be created than there are processors
available. The time overhead for the frequent process switching of the CPUs involved
will degrade the system performance. An optimal mapping of processes to processors
has to be achieved (see Section 3.3).

• For short computations in the replication loop, slaves will have very short lifetimes.
Then, their creation and destruction could take even more time than the computation
itself. An alternative solution minimizing the number of slaves being created is
discussed in Section 3.3.

• The master has no knowledge about slaves being destroyed due to hardware failures.
Some basic administration functions should be implemented in the master routine to
be able to dynamically adopt to system faults. This will be discussed in Section 3.4.

3.2 ISSUE OF RANDOM NUMBERS

In the decomposition embodied in the typical master-slave model of Section 3.1, slaves
that are carrying out their tasks at the same time require access to random numbers. One of
the main desired properties of a random number generator (RNG) is the reproducibility of
random numbers. This is guaranteed using a sequential generator. In a parallel application,
this issue demands extra attention.

Foster (1995) distinguished three general approaches to the generation of random num-
bers on parallel computers:

• Centralized approach—A sequential generator is encapsulated in a task from which
other tasks request random numbers. Adopted to our algorithm, the master would
create a sample and send it (together with other parameters) to the spawned slave.
This solution guarantees reproducibility and is very easy to implement. On the
other hand, increasing sample size causes increased network traffic and could lead

8 H. ŠEVČÍKOVÁ

to overflow of communication buffers.
• Replicated approach—Each task has an instance of the same RNG. To guarantee

reproducibility and independence, each slave has to get exact instructions from the
master about the generating, for example, the replication number. This approach
would not be very efficient in the parallel design from Section 3.1 having a large
number of replications. Each slave would have to start generating samples from
replication 1 and continue to the replication number received from the master. It
leads to time cost of complexity O(nr2) with sample size n and number of replica-
tions r. Nevertheless, it could be used in applications with time-consuming single
computations where, by comparison, the generation time itself is negligible.

• Distributed approach—From a single generator many generators are derived that are
all responsible for generating a single sequence. There exist several techniques for
implementing distributed generators. In Srinivasan and Mascagni (2000), a freeware
library for parallel random number generation SPRNG is introduced.

In the first two approaches, standard sequential RNGs may be used. In our implementations,
we do not want to abandon a usage of the large amount of RNGs and diverse transformations
implemented in the NAG library. Section 3.3 introduces an improved program design with
a relatively small number of slaves g, properly mapped into the number of available CPUs.
In this case, we can use the replicated approach for generating random numbers, because
by keeping g constant, the time complexity can be reduced to O(nr).

For using sequential RNGs in branching simulations, we introduce a combination of
the centralized and replicated approach:

• Quasi-replicated approach—There is an instance of the same RNG in each task. Only
one task (mostly the master process) generates the whole set of random numbers
for the application. The set is decomposed into subsets, each for one task. Instead
of sending the actual random numbers, only a state of the RNG corresponding to
the first number of the appropriate subset is sent to a task. Thus, each task is able to
generate its random numbers starting from the received state.

The last approach avoids the large communication cost of the centralized approach as
well as it reduces the high time cost of the pure replicated approach. Although the size of
the subsets must be known, it does not appear as a disadvantage in usual simulations with
finite replication loops. We will use this method in the example of Section 4. Nevertheless,
if the number of random numbers required on the slaves is unknown and could be very
large, the use of a distributed generator such as SPRNG might give better performance.

3.3 IMPROVED IMPLEMENTATION DESIGN

Here, the simple parallel decomposition suggested in Section 3.1 will be improved.
The goals of the improvement are:

• To control the number of running processes, so that the system will not get over-
loaded. For this, we introduce a variable max degree for the maximum number

STATISTICAL SIMULATIONS ON PARALLEL COMPUTERS 9

of processes being executed in parallel and a variable cur degree for the current
number of such processes. We allow max degree to be changed during the execu-
tion, so that the user can adopt the parallelism degree of the simulation according
to the current system load (e.g., increase the degree for running during the night
and decrease it back in a time of high load). The master reads this value during its
waiting time from a file (which can be changed at any time). Extensions, such as a
monitoring routine that creates this file automatically depending on the system load,
are conceivable.

