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1 Introduction

Two of the biggest practical problems facing parallel statistical computing are random number
generation and fault tolerance. This paper describes some recent work from our research group
which addresses these issues. This research has resulted in the packages rlecuyer, snowFT,
and in contributions to the snow package.

The introduction of rpvm, Rmpi, snow and related R packages has lowered the bar for im-
plementing parallel algorithms in R. rpvm (Li and Rossini 2001a;b) was among the first to
enable parallel R applications by providing an interface and infrastructure for using the PVM
message-passing library for pure R code (Geist et al. 1994). Rmpi was publicly released shortly
after and it provided an interface to MPI (Dongarra et al. 1994, Yu 2002). Parallel random
number generation was addressed with rsprng, an R package which provides an interface to the
distributed random number generator SPRNG (Srinivasan and Mascagni 2000, Li 2002). This
simplified the implementation of stochastic parallel applications and algorithms as exemplified
by numerical studies and bootstrapping (see e.g. Carson et al. (2003)).

snow (Tierney 2002, Rossini et al. 2003) provides a generic high level interface to message-
passing libraries (PVM, MPI, raw socket communication), making parallel programming in R
communication-layer independent. Although snow is a simple and powerful tool for developing
cluster applications, its initial focus on simplicity avoided several important pragmatic issues
including fault tolerance and guaranteed reproducibility.

For us, parallel statistical computing is about getting appropriate final results in a timely
manner. Part of the “timely manner” is to make parallel computing easily accessible; snow
lets one start computing in parallel in a general manner, but does not necessary ensure that
the computational results will successfully complete or be reproducible. The power of a com-
putational cluster is proportional to the number of compute nodes (and corresponding network
interconnections) which form the system. To keep costs low, they are often constructed using
commodity rather than specialized hardware. Since they are far more complex than a single
computer, they suffer from the increased probability of hardware failure, either at the level
of the individual compute-nodes or in the interconnecting network system. In addition, as
simulations become larger in scale, the corresponding statistical models more complex, and
the inferential computations of point and interval estimators more challenging, the likelihood
increases that pathological inputs which are ill-handled by the program code will be generated.

This article describes some of our research into reproducibility for parallel computing. Practical
real-world requirements for parallel applications include fault tolerance, computational repro-
ducibility, dynamic adjustment of the cluster configuration, and computational transparency
(Ševč́ıková 2003). We now proceed to describe the basic usage of snow and the practical is-
sues which led to our extensions. Next, we describe the features of snowFT and explain their
usage. Finally, we conclude with a practical example illustrating the investigation of a fractal
dimension estimation procedure.
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2 Basic Usage

snow facilitates the evaluation of a function myfun(x,par) that must be executed r times,
with the results collated and summarized. Assume that p processors are available. Suppose
also, each call of myfun requires an independent stream of random numbers. To keep the
example from being trivial, let myfun require a specific R package mylib and the evaluation of
an initialization function myinitfun prior to computation.

Then, one can proceed as follows:

cl <- makeCluster(p)
clusterEvalQ(cl, library(mylib))
clusterCall(cl, myinitfun)
clusterSetupSPRNG(cl)
results <- clusterApplyLB(cl,par1[1:r],myfun,par=par2)
stopCluster(cl)
evaluate(results)

Intuitively, the first expression creates and returns a link to the virtual cluster, creating a
cluster of p slave processes. We will occassionally refer to these “slave processes” as nodes or
computational nodes. The second expression loads mylib on each slave. Then, myinitfun is
called on each slave. clusterSetupSPRNG initializes one SPRNG stream for each slave node.
The function clusterApplyLB calls myfun on first slave with arguments (par1[1], par2), on
second slave with (par1[2],par2) and so on up to the pth slave. After one of the p slaves
returns a result, myfun is called on that slave with (par1[p+1],par2) etc. This is repeated
until myfun is called r times and the routine waits until all r results are received. stopCluster
cleans up any remaining connections and shuts down the cluster. The desired statistics would
be then computed in the last user-defined function.

3 Problems

The described scenario uses a simple algorithm for clusterApplyLB which can be simply
described (assuming that p ≤ r) by the following pseudo-code:

start myfun on p slaves
for (i in 1:r) {

wait for a result

if (i+p <= r) start myfun on the free slave

save result

}
This load-balances the process. Unlike the alternative snow function, clusterApply, the
faster slaves process more computational tasks than slower slaves. Note that the scenario
does not require synchronizing computation between slaves. The results are potentially non-
reproducible since each stream of random numbers is allocated to a particular slave, but the
assignment of replicates to slaves is non-deterministic. Further, any hardware or software
failure of a slave will result in an infinite loop while the main process waits for completion of
the subprocess. This is true for any other snow function that receives results from slaves, since
during program execution, there currently is no updating of the status of the computation.

2



Finally, the size p of the cluster is fixed by initial specification and there is no way to change
it later. As a starting point to explore solutions to these issues, we constructed snowFT with
a function clusterApplyFT.

