
9.0 Data Frames in Splus

Notes based on those of Professor Joe Schafer

Main subjects covered today:

• Data Frames

9.1 Data Frames

Data frames are a relatively new part of the S language. They were

introduced in 1991 and are described in the book by Chambers and

Hastie (1992), “Statistical Models in S.”

The data frame is based on the idea that many datasets in statistics

can be arranged as rectangular arrays, with the rows representing

individual sample units and the columns representing variables. So,

in appearance, a data frame is similar to a matrix. But it is more

general than a matrix in that the columns or variables can have

different storage modes. For example, we can have a data frame in

which one column contains numbers, another column contains logical

values (T or F) and another column contains character strings. (For

those of you who are familiar with SAS, a data frame is very much

like a SAS dataset.)

If x1, x2, x3, ... are vectors of the same length representing different

variables, we can glue them together into a data frame using the

data.frame() function. The vectors need not have the same

storage mode.

> x1 <- c(100,99,100,20)
> x2 <- c(20,19,19,10)
> x3 <- c("A","A","A","C")

> grades <- data.frame(x1,x2,x3)
> grades

x1 x2 x3
1 100 20 A
2 99 19 A
3 100 19 A
4 20 10 C

9.2 Data frames as matrices

A data frame can be regarded as a cross between a matrix and a list.

First, let’s see how a data frame resembles a matrix.

Data frames, like matrices, have “dim”, “nrow”, “ncol”, and “dim-

names” attributes:

> dim(grades)

[1] 4 3
> nrow(grades)

[1] 4
> ncol(grades)

[1] 3
> dimnames(grades)

[[1]]:
[1] "1" "2" "3" "4"

[[2]]:
[1] "x1" "x2" "x3"

We can change the row and/or column labels in the same way that

we did for matrices.

> dimnames(grades) <- list(c("Linda","John","Brian","Mikhail"),

+ c("homework","exam","final"))
> grades

homework exam final
Linda 100 20 A

John 99 19 A
Brian 100 19 A

Mikhail 20 10 C

As with matrices, we can refer to subsets of the data frame with

square brackets:

> grades[1:2,]
homework exam final

Linda 100 20 A
John 99 19 A

> grades[,1]

[1] 100 99 100 20
> grades[,"homework"]

[1] 100 99 100 20
> grades[,-1]

exam final
Linda 20 A
John 19 A
Brian 19 A

Mikhail 10 C

When we pull a single column out of a data frame, as in

grades[,1], the result is a vector. When we pull out a single row,

however, as in grades[1,], the result is a data frame with only

one row. A single row is a data frame rather than a vector because

it might have mixed storage modes.

The function data.frame() can also be used to turn a matrix into

a data frame. If the matrix has no row labels, then data.frame()

will label the rows as “1”, “2”, ... If the matrix has no column labels,

then data.frame() will label the columns as “X1”, “X2”, etc.

> v <- matrix(rnorm(12),4,3)
> data.frame(v)

X1 X2 X3
1 1.3289191 1.5826525 0.5284931

2 -0.5834504 0.7756624 -0.5783929
3 0.1294323 -0.1010787 -0.7104860
4 0.9805573 -0.8096563 0.1749112

9.3 Data frames as lists

A data frame is also a list. Each variable (column) is an element of

the list. Like a list, we can refer to the variables by their positions

using double square brackets ([[]]) or by their names using a dollar

sign ($).

> grades[[1]]

[1] 100 99 100 20
> grades[[3]]

[1] A A A C
> grades$final

[1] A A A C

The attributes “length” and “names” are the same as they would be

for a list.

> length(grades)

[1] 3
> names(grades)

[1] "homework" "exam" "final"

A data frame is not exactly the same thing as a list, however. A data

frame is a special kind of list in which the elements are all vectors of

the same length.

9.4 Reading in data from external files

In lecture 5, we learned how to read in data from an external file us-

ing the scan() function. The scan() function by default returns

the data set as a vector, which then can be reshaped into a matrix

if needed. There is another command, read.table(), which can

read a data matrix from a file and turn it into a data frame. The

read.table() function is very “intelligent” because it can auto-

matically handle numeric data and character data at the same time.

It can also handle row labels and column labels automatically. By

default, read.table() assumes that each record (i.e. each line

of the data file) represents a single row of the data frame, and it

assumes that the fields (i.e. variables) within a record are separated

by blank spaces and/or tabbing characters.