• To minimize the total number of spawned slaves by keeping the current degree of
parallelism as high as possible. This is based on the idea of spawning max degree

slaves that will share the work on the whole set of tasks. Each time a computation
is finished, the slave does not exit after sending its results to the master but waits
for the next message from the master. This is either a request to destroy itself or
parameters for a new computation.

• To solve the issue of generating random numbers as discussed in Section 3.2. Each
slave keeps the state of its RNG in the local variable local repl in terms of
the replication number that its last computation corresponds to. With every other
computation request, it will continue generating samples from local repl to the
current replication i. Each slave will receive the value of i from the master (together
with other computation parameters).

Master:

begin program

read input; initialization

read max degree; cur degree:=0

finished:=0 ! counts finished replications

for (i=1,. . .,r) do

10 if (cur degree ≥ max degree) read max degree

if (cur degree ≥ max degree) then

15 receive results(j) from sk ! wait for a finished slave

finished:=finished+1

if (cur degree > max degree) then

send exit request to sk

cur degree:=cur degree−1; go to 10

end if

else ! there is free capacity for additional slave

spawn slave sk

cur degree:=cur degree+1

end if

send param(i,. . .) to sk

end for

for (i=finished+1,. . .,r) do ! collect remaining results

20 receive results(j) from sk

10 H. ŠEVČÍKOVÁ

send exit request to sk

end for

evaluate results

print output

end program

Slave:

begin program

initialization of RNG

local repl:=0

30 receive message from master

if (message /= param(i,. . .)) exit program

generate (i−local repl) random samples

compute result with the last sample

send result to master

local repl:=i

go to 30

end program

All receive-calls are implemented as blocking receive routines, that is, the program
waits until a message arrives. In line 15 and 20 of the master program, the master must
be able to identify the slave the message came from. Usually, standard message-passing
libraries offer functions to get information such as process ID. Additionally, the master must
receive the value of j which denotes the replication number the computation belongs to. It
can either be sent by the slave (together with results), or alternatively, the master can hold
a table which maps process IDs to replication numbers. We will show the latter solution in
the next section.

3.4 CONSIDERATION OF HARDWARE FAILURES

Executing parallel applications across distributed clusters introduces the problem of
fault tolerance. The more processors are involved in the computation, the smaller the mean
time to failure. With applications that are fault tolerant against system failures (one can just
think of rebooting computers), one avoids an annoying need for multiple executions of the
same simulations. Especially in statistical simulations where a computation is made up to
several hundred thousand times, results will not suffer from a small number of them being
discarded.

A great deal of work has been done in the area of fault tolerant programming. Most
of it is based on checkpointing the entire state of the program to disk. Hough, Kolda, and
Torczon (2001) introduced an interesting parallel algorithm that incorporates recovering
from failures without checkpointing. Nevertheless, it is constrained to a specific class of
methods, namely pattern search for nonlinear optimization.

STATISTICAL SIMULATIONS ON PARALLEL COMPUTERS 11

Because we are interested in developing a framework that is independent of the partic-
ular application, and thus of the slave program, we suggest letting the master take care of
indicating failures and recovering from them. In the program design from Section 3.3, the
master does not have any knowledge about slaves being alive or not. For example, if just
one slave were to crash during the execution, the program would get stuck in line 20 and
never come to an end. We introduce simple management functions for the master to be able
to react to system faults without losing other results.

