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Existence of Brownian motion and Brownian bridge as continuous
processes on C[0, 1]

The aim of this subsection to convince you that both Brownian motion
and Brownian bridge exist as continuous Gaussian processes on [0, 1], and
that we can then extend the definition of Brownian motion to [0,∞).
Definition 1. Brownian motion (or standard Brownian motion, or a Wiener
process) S is a Gaussian process with continuous sample functions and:
(i) S(0) = 0;
(ii) E(S(t)) = 0, 0 ≤ t ≤ 1;
(iii) E{S(s)S(t)} = s ∧ t, 0 ≤ s, t ≤ 1.

Definition 2. A Brownian bridge process U is a Gaussian process with
continuous sample functions and:
(i) U(0) = U(1) = 0;
(ii) E(U(t)) = 0, 0 ≤ t ≤ 1;
(iii) E{U(s)U(t)} = s ∧ t− st, 0 ≤ s, t ≤ 1.

Theorem 1. Brownian motion S and Brownian bridge U exist.

Proof. We first construct a Brownian bridge process U. Let

h00(t) ≡ h(t) ≡


t 0 ≤ t ≤ 1/2 ,
1− t 1/2 ≤ t ≤ 1 ,
0 elsewhere .

(1)

For n ≥ 1 let

hnj(t) ≡ 2−n/2h(2nt− j), j = 0, . . . , 2n − 1 . (2)

For example, h10(t) = 2−1/2h(2t), h11(t) = 2−1/2h(2t− 1), while

h20(t) = 2−1h(4t), h21(t) = 2−1h(4t− 1) ,

h22(t) = 2−1h(4t− 2), h23(t) = 2−1h(4t− 3) .

Note that |hnj(t)| ≤ 2−n/22−1.
The functions {hnj : j = 0, . . . , 2n − 1, n ≥ 0} are called the Schauder

functions; they are integrals of the orthonormal (with respect to Lebesgue
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measure on [0, 1]) family of functions {gnj : j = 0, . . . , 2n− 1, n ≥ 0} called
the Haar functions defined by

g00(t) ≡ g(t) ≡ 21[0,1/2](t)− 1,

gnj(t) ≡ 2n/2g00(2
nt− j) , j = 0, . . . , 2n − 1, n ≥ 1 .

Thus∫ 1

0

g2nj(t)dt = 1,

∫ 1

0

gnj(t)gn′j′(t)dt = 0 if n 6= n′, or j 6= j′ ,

(3)
and

hnj(t) =

∫ t

0

gnj(s)ds, 0 ≤ t ≤ 1 . (4)

Furthermore, the family {gnj}2
n−1

j=0, n≥0∪{g(·/2)} is complete: any f ∈ L2(0, 1)
has an expansion in terms of the g’s. In fact the Haar basis is the simplest
wavelet basis of L2(0, 1), and is the starting point for further developments
in the area of wavelets.

Now let {Znj}2
n−1

j=0, n≥0 be independent identically distributed N(0, 1) ran-
dom variables; if we wanted, we could construct all these random variables
on the probability space ([0, 1],B[0,1], λ). Define

Vn(t, ω) =
2n−1∑
j=0

Znj(ω)hnj(t) ,

Um(t, ω) =
m∑

n=0

Vn(t, ω) .

For m > k

|Um(t, ω)− Uk(t, ω)| = |
m∑

n=k+1

Vn(t, ω)| ≤
m∑

n=k+1

|Vn(t, ω)| (5)

where

|Vn(t, ω)| ≤
2n−1∑
j=0

|Znj(ω)||hnj(t)| ≤ 2−(n/2+1) max
0≤j≤2n−1

|Znj(ω)| (6)

since the hnj, j = 0, . . . , 2n − 1 are 6= 0 on disjoint t intervals.
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Now P (Znj > z) = 1 − Φ(z) ≤ z−1φ(z) for z > 0 (by “Mill’s ratio”) so
that

P (|Znj| ≥ 2
√
n) = 2P ((Znj ≥ 2

√
n) ≤ 2√

2π
(2
√
n)−1e−2n . (7)

Hence

P

(
max

0≤j≤2n−1
|Znj| ≥ 2

√
n

)
≤ 2nP (|Z00| ≥ 2

√
n) ≤ 2n

√
2π
n−1/2e−2n ; (8)

since this is a term of a convergent series, by the Borel-Cantelli lemma
max0≤j≤2n−1 |Znj| ≥ 2

√
n occurs infinitely often with probability zero; i.e. ex-

cept on a null set, for all ω there is anN = N(ω) such that max0≤j≤2n−1 |Xnj(ω)| <
2
√
n for all n > N(ω). Hence

sup
0≤t≤1

|Um(t)− Uk(t)| ≤
m∑

n=k+1

2−n/2n1/2 ↓ 0 (9)

for all k,m ≥ N ′ ≥ N(ω). Thus Um(t, ω) converges uniformly as m → ∞
with probability one to the (necessarily continuous) function

U(t, ω) ≡
∞∑
n=0

Vn(t, ω) . (10)

Define U ≡ 0 on the exceptional set. Then U is continuous for all ω.
Now {U(t) : 0 ≤ t ≤ 1} is clearly a Gaussian process since it is the sum

of Gaussian processes. We now show that U is in fact a Brownian bridge: by
formal calculation (it remains only to justify the interchange of summation
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and expectation),

