Review Handout 3: Poisson Processes

Math/Stat 491: Introduction to Stochastic Processes

Wellner; 12/6/2013

Part 1: Exponential distribution

1. T has an exponential distribution with parameter λ , and we write $T \sim \text{exponential}(\lambda)$, if T has distribution function F_T given by $1 - F_T(t) = \exp(-\lambda t)$ for $t \geq 0$. Thus T has density function $f_T(t) = \lambda \exp(-\lambda t) 1_{[0,\infty)}(t)$ and hazard function

$$\lambda(t) \equiv \frac{f_T(t)}{1 - F_T(t)} = \lambda, \quad t \ge 0.$$

- 2. If $T \sim \exp(\lambda)$, then $E(T) = 1/\lambda$, $Var(T) = 1/\lambda^2$, and T has moment generating function $\phi_X(s) = Ee^{sT} = \lambda/(\lambda s)$ for $s < \lambda$.
- 3. The exponential distribution has the "lack of memory" property:

$$P(T>s+t|T>s)=P(T>t) \quad \text{for all} \ \ s, \ t\geq 0.$$

- 4. If $S \sim \exp(\lambda)$ and $T \sim \exp(\mu)$ are independent, then:
 - $\min\{S, T\} \sim \exp(\lambda + \mu)$.
 - $P(S \le T) = \lambda/(\lambda + \mu)$. (Proof:

$$\begin{split} P(S \leq T) &= E\{P(S \leq T|S)\} = E\{\exp(-\mu S)\} \\ &= \int_0^\infty e^{-\mu s} \lambda e^{-\lambda s} ds = \frac{\lambda}{\lambda + \mu} \int_0^\infty (\lambda + \mu) e^{-(\lambda + \mu) s} ds \\ &= \frac{\lambda}{\lambda + \mu}. \end{split}$$

- 5. If $T_j \sim \exp(\lambda_j)$, $j = 1, \dots, m$ are independent, then:
 - $\min_{1 \le j \le m} T_j \sim \exp(\lambda_1 + \dots + \lambda_m)$.
 - $P(T_j = \min_{1 \le k \le m} T_k) = \lambda_j / (\lambda_1 + \dots + \lambda_m).$

- If I satisfies $T_I = \min_{1 \le k \le m} T_k$ and $V \equiv \min_{1 \le k \le m} T_k$, then I and V are independent.
- 6. If τ_1, \ldots, τ_m are independent exponential(λ) random variables, then $T_m \equiv \tau_1 + \cdots + \tau_m \sim \text{Gamma}(m, \lambda)$: that is, T_m has density function f_{T_m} given by

$$f_{T_m}(t) = \frac{(\lambda t)^{m-1}}{(m-1)!} \lambda e^{-\lambda t} 1_{[0,\infty)}(t).$$

If $T \sim \text{Gamma}(r, \lambda)$ with r > 0 and $\lambda > 0$, then T has density

$$f_T(t) = \frac{(\lambda t)^{r-1}}{\Gamma(r)} \lambda e^{-\lambda t} 1_{[0,\infty)}(t)$$

where $\Gamma(r) \equiv \int_0^\infty v^{r-1} e^{-v} dv$ is the Gamma function. Note that $\Gamma(r) = (r-1)\Gamma(r-1)$ and for r > 1, and hence $\Gamma(m) = (m-1)!$ for $m \in \{1, 2, \ldots\}$.

Part 2: Poisson processes

1. **Definition 1**. Let τ_1, τ_2, \ldots be independent and identically distributed exponential(λ) random variables, and let $T_n \equiv \tau_1 + \cdots + \tau_n$ for $n \geq 1$, $T_0 \equiv 0$. Then the process

$$N(t) = \max\{n \ge 1: T_n \le t\} = \sum_{n=0}^{\infty} 1_{[T_n \le t]}$$

is a Poisson process with rate λ .

- 2. If $X \sim \text{Poisson}(\lambda)$, then $P(X = k) = e^{-\lambda} \lambda^k / k!$ for $k \in \{0, 1, 2, ...\}$, $E(X) = \lambda$, $Var(X) = \lambda$, $E\{X(X 1) \cdots (X k + 1)\} = \lambda^k$, and X has moment generating function $\phi_X(s) = E(e^{sX}) = \exp(\lambda(e^s 1))$.
- 3. Properties of N(t):
 - $P(N(t) = 0) = P(T_1 > t) = P(\tau_1 > t) = \exp(-\lambda t)$ for t > 0.
 - $N(t) \sim \text{Poiss}(\lambda t)$; that is,

$$P(N(t) = k) = \frac{(\lambda t)^k}{k!} \exp(-\lambda t).$$

- $E\{N(t)\} = \lambda t$; $Var(N(t)) = \lambda t$.
- The process $\{N(s+t) N(s): t \ge 0\}$ is independent of $\{N(r): 0 \le r \le s\}$.
- N(t) has independent increments: for any points $0 = t_0 < t_1 < \cdots < t_k$, the random variables

$$N(t_1) - N(t_0), N(t_2) - N(t_1), \dots, N(t_k) - N(t_{k-1})$$
 are independent.