For this, we suggest that the master hold two tables—one for running processes (called
slaves alive) and one for processes found to be aborted (slaves dead). Both tables are
of the same data structure: one row per slave, one column for the slave’s task identifier (TID),
and one column for the corresponding replication number. Depending on the application,
there could be additional columns; for example, for information used for time measurement
or, in branching simulations, for the number of a slave’s children. In the following, because
of their simplicity, we will forgo detailing step-by-step functions for manipulating the
management tables. Instead, we give an informal brief overview of the tables. We present a
concrete use of the tables in the application of Section 4 and in more detail in the Appendix
available at http://www.amstat.org/publications/jcgs/ftp.html.

There should be functions implemented that handle:

• adding new slaves to the table (Add slave)
• removing slaves from the table (Remove slave)
• modifying values in a certain row (Write slave)
• searching for replication number of a certain TID (Find replication)
• searching for the TID of a certain replication number (Find TID)

For the table slaves alive, a call of the routine Add slave will be joined with each
spawn-call, whereas a call of the routine Remove slave will be associated with sending
an exit request to a slave. Because the value of cur degree corresponds to the number of
entries in slaves alive, Add slave increases and Remove slave decreases this value.
Write slave should be called when parameters for a new computation are sent to a slave
without new spawning. After the master receives a result-message from a slave of a cer-
tain TID, it will use the Find replication routine to find the corresponding replication
number.

During its waiting time, in addition to reading the value of max degree from a file, the
master can search for slaves being aborted (we call this function Find dead slaves). To
identify such processes, the routine may use a standard library function, such as pvm task

from the PVM-library, giving information about running tasks. Alternatively, it can deter-
mine such processes from the data in slaves alive; for example, from the replication
number or from the start time of slaves if this information is kept in the table. A slave that has
been determined as aborted is removed from slaves alive (with Remove slave) and
added to the tableslaves dead (withAdd slave). This could be useful in situations where
a determination was incorrect and a slave moved to slaves dead was still working. The
remaining number of entries in slaves alive is the new value of cur degree. Then, if
the program is not successful in the routine Find replication called for slaves alive,

12 H. ŠEVČÍKOVÁ

the same routine should be called for slaves dead. If d is the number of entries in
slaves dead, the loop for collecting remaining results in the master program will be
done for (r-finished-d) iterations. Alternatively, d new computations can be started.
If new slaves are spawned in such case and they receive the failed replication numbers,
with our solution of generating random numbers, the reproducibility of the results will be
guaranteed.

 Figure 1 presents a flow chart for the fault-tolerant master program. The additional
management functions discussed in this section are shaded. From Figure 1 it is obvious that
the program structure consists of two main parts: the main replication loop and a loop for
collecting the remaining results. It should be noted that this program structure is independent
of the actual computation and thus may be used for any other simulation of sequential
structure discussed in Section 3.1. Furthermore, a usual programming language can be
used for implementation. There are only a few message-passing calls (shown in Figure 1
as bold framed boxes) for which a message-passing library is needed. For example, one
might use PVM coupled with C, C++, or Fortran. PVM can also be used with higher-level
programming languages. For instance, an interface to PVM is available for R, called RPVM
(Na Li and Rossini 2001).

Detecting an aborted slave as soon as possible will significantly influence the runtime
of the simulation. To demonstrate this on an example, we carried out the following experi-
ment. Our simulation was based on repeating 100,000 times a computation that takes three
seconds on average. We had 10 (in this case homogeneous) CPUs available at the time of
starting the process. After four hours processing we reduced the number of participating
processors to five; this represents the likely effect of an increase in system load due to other
users’ processes. We considered two situations, one with no system faults during the whole
processing time, and another with system faults during the first hour of processing that led
to discarding two slaves. The simulation was processed in each of these situations in two
versions: the non-fault-tolerant version from Section 3.3 and the fault-tolerant version from
this section.

The results are summarized in Table 1. As can be seen, there is a significant difference in
the runtime of the non-fault-tolerant version in the two fault situations. Because the master
is not aware of any lost slave, if there are system faults, it will make a usage only of eight
and later of three CPUs. Moreover, it delivers no results, because at the end (here after 22
hours, 45 minutes) it will put itself in the waiting position for the nonexisting slaves. The
large runtime difference between the two program versions in the case of failures shows
that even if the programmer implements the last receive routine of the non-fault-tolerant
version with finite timeout, there is a huge inefficiency in that solution.