4 Random Numbers

Two practical problems for parallel stochastic simulation are the appropriate use of distributed
random number generators, and more importantly, the exact reproduction of results. Evalu-
ating the quality of univariate random number streams is quite difficult, and more critically to
our situation, extremely difficult for parallel streams. As part of our initial research into the
quality of current implementations of parallel streams, we constructed an R package, rlecuyer
(Ševč́ıková and Rossini 2004), which provides an R interface to RNGstream (L’Ecuyer et al.
2002). We also contributed modifications to snow to make this new parallel random generator
transparently accessible, as an alternative to SPRNG.

Exact reproduction of stochastic computational results in the parallel setting requires strong
control over the allocation of random number streams to slave processes. This was originally
done in snow by considering ’one stream per node’. Guaranteed reproducibility across heteroge-
neous and adaptive settings requires a ’one stream per replicate or subprocess’ paradigm. With
this change, starting from a certain seed, the ith generated stream is assigned to ith replicate.
This is implemented for RNGstream by creating an identical stream table on each node and
making corresponding assignments prior to each computation call using .lec.CurrentStream.
For SPRNG, initSprngNode(i,r-1,...) is called prior to the computation of ith replicate.
Thus, the replicates produce the same results regardless of the node on which they are com-
puted.

5 Features of snowFT

The master node’s primary task is to distribute pieces of the computation and collect/collate
the final results. Assuming a computation that is much more time consuming than the overhead
caused by managing the slaves, the master spends most of the time waiting for the slave nodes
to finish. Hence, the master can spend a portion of the waiting time to check the existence
of its slave nodes and similar additional administration, without significantly affecting the
execution time. This is accomplished by replacing the original blocking receive command,
wait for a result, with the following scheme:

look for a result
if (no result arrived) {

loop {
failure detection
if (failure) {recovery; break}
administration
if (p increased) {add nodes; break}
wait t time units for a result
if (result arrived) break

}
}
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The first line is implemented by a non-blocking receive and the last receive call in the loop is
implemented by a time-out receive function. Hence, the management loop is entered every t
time units until a result is obtained. The loop exits either when some results arrive, a failure
is recovered (see next section) or when the size of the cluster has been increased. The two
latter cases imply that free nodes are available for starting new computations. However, since
no results are returned, the results storing procedure is omitted.

5.1 Failure Detection and Recovery

Failure detection uses the rpvm function .PVM.pstats; this returns process status and allows
us to easily identify failed nodes.

If a node fails, the recovery procedure replaces it by a new created node. Then any calls and
initializations made on the node prior to the computation have to be made. Going back to the
introductory example, these would be evaluating the library expression, calling myinitfun
and initializing the random number generator (RNG). For the usage in clusterApplyFT the
user defines a function containing all calls that are made prior to the computation and passes
it to clusterApplyFT as argument.

Since failure detection can be done faster than message transfer, results may arrive after the
generating computational node has been detected as failed and the appropriate recovery has
been made. Therefore in order to identify the arrived result, it is useful to keep a list of the
failed nodes.

An alternative way of implementing failure detection is using the function .PVM.notify. In
this case, the master node is automatically notified by the pvm daemon upon process failure.
However, this notification happens after an unspecified delay. In contrast, our solution gives
the master full control over the timing of failure detection.

Reproducibility is ensured by repetitions of failed computations. Our implementation runs
the main computation loop of r replicates up to three times. If there are missing results in
the first run, then a second run is performed on the corresponding failed replicates. The third
run is performed for any second-run failures. If there are any failures in the last run, the user
is notified that reproducibility can not be guaranteed. The use of three runs as sufficient is
subjective and can be easily modified by the user.

5.2 Administration

The master process writes the state of the simulation along with any failed replicates to a file to
assist with the clarifying the behavior of the process. By default, the replicates being currently
proceeded are written to a file ‘.proc’ and the failed replicates to a file ‘.proc fail’. Since the
administration procedure is performed only during the master’s waiting time, updating ‘.proc’
may be delayed, depending on replicate computational times.

5.2.1 Dynamic Cluster Resizing

Dynamically changing the number of involved processors is useful for optimal adaptation to
current system load conditions; total run times are a function of both CPU and network load,
and addition and completion of other processes can affect both parameters. This is enabled
in snowFT by providing a management file (by default ‘.clustersize’). At the beginning of the
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computation the master stores here the initial size of the cluster. This can be changed by the
user any time. The master reads the file within the administration procedure. If the size is to
be increased, new nodes are created and the appropriate initialization of the nodes (mentioned
in the recovery paragraph) are performed. If the size is to be decreased, nodes are successively
discarded after they finish their current computation.

Extensions, such as automatic modification of ‘.clustersize’ by a load monitoring procedure,
or a dynamic addition/deletion of nodes by an extraneous process are potentially a topic of
future research.

5.3 Intermediate Results

We have added the capacity to call a predefined function which is evaluated after a certain
number of finished replicates. This function is called with the list of results and the number of
finished results as arguments, where the non-finished results are set to NULL. A list of other
arguments can be passed to the print function as well. This feature is useful especially for
computing and printing intermediate results.