- 4. **Theorem.** $\{N(t): t \geq 0\}$ is a Poisson process with rate λ if and only if the following three conditions hold:
 - (i) N(0) = 0.
 - (ii) $N(t+s) N(s) \sim \text{Poiss}(\lambda t)$.
 - (iii) N(t) has independent increments.
- 5. N(t) has moment generating function

$$\phi_{N(t)}(s) = Ee^{sN(t)} = \exp(\lambda t(e^s - 1)).$$

- 6. $\{M(t): t \geq 0\}$ defined by $M(t) \equiv N(t) \lambda t$ is a martingale: $E\{M(t)|\mathcal{F}_s\} = M(s)$ where $\mathcal{F}_s \equiv \sigma\{N(r): 0 \leq r \leq s\}$.
- 7. If $S_n \sim \text{Binomial}(n, p_n)$ and $np_n \to \lambda > 0$, then

$$P(S_n = k) = \binom{n}{k} p_n^k (1 - p_n)^{n-k} \to \frac{\lambda^k}{k!} \exp(-\lambda).$$

8. If X_1, \ldots, X_n are independent with $X_i \sim \text{Bernoulli}(p_i)$, and $S_n = \sum_{i=1}^n X_i$, and $T_n \sim \text{Poiss}(\sum_{i=1}^n p_i)$, then for any subset A of $\{0, 1, 2, \ldots\}$,

$$|P(S_n \in A) - P(T_n \in A)| \le \sum_{i=1}^n p_i^2 \le \max_{1 \le i \le n} p_i \cdot \sum_{i=1}^n p_i.$$

Note that when $p_1 = \cdots = p_n = p_{0,n}$, the bound becomes $np_{0,n}^2 = (np_{0,n})^2/n \approx \lambda^2/n$ if $np_{0,n} \to \lambda$.

- 9. **Definition**. $\{N(t): t \geq 0\}$ is a non-homogeneous Poisson process with rate function $\lambda(s) \geq 0$ if:
 - (i) N(0) = 0;
 - (ii) $N(t+s) N(s) \sim \text{Poiss}\left(\int_s^{s+t} \lambda(v) dv\right);$
 - (iii) N has independent increments.

- 10. Properties of a non-homogeneous Poisson process N:
 - $E(N(t)) = \int_0^t \lambda(v) dv \equiv \mu(t)$ where $\mu(s) \leq \mu(t)$ for $s \leq t$.
 - If N is a standard Poisson process with rate 1 and μ is a non-decreasing differentiable function, then $\widetilde{N}(t) \equiv N(\mu(t))$ is a non-homogeneous Poisson process with rate function $\mu'(t) \equiv \lambda(t)$.
 - If $\tau_1 = \inf\{t \ge 0 : N(t) = 1\}$, then

$$1 - F_{\tau_1}(t) = P(\tau_1 > t) = P(N(t) = 0) = \exp\left(-\int_0^t \lambda(v)dv\right) = \exp(-\mu(t)),$$

$$f_{\tau_1}(t) = \mu'(t)\exp(-\mu(t)) = \lambda(t)\exp(-\mu(t)),$$

$$\lambda_{\tau_1}(t) = \frac{f_{\tau_1}(t)}{1 - F_{\tau_1}(t)} = \lambda(t).$$

11. **Definition**. Let $Y_1, Y_2, Y_3, ...$ be independent and identically distributed random variables with $E(Y_i) = \mu$ and $Var(Y_i) = \sigma^2$. Let $\{N(t) : t \geq 0\}$ be a Poisson process with rate λ . Then the process $\{S_t : t \geq 0\}$ defined by

$$S_t \equiv Y_1 + \dots + Y_{N(t)}$$
 for $t \ge 0$,

is a compound Poisson process.