In a situation without any failures, there is almost no difference between the two ver-
sions. Thus, the time overhead for managing the fault tolerance is negligible. Apparently, the
delay in the case of failures in the fault-tolerant version is caused by the time during which
the aborted slaves have not yet been identified. Therefore, if aborted slaves are guessed in
the routine Find dead slaves from their runtime or replication number, a more rapid
identification will improve the simulation runtime. On the other hand, the more slaves are
guessed falsely, the more overload will be caused.

STATISTICAL SIMULATIONS ON PARALLEL COMPUTERS 13

Figure 1. Flow chart for a fault-tolerant master program.

14 H. ŠEVČÍKOVÁ

Table 1. Comparison of the Two Program Versions

Program Run without faults Run with two faults

version time (h:min) time getting results

non-fault-tolerant 13:23 22:45 no
fault-tolerant 13:26 13:47 yes

Despite the obvious effectiveness of the fault-tolerant strategy, the method is not robust
against failures of the master node. This is a deficiency of current implementations of
the message passing framework rather than of the strategy adopted here. Therefore, this
drawback may be remedied by the next generation of message passing methods.

4. APPLICATION: EVALUATING THE STATISTICAL
PROPERTIES OF A CHAIN OF NESTED TESTS

This section applies the discussed parallel program structure to a statistical application
that is extremely time-consuming. We are dealing with performing a sequence of statistical
tests each of which requires an inner bootstrap simulation and with analyzing the properties
of such a test by simulation.

4.1 STATISTICAL PROBLEM

Let F be a family of probability densities and let F1 ⊂ F2 ⊂ F3 ⊂ · · · ⊂ F be
a sequence of hypotheses about f ∈ F such that F =

⋃∞
k=1 Fk holds. Given a sample

x1, . . . , xn from a particular (unknown) f ∈ F , we would like to identify the number k(f)
such that f ∈ (Fk(f) \ Fk(f)−1) (here we set F0 = ∅).

For example, F may represent the family of all finite mixtures of distributions of a
particular parametric model. If Fk stands for the family of all mixtures with no more than
k components, then k(f) is the number of components of a particular mixture f .

Let us suppose that k(f) is estimated on the basis of a chain of tests of the hypothesis
Fk against the alternative F (shortly “Fk ↔ F”), starting with k = 1.

For each k, the test is based on a test statistic Tk. A level α-test would reject Fk if the
particular realization tk of Tk exceeds the (1 − α)-quantile ck,1−α of the distribution of
Tk. The distribution of Tk and therefore also ck,1−α depends on f ∈ Fk. Suppose that we
can find a likelihood estimator f̂k of f in the family Fk. Then, ck,1−α could be estimated
by simulation on the basis of a number rb of bootstrap samples yi

1, . . . , y
i
n, i = 1, . . . , rb,

from f̂k. Thus, the test consist of the following steps:
1. Estimate f̂k ∈ Fk and calculate tk on basis of the sample x1, . . . , xn.
2. For i = 1, . . . , rb

• simulate a bootstrap sample yi
1, . . . , y

i
n from f̂k

• calculate tik.

STATISTICAL SIMULATIONS ON PARALLEL COMPUTERS 15

3. Estimate ĉk,1−α from t1
k, . . . , trb

k .
4. Reject Fk if tk > ĉk,1−α.
Each test results in a decision s ∈ {0, 1}, where s = 0 denotes rejection of Fk,

whereas s = 1 denotes acceptance of Fk (in a very wide sense). Now, testing Fk against
F for k = 1, 2, . . . on basis of one sample x1, . . . , xn from an unknown f until for some
first k̂, Fk̂ is not rejected, results in a sequence 0, 0, 0, . . . , 1; with “0” in the positions
1, . . . , k̂ − 1 and “1” in the position k̂. We will need this representation later. Finally, k(f)
is estimated by k̂(f) = k̂.