For example, suppose we have a file called “grades.dat”:

Linda 100 20 A
John 99 19 A
Brian 100 19 A
Mikhail 20 10 C

See what happens when we apply read.table() to this file:

> grades <- read.table("grades.dat")
> grades

V2 V3 V4
Linda 100 20 A
John 99 19 A
Brian 100 19 A

Mikhail 20 10 C

Splus automatically interprets the first non-numeric field as a row

label. If you don’t want that to happen, you can use the option

row.names=NULL:

> read.table("grades.dat",row.names=NULL)
V1 V2 V3 V4

1 Linda 100 20 A
2 John 99 19 A
3 Brian 100 19 A
4 Mikhail 20 10 C

Suppose that your file also has column names in it, like this:

HW Exam Final
Linda 100 20 A
John 99 19 A
Brian 100 19 A
Mikhail 20 10 C

The option header=T will tell read.table() to interpret the first

record as column labels:

> read.table("grades.dat",header=T)
HW Exam Final

Linda 100 20 A
John 99 19 A
Brian 100 19 A

Mikhail 20 10 C

The read.table() function is quite versatile. It has an optional

argument called “sep” that allows you to read in data in fixed for-

mat, much as you would in SAS or Fortran. See help(read.table) for

details.

There is also a function that can convert a SAS dataset into an Splus

dataframe. The function is called sas.get(). See

help(sas.get) for details.

9.5 Data frames as databases

We have already seen that a data frame acts like a matrix and a list.

It can also act like a database. Recall that a database is a directory

(such as .Data) that contains objects. We can add databases to

the search list using the attach() function. It turns out that the

attach() function can also attach a data frame to the search list.

Before going on, let’s see why it might be advantageous to attach

a data frame to the search list. Let’s work with one of the sample

datasets that comes with Splus. The dataset is called auto.stats, and

it is located in one of the databases on your search list. If you type

> auto.stats <- auto.stats

then Splus will make a copy of this dataset and put it in .Data. It

is a matrix with 74 rows and 12 columns:

> dim(auto.stats)
[1] 74 12

This dataset happens to be a matrix, not a data frame:

> is.data.frame(auto.stats)
[1] F
> is.matrix(auto.stats)
[1] T

So let’s convert it to a data frame:

> auto.stats <- data.frame(auto.stats)

The variable names are:

> dimnames(auto.stats)[[2]]

[1] "Price" "Miles.per.gallon" "Repair..1978." "Repair..1977."

[5] "Headroom" "Rear.Seat" "Trunk" "Weight"

[9] "Length" "Turning.Circle" "Displacement" "Gear.Ratio"

Suppose that we want to make a scatterplot of “Weight” versus

“Miles.per.gallon”. We would do it as follows:

> motif()
> plot(auto.stats$Weight, auto.stats$Miles.per.gallon)

If we are going to analyze this dataset, it will become rather tedious

to type “auto.stats” every time we want to refer to a variable. To

get around this problem, we can attach the auto.stats data frame to

the search list using attach(). We will attach it in position 1:

> attach(auto.stats,pos=1)

> search()
[1] "auto.stats"
[2] ".Data"
[3] "/usr/local/splus-3.3/splus/.Functions"

[4] "/usr/local/splus-3.3/stat/.Functions"

[5] "/usr/local/splus-3.3/s/.Functions"

[6] "/usr/local/splus-3.3/s/.Datasets"

[7] "/usr/local/splus-3.3/stat/.Datasets"

[8] "/usr/local/splus-3.3/splus/.Datasets"

Now if we type “ls()”, we will see the individual variables in this

data frame:

> ls()

[1] ".Last.value" "Displacement" "Gear.Ratio" "Headroom"

[5] "Length" "Miles.per.gallon" "Price" "Rear.Seat"

[9] "Repair..1977." "Repair..1978." "Trunk" "Turning.Circle"

[13] "Weight"

We can now refer to these variables by name. They will be regarded

as individual vectors. For example, we can re-create the scatterplot:

> plot(Weight,Miles.per.gallon)

Suppose we want to create new variables by transforming the old

ones. For example:

> Gallons.per.mile <- 1/Miles.per.gallon

> plot(Weight,Gallons.per.mile)

After we are finished, we can detach the data frame. If we use the

save option when we detach it, then any changes that we made to the

variables in the data frame and any new variables that we created

will be saved as well:

> detach(1,save="auto.stats")

Now if we type ls(), we see a list of the objects stored in .Data,

including the updated auto.stats data frame.

One word of caution: A data frame is a special kind of database in

which all the objects must be vectors of the same length. If we had

created other types of objects (e.g. scalars) while the data frame was

attached, these would not have been saved when we detached it.