- 12. **Theorem.** Suppose that N is an integer-valued random variable independent of Y_1, Y_2, \ldots , and let $S \equiv \sum_{i=1}^{N} Y_i$. Then:
 - (i) If $E|Y_i| < \infty$ and $E(N) < \infty$, then $E(S) = E(N) \cdot E(Y) = E(N) \cdot \mu$ where $\mu = E(Y_1)$.
 - (ii) If $E(Y_1^2) < \infty$ and $Var(N) < \infty$, then $Var(S) = E(N)\sigma^2 + Var(N)\mu^2$ where $\sigma^2 = Var(Y_1)$.
 - (iii) If $N \sim \text{Poiss}(\lambda)$ and $E(Y_1^2) < \infty$, then $E(S) = \lambda \mu$ and $Var(S) = \lambda E(Y_1^2) = \lambda (\sigma^2 + \mu^2)$.
 - (iv) If N is replaced by N(t) for a Poisson process with rate λ , then $E(S_t) = \lambda t \mu$ and $Var(S_t) = \lambda t E(Y_1^2) = \lambda t (\sigma^2 + \mu^2)$.
- 13. Thinning of a Poisson process. Suppose that $Y_1, Y_2, ...$ are independent and identically distributed integer-valued random variables, and suppose that $\{N(t): t \geq 0\}$ is a Poisson process with rate λ independent of the Y_i 's. Define new processes $N_j(t)$ by

$$N_j(t) = \#\{i \le N(t): Y_i = j\}, t \ge 0, j = 1, 2, 3, \dots, k.$$

Theorem. N_1, N_2, \ldots, N_k are independent Poisson processes with rates $\lambda P(Y_1 = j), j = 1, \ldots, k$.

- 14. Superposition of independent Poisson processes. Suppose that N_1, N_2, \ldots are independent Poisson processes with rates $\lambda_1, \lambda_2, \ldots$. Theorem. If N_1, N_2, \ldots, N_k are independent Poisson processes with rates $\lambda_1, \ldots, \lambda_k$, then $N(t) \equiv N_1(t) + \cdots + N_k(t)$ is a Poisson process with rate $\lambda_1 + \cdots + \lambda_k$.
- 15. Conditioning Poisson processes. Let T_1, T_2, \ldots, T_n be the arrival times of a Poisson process with rate λ . Let U_1, \ldots, U_n be i.i.d. Uniform[0, t] random variables, and let $0 \leq U_{(1)} \leq \cdots \leq U_{(n)} \leq t$ be the order statistics of the U_i 's.

Theorem.

$$((T_1, \dots T_n)|N(t) = n) \stackrel{d}{=} (U_{(1)}, \dots, U_{(n)})$$

and

$$(N(s), \ 0 \le s \le t | N(t) = n) \stackrel{d}{=} \left(\sum_{i=1}^{n} 1_{[U_{(i)} \le s]}, \ 0 \le s \le t \right),$$

where

$$N_n(s) = \sum_{i=1}^n 1_{[U_{(i)} \le s]} = \sum_{i=1}^n 1_{[U_i \le s]}.$$

Thus if $0 = t_0 < t_1 < \dots < t_k = t$, then

$$(N(t_1) - N(t_0), N(t_2) - N(t_1), \dots, N(t_k) - N(t_{k-1}) | N(t) = n)$$

$$\stackrel{d}{=} (N_n(t_1) - N_n(t_0), N_n(t_2) - N_n(t_1), \dots, N_n(t_k) - N_n(t_{k-1}))$$

$$\sim \text{Multinomial}_k(n, (t_1 - t_0, t_2 - t_1, \dots, (t_k - t_{k-1}))/t).$$

16. Poissonization:

• (HW #2, problem 6). If $X_1, X_2, ...$ are i.i.d. Bernoulli(p) and $N \sim \text{Poiss}(\lambda)$, then

$$S_N = \sum_{i=1}^N X_i \sim \text{Poiss}(\lambda p).$$

• (HW #3, problem 7). If $\underline{S}_n = (S_{n,1}, \dots, S_{n,k}) = \sum_{i=1}^n \underline{X}_i \sim \operatorname{Mult}_k(n, (p_1, \dots, p_k))$ where $\underline{X}_i \sim \operatorname{Mult}_k(1, (p_1, \dots, p_k))$, and $N \sim \operatorname{Poiss}(\lambda)$ is independent of \underline{S}_n , then

$$\underline{S}_N \stackrel{d}{=} (Y_1, \dots, Y_k)$$

where Y_1, \ldots, Y_k are independent and $Y_j \sim \text{Poiss}(\lambda p_j)$.

• If $N_n(t) = \sum_{i=1}^n 1_{[U_i \leq t]}$ where U_1, U_2, \ldots are i.i.d. Uniform(0, 1), and $N_{\lambda} \sim \operatorname{Poiss}(\lambda)$ is independent of the U_i 's, then $\mathbb{N}(t) \equiv N_{N_{\lambda}} = \sum_{i=1}^{N_{\lambda}} 1_{[U_i \leq t]}$ is a Poisson process on [0, 1] with rate λ .