In order to study the statistical properties of the estimator k̂(f) by simulation, the whole
sequence of tests has to be repeated r times on the basis of simulated samples xi

1, . . . , x
i
n,

1 ≤ i ≤ r, from a pregiven f ∈ F . Then, we have an outer loop representing the replications
i = 1, . . . , r, and for each replication an inner loop representing the chain of tests based
on xi

1, . . . , x
i
n, including the bootstrap samples yj

1 , . . . , y
j
n, j = 1, . . . , rb, for each test. If

calculation of f̂k and tk is time-consuming, parallel processing seems worth considering.
In the context of mixtures, McLachlan and Peel (2000) proposed estimating the number

of components by a similar sequence of tests “Fk ↔ Fk+1.” Here, tk is based on the
likelihood estimators f̂k and f̂k+1 of f under Fk and Fk+1. For calculating f̂k and f̂k+1

the EM algorithm is proposed which is very time-consuming. We modified this proposal by
testing “Fk ↔ F” on the basis of f̂k under Fk and the nonparametric maximum likelihood
estimator f̂ of f under F . Here too, calculating tk requires a considerable amount of time.

Remark: Suppose, there is a rough initial estimate k̂0 of k(f) (e.g., in mixture models,
the number of components of the nonparametric maximum likelihood estimator f̂ of f in
F). Then, we can start the chain of tests from k̂0 instead of k = 1 and thus, decrease the
searching time. In this case, we proceed as follows:

1. Perform test “Fk̂0
↔ F .”

(a) If Fk̂0
is accepted, perform tests “Fk ↔ F” for k = k̂0 − 1, k̂0 − 2, . . . , 1 until

Fk is rejected. Then, k̂ is the last k for which “Fk ↔ F” was accepted.
(b) If Fk̂0

is rejected, perform tests “Fk ↔ F” for k = k̂0 + 1, k̂0 + 2, . . . until Fk

is accepted and the last k is k̂.

4.2 PARALLEL STRUCTURE

4.2.1 Decomposition

As mentioned in Section 3.1, the number of tasks created by decomposition along the
replication loop will scale with the replication number r, but not with the sample size or
with the number of executed single tests in a chain of tests. Consequently, a single task
could be extremely time-consuming so that further decomposition and thus, a finer grain
size of the program can be advantageous. In the context of our simulation study, two levels
of parallelism are possible:

1. one task per loop iteration (as described in Section 3.3),
2. one task per single test “Fk ↔ F”.

16 H. ŠEVČÍKOVÁ

We obtain a tree-like structure of tasks with three levels: (1) master task as root; (2) its
slaves responsible for processing a chain of tests each; they are parents of tasks on the (3)
level that handle single tests (we call such process slave-child). The relationship between the
master and its slaves will be handled according to Sections 3.3 and 3.4. This means that there
is a certain number of spawned slave processes each of which performs computations of
chains of tests, one after another, whereby the master supervises the work sharing between
the slaves. Additionally, slaves receive from the master a value of the maximum number of
children they are allow to create (say max child). Thus, the master can control the total
current degree of parallelism.

Between slaves and their children, we choose a dynamic spawn-destroy relationship.
This is because of the simplicity of such implementation, because slaves often do not need
the whole capacity of max child for the whole computation time. Moreover, we are dealing
with time-consuming computations and therefore there is no imbalance between the time
needed for the computation and the time overhead due to process creation and destruction.

If a slave has fewer thanmax child children, it informs the master of the actual value of
its children. The master keeps the numbers of children of each slave in an extra column of the
management table slaves alive and the total current degree of parallelism cur degree

is given as the sum of all the values in this column. Then a new computation can be started
only if cur degree ≤ (max degree-max child). For example, if max degree=9 and
max child =3, there could be three slaves running, each of which has three children. Or,
there could be also five slaves running, one with three, two with two children, and the
remaining two with only one child. In the latter situation, if the next finished slave had one
or two children, it will be destroyed because there is no capacity for starting a computation
with three children.