E{U(s)U(t)} = E

{
∞∑
n=0

Vn(s)
∞∑

m=0

Vm(t)

}

=
∞∑
n=0

E{Vn(s)Vn(t)}

=
∞∑
n=0

E

{
2n−1∑
j=0

Znj

∫ s

0

gnjdλ

2n−1∑
k=0

Znk

∫ t

0

gnkdλ

}

=
∞∑
n=0

2n−1∑
j=0

∫ s

0

gnjdλ

∫ t

0

gnjdλ

=
∞∑
n=0

2n−1∑
j=0

∫ 1

0

1[0,s]gnjdλ

∫ 1

0

1[0,t]gnjdλ+ st− st

=

∫ 1

0

1[0,s](u)1[0,t](u)du− st

= s ∧ t− st

where the next to last equality follows from Parseval’s identity. Thus U is
Brownian bridge.

Now let Z be one additional N(0, 1) random variable independent of all
the others used in the construction, and define

S(t) ≡ U(t) + tZ =
∞∑
n=0

Vn(t) + tZ . (11)

Then S is also Gaussian with 0 mean and

Cov[S(s),S(t)] = Cov[U(s) + sZ,U(t) + tZ]

= Cov[U(s),U(t)] + stV ar(Z)

= s ∧ t− st+ st = s ∧ t .

Thus S is Brownian motion. Since U has continuous sample paths, so does
S. 2

The following figures illustrate the construction given in the theorem.
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Figure 1: The Schauder function h00.

Here is the Mathematica code that produced the plots for the case m = 8.

Needs["Histograms‘"]

ndist = NormalDistribution[0, 1]

m = 8

Z = Table[RandomReal[ndist, 2^n], {n, 0, m}]

Histogram[Flatten[Z]]

h[t_] := t /; 0 <= t <= 1/2

h[t_] := 1 - t /; 1/2 < t <= 1

h[t_] := 0 /; t < 0 || t > 1

h1[t_, n_, j_] := 2^(-n/2)*h[2^n *t - j]

V0[t_] := Z[[1, 1]]*h[t]

V[t_, n_] := Sum[Z[[n + 1, j + 1]]*h1[t, n, j], {j, 0, 2^n - 1}]

U[t_, m_] := Sum[V[t, n], {n, 1, m}] + V0[t]

P1 = Plot[h[t], {t, 0, 1}]

P2 = Plot[h1[t, 1, 0], {t, 0, 1}]

P3 = Plot[h1[t, 1, 1], {t, 0, 1}]

Show[P2, P3]

P4 = Plot[h1[t, 2, 0], {t, 0, 1}, PlotRange -> {0, .5}]

P5 = Plot[h1[t, 2, 1], {t, 0, 1}, PlotRange -> {0, .5}]

P6 = Plot[h1[t, 2, 2], {t, 0, 1}, PlotRange -> {0, .5}]
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Figure 2: The Schauder functions h10 and h11.

P7 = Plot[h1[t, 2, 3], {t, 0, 1}, PlotRange -> {0, .5}]

Show[P4, P5, P6, P7]

Plot[V0[t], {t, 0, 1}]

Plot[V[t, 1], {t, 0, 1}, PlotStyle -> {Thickness[1/200], RGBColor[0.0, 0.0, 1.00], Dashing[{}]}]

Plot[V[t, 2], {t, 0, 1}, PlotStyle -> {Thickness[1/200], RGBColor[0.1, 0.00, .90], Dashing[{}]}]

Plot[V[t, 3], {t, 0, 1}, PlotStyle -> {Thickness[1/200], RGBColor[0.2, 0.00, .80], Dashing[{}]}]

Plot[V[t, 4], {t, 0, 1}, PlotStyle -> {Thickness[1/200], RGBColor[0.3, 0.00, .70], Dashing[{}]}]

Plot[V[t, 5], {t, 0, 1}, PlotStyle -> {Thickness[1/200], RGBColor[0.4, 0.00, .60], Dashing[{}]}]

Plot[V[t, 6], {t, 0, 1}, PlotStyle -> {Thickness[1/200], RGBColor[0.5, 0.00, .50], Dashing[{}]}]

Plot[V[t, 7], {t, 0, 1}, PlotStyle -> {Thickness[1/200], RGBColor[0.6, 0.00, .40], Dashing[{}]}]

Plot[V[t, 8], {t, 0, 1}, PlotStyle -> {Thickness[1/200], RGBColor[0.7, 0.00, .30], Dashing[{}]}]

Plot[U[t, 8], {t, 0, 1}, PlotStyle -> {Thickness[1/200], RGBColor[0.0, 0.50, .50], Dashing[{}]}]
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Figure 3: The Schauder functions h20, h21, h22, h23.
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Figure 4: A sample path of the random function V0(t).
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Figure 5: A sample path of the random function V1(t).
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Figure 6: A sample path of the random function V2(t).
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Figure 7: A sample path of the random function V3(t).
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Figure 8: A sample path of the random function V4(t).
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Figure 9: A sample path of the random function V5(t).
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Figure 10: A sample path of the random function V6(t).
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Figure 11: A sample path of the random function V7(t).
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Figure 12: A sample path of the random function V8(t).
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Figure 13: A sample path of the random function U8(t).
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Figure 14: A sample path of the random function S8(t).
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