6 Fault-tolerant Load-balancing

The function clusterApplyFT requires more information in its arguments than clusterApplyLB.
This is due to the recovery procedure, dynamic node addition, and improved random number
stream handling. Since the composition of the cluster may change during the function call,
the current cluster is returned together with the computation results. We simplified this using
a wrapper function, called performParallel, that creates a cluster of a given size, performs
the initialization of the nodes including the RNG, calls clusterApplyFT, performs aftermath
functions if needed, stops the cluster and returns the computation results.

Consider the example in Section 2 and suppose additionally we have a function myprintfun
for computing intermediate results that we wish to run after each 10 replicates. We also wish
to use the RNGstream generator with default seed. Then, we could proceed as follows:

initfun <- function() {
library(mylib)
myinitfun()

}

performParallel(p, par1[1:r], myfun, initfun=initfun, printfun=myprintfun,
gentype="RNGstream", printrepl=10, par=par2)

The optional exitfun argument can be used for any concluding operations. The argument
mngtfiles is used to set the default management file name mentioned in the administra-
tion section. Also, by setting ft verbose=TRUE the function prints out messages about the
execution status.

6.1 Limitations

Although our design guarantees detection and recovery of any computational failure, fault
tolerance, while improved, is still imperfect. Functions passed in the arguments initfun and
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exitfun are performed on nodes using clusterCall. Since this snow function uses blocking
receive and thus is not a fault tolerant function, any failure that happens during the execution
of initfun and exitfun would not be detected and would result in an infinite waiting of the
master node. Moreover, if a failure occurs on the master node, the computation fails and the
slave nodes should be shut up manually. Our choice of the current design is a compromise in
the tradeoff between the benefit one would gain by solving these problems and the resulting
program complexity.

The snow package is built on PVM, MPI, or a local socket interface. Unfortunately, MPI in
its current specification (MPI standard 2.0) does not provide tools for implementing a simple
fault tolerance algorithm. Changes which will facilitate this are in progress (see e.g. Fagg
et al. (2003)) but at the time of writing this article none of these has been included in the
common MPI implementations. Our fault tolerance implementation in snowFT thus requires
PVM.

6.2 Example

We now demonstrate our extensions with a practical example. We wish to analyze statistical
properties of an estimation procedure of fractal dimension. The estimate is computed on a
two dimensional random field of a size n × n with a known fractal dimension D. Repeating
the estimation r times where r is sufficiently large should provide a sufficient statistics about
the estimator. For large n and large r, this can be a very time consuming task. Hence,
parallelization can help to solve it in a reasonable time.

Our estimation procedure Variogram(x) takes a two dimensional random field x as an argu-
ment and returns an estimator of fractal dimension as a single value. For the simulation of
random fields we use the function GaussRF of the RandomFields package.

Our main computation function is defined as:

EstimateFD <- function(n, rfp, model, method) {
grid <- c(0,(n-1)/n,1/n)
rf <- GaussRF(x=grid,y=grid,grid=TRUE,n=1,model=model,param=rfp,

gridtriple=TRUE,method=method)
return(Variogram(rf))

}

The init function is simply:

initfct <- function() library(RandomFields)

The main program can be implemented as follows:

n<-256; r<-10000 # field size, replicates
p<-5 # cluster size
output <- ’FD.out’; D<-2.5
model<-"2dfractalB"; method <- "local CE"
rfp <- c(mean=0,variance=1,nugget=0,scale=1,kappa=6-2*D)
write(paste(’ r’, ’ mean’,’ MSE’, ’ RMSE’, ’variance’, ’ bias’,
sep=" "), file=output)
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res <- performParallel(p,rep(n,r),EstimateFD,initfun=initfct,printfun=printfct,
printargs=list(fd=D,file=output),printrepl=500,cltype="PVM",rfp = rfp,
model=model,method=method)

write("Results:",file=output, append=TRUE)
evaluateresult(res,D,output)

The functions for intermediate results and for evaluating results are defined as:

printfct <- function(res,n,args) {
evaluateresult(res,args$fd,args$file)

}

evaluateresult <- function(res, fd, file) {
stat <- statistics(unlist(res),fd)
write.table(data.frame(stat), file=file, append=TRUE, col.names=FALSE,
row.names=FALSE, quote=FALSE)

}

statistics <- function(res, fd) {
res <- res[!is.null(res)]
mean<-mean(res); mse <- mean((res-fd)^2)
return(list(n=length(res), mean=round(mean,4), mse=round(mse,6),
rmse=round(sqrt(mse),6), var=round(var(res),6), bias=round(mean-fd,6)))

}

7 Discussion

Computational clusters are rapidly becoming widely available in both commercial and aca-
demic settings as researchers look for inexpensive means to increase the efficiency and through-
put of statistical research and collaborative activities. We have described our activities study-
ing the real-world use of computational clusters for statistical research. The results of our
theoretical work have been implemented in the snowFT and rlecuyer R packages which aug-
ment snow. These packages provide robustness and increased confidence in the reproducibility
of the results from computationally intensive procedures evaluated on computational clusters.
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