4.2.2 Random Numbers

It follows from the above discussion that in this solution, slaves can be more often
destroyed than in the design of Section 3.3 where it was the user’s responsibility. Thus, we
will lose the advantage of the reduced time complexity of generating random numbers in
comparison to the replicated approach as discussed in Sections 3.2 and 3.3. Therefore, we
decide to use the quasi-replicated approach. We assume that there is a maximum number of
k to be tested, say kmax. Then, with a sample size n and a number of bootstrap replications
rb, one chain of tests requires at most (n + kmax · rb · n) random numbers which is thus the
size of the data partitions for tasks on the first level of parallelism.

 Figure 2 shows the scheme of generating random numbers in the three different in-
stances of the same RNG. The master captures the state of its RNG at the beginning of
each loop replication (represented by black dots) and sends it to a slave (together with other
computation parameters). Then, it generates (1 + kmax · rb) random samples of size n and
continues managing its slaves until the next replication can be started. After a slave receives
computation parameters (including the RNG state) from the master, it restores accordingly
the state of its RNG and generates one sample of size n which is the testing sample. It spawns
its children and sends them the same RNG state received from the master. Each slave-child

STATISTICAL SIMULATIONS ON PARALLEL COMPUTERS 17

Figure 2. Generating random numbers on different levels of the tree-like structure.

responsible for test “Fk ↔ F” restores its RNG accordingly to the received state as well.
It also creates a testing sample and before generating its own bootstrap samples, it creates
(k − 1)rb nonused samples, that is, samples that are used by children responsible for tests
with smaller k.

The width of all boxes in Figure 2 represents the unique sample size n; the two different
heights represent the number of generated samples (either 1 or rb). Samples that are actually
used by the process for a computation are shaded. The enumeration of slaves in the figure
corresponds to r replications and not to the number of actually spawned slave processes.
Note that even though slaves would not perform the testing to k = kmax, and thus would
not use all their random numbers, applying this scheme in all instances will guarantee
reproducibility of the generated random numbers.

Suppose that there are system faults and that at the end of the replication loop, the
master identifies d aborted slaves. It can either start new computations for r + 1, . . . , r + d,
or it can repeat computations for the failed replications. In the latter case, it has to run the
RNG once again (starting from the initialization) to achieve the corresponding RNG state.
The first solution is easier to implement but it does not guarantee reproducibility of the
results. The same holds if no action is taken and d > 0.

4.2.3 Parallel Searching Algorithm

Extending the sequence of tests defined in Section 4.1 to k = 1, . . . , kmax should result
in regular cases in a sequence sk of decisions with sk = 0 for k < k̂ and sk = 1 for
k ≥ k̂. Then k̂ is uniquely characterized by sk̂−1 = 0 and sk̂ = 1, and it is not really

18 H. ŠEVČÍKOVÁ

Figure 3. Examples of searching for k̂ with a window of parallel units by moving to the right (right panel) and
left (left panel).

necessary to perform all tests for k < k̂. However, “irregular” sequences such as, for
example, 000011010111 are also possible. In this case, we have a free choice between
several possible estimators of k(f). We decide to estimate k(f) by any value k̂ such that
sk̂−1 = 0 and sk̂ = 1. This k̂ is found by an appropriate windowing technique which
supports parallel programming.

Starting from k = 1, we put a searching window of size max child on the beginning
of the sequence (on the positions 1,. . . ,max child) and start the computation of si on these
positions in parallel. The left panel of Figure 3 shows an example of such a scenario. Here,
the vertical arrows mark the first finished si. In the first step, a zero is found and therefore
the window can be moved to the right, up to si+1 and all running computations on the left
side can be discarded (step 2). As long as further zeros will be found, the window is moved
further to the right in the same way (step 3). In the third step of the figure, si = 1 is found
first. Thus, we can shrink the window by destroying computations on the right of si, since
k̂ must lie between the left side of the window and i. Although k̂ is found in the fourth step,
we need to wait for the remaining results in the window to ensure that a zero is a predecessor
of sk̂.

Now, assume we have k̂0 and the knowledge that k̂ is somewhere close to this value.
Then we set an appropriate neighborhood [k1, k2] so that 1 ≤ k1 ≤ k̂0 ≤ k2 ≤ kmax

and k2 − k1 ≤ max child. That is, a searching window lies at the computation beginning
betweenk1 andk2. If the first finished si is 0, the window moves to the right and the procedure
continues as in the previous case. In the right panel of Figure 3, there is a situation in which
si = 1 is returned as first value in the first step. Then the window will be moved to the
left, discarding running computations on the right from si. This will be done as long as
si = 1 is found (step 2). In the window of step 3, a zero is found, which means that our
window contains k̂ and it can be shrunk to locate the value. Analogously to the left panel,
after getting k̂ in step 4, computation of the remaining values has to be finished.

4.3 IMPLEMENTATION AND RESULTS

In the final implementation of a repeated execution of a chain of tests, the master
program corresponds to the fault tolerant solution from Section 3.4. In the slave program,
the searching algorithm from Section 4.2.3 is implemented. Moreover, it also administers

STATISTICAL SIMULATIONS ON PARALLEL COMPUTERS 19

its local management table for its own spawned children. If an aborted child is detected,
it executes the corresponding test again. The program of the slave-child performs the ac-
tual computation. See Appendix at http://www.amstat.org/publications/jcgs/ftp.html for
detailed program listings.

Having a certain number of processors available and thus, a fixed value of max degree,
the question arises of how to choose the value of max child for the degree of parallelism
at the second level. Our experiences show that the choice depends strongly on the nature of
the problem we are dealing with. There are two important criteria that must be taken into
account:

1. Is the average computing time for a single test independent of k?

The main speedup of the parallelism on the second level is based on aborting non-
finished tests as described in Section 4.2.3. With a searching algorithm starting
from k = 1 and computation time that increases with increasing k, the speedup
benefit would be small, since there will be only rare abortions. With such appli-
cation, a return will be made using the alternative searching algorithm starting
from an estimate k̂0 and having some probability that k̂ < k̂0.

2. How many single tests are expected to be performed?

Because there is some risk of carrying out tests that are not needed for the result
and thus would not be performed by a sequential algorithm, the mean distance
from the starting k to the expected k̂ has to be considered. For example, if we
start from k = 1 and expect k̂ ∈ [2, 4], it would not make sense to set max child

much larger than 4, since we would thus increase the mentioned risk.

The following comparisons are based on a program of a repeatedly executed chain
of tests where numbers of mixture components are estimated. The calculation of f̂k is
done via the EM algorithm and thus, the time increases with increasing k. We perform a
sequential as well as a parallel alternative of this test. Moreover, we compare a parallel
version with parallelizing only at the first level to versions with both levels running in
parallel of different degrees. To guarantee an adequate comparison of the different program
versions, we ensure that they are not influenced by irregular sequences as mentioned in
Section 4.2.3 and therefore provide exactly the same result, that is, in all corresponding
chains the same number of tests are executed. For this, we assume hypothetical k̂ = 9
in all replications (the program rejects Fk for all k ≤ 9 and accepts Fk for all k > 9).
Then, starting from k = 1, the mean number of started tests (but not necessary finished)
per replication is 9. The number of replications is set to 50.

We also show how the dependence of computation time on k can influence the runtime
of the whole application. We simulate the opposite effect of the time-dependence of k of
our application by starting from k = 9 and executing tests until k̂ = 1 is found (the program
accepts Fk for all k). Thus, the searching algorithm will yield to more test abortions than
in the version that starts from k = 1.

In Table 2, the performance of the different program versions is compared. For the

20 H. ŠEVČÍKOVÁ

Table 2. Performance Comparison of Different Program Versions with 15 Processors

Time Efficiency =
Program version (h:min) Speedup speedup/15

sequential 48:23 – –
parallel 1 level 5:10 9.38 .63
↑ max child=5 4:37 10.49 .70
↓ max child=3 2:48 17.32 1.16
↓ max child=5 2:06 23.11 1.54

four parallel programs, 15 processors of the same speed were used. The sequential version
was run on one of these CPUs. We computed the absolute speedup as Ts/Tp, where Ts is
the execution time of the sequential program and Tp the time needed for performing the
parallel version on p processors. The absolute efficiency is then computed as speedup/p,
where p = 15. The performance loss of the program with only one level running in parallel
in comparison to the ideal efficiency (= 1) is due to communication and management
cost that sequential program is spared. The third row in the table shows that even with
additional communication and management overhead on the second level, further problem
decomposition leads to increasing efficiency, having the same degree of parallelism. This
program version (marked with ↑), starts from k = 1. Versions going in the opposite direction
(marked with ↓) show even superlinear efficiency which is due to frequent test abortions. It
is obvious from the table that choosing max child closer to the expected number of tests
to be executed, the efficiency increases.

It should be mentioned that our project of analyzing properties of a chain of tests in
mixture models would hardly be possible without parallel computing.

The basic (application independent) framework introduced in this article has been
adapted to R, using RPVM (Na Li and Rossini 2001) and rsprng (Na Li 2002). The resulting
code (FPSS—framework for parallel statistical simulations) is available from the author’s
Web site http://www.stat.washington.edu/hana.

ACKNOWLEDGMENTS
This research has been supported by DFG grant UT340 and NSF grant 0134264. The author would like to

thank the associate editor, the anonymous reviewer, Wilfried Seidel, and Adrian Raftery for helpful comments on
this article.

[Received September 2002. Revised November 2003.]

REFERENCES

Adams, N., Kirby, S., Harris, P., and Clegg, D., (1996), “A Review of Parallel Processing for Statistical Compu-
tation,” Statistics and Computing, 6, 37–49.

Barak, A., Guday, S., and Wheeler, R. (1993), The MOSIX Distributed Operating System, Load Balancing for
Unix, volume 672 of Lecture Notes in Computer Science, New York: Springer Verlag.

Dongarra, J., Hempel, R., Hey, A., and Walker, D. (1994), “MPI: A Message-Passing Interface Standard,” Inter-
national Journal of Supercomputer Applications, 8, 159–416.

STATISTICAL SIMULATIONS ON PARALLEL COMPUTERS 21

Flynn, M. (1972), “Some Computer Organizations and their Effectiveness,” IEEE Transactions on Computers, 21,
 948–960.

Foster, I. (1995), Designing and Building Parallel Programs, Reading, MA: Addison-Wesley.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V. (1994), PVM: Parallel Virtual
Machine, Cambridge, MA: The MIT Press.

Hough, P. D., Kolda, T. G., and Torczon, V. J. (2001), “Asynchronous Parallel Pattern Search for Nonlinear
Optimization,” SIAM Journal of Scientific Computing, 23, 134–156.

McLachlan, G., and Peel, D. (2000), Finite Mixture Models, New York: Wiley.

Na Li, M. (2002), rsprng [on-line]. Available at http://cran.r-project.org.

Na Li, M., and Rossini, A. (2001), “RPVM: Cluster Statistical Computing in R,” technical report, University of
Washington [on-line]. Available at http://www.analytics.washington.edu/Zope/projects/rpvm/.

Srinivasan, A., and Mascagni, M. (2000), “SPRNG: A Scalable Library for Pseudorandom Number Generation,”
ACM Transactions and Mathematical Software, 26, 436–461.

