
Probability Basics: Handout 1

Math/Stat 394: Probability I

Wellner; 1/5/2000

Terminology and Notation:

Experiment

Sample space = Outcome set = 
;

Events, A; B; C; : : :;

Elementary Outcomes, a; b; c, or i; j; k

Random Variables, X; Y; Z;
Outcomes of Random Variables x; y; z;

Example 1. Roll a die. Let X �(the # rolled).
P (X = 2) = 1=6; p(k) � P (X = k) = 1=6 for k = 1; : : : ; 6.

Probability mass function p:

k 1 2 3 4 5 6

p(k) 1=6 1=6 1=6 1=6 1=6 1=6

Probability Function P (�):
A! P (A)
Properties:

� 0 � P (A) � 1 for all A;
� P (
) = 1;
� P ([iAi) =

P
i P (Ai) if Ai \ Aj = ; for all i 6= j.

Call (
; the events; P ) a probability space.

Special case: Symmetry. Then equally likely: P (A) = NA=N
.

Example 2. Roll two dice. X1 and X2. Total T � T2 � X1 +X2.

k1; k2 1 2 3 4 5 6

1 1=36 1=36 1=36 1=36 1=36 1=36

2 1=36 1=36 1=36 1=36 1=36 1=36

3 1=36 1=36 1=36 1=36 1=36 1=36

4 1=36 1=36 1=36 1=36 1=36 1=36

5 1=36 1=36 1=36 1=36 1=36 1=36

6 1=36 1=36 1=36 1=36 1=36 1=36
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Here is the probability mass function pT (�) � P (T = �):

k 2 3 4 5 6 7 8 9 10 11 12

36 � pT (k) 1 2 3 4 5 6 5 4 3 2 1

Note CLT! In 7500 rolls of 2 dice, we get T = 5 about 833 times.

Example 3. Suppose that an urn contains four balls labelled 1, 2, 3, 4.

Suppose that we pick a ball \at random" from the urn. Let X =the #

drawn, pk = P (X = k). If we draw n times from the same urn, let nk �(the
# of k's in the n rolls). Then we hope that bpk � nk=n ! pk in some sense.

One of our jobs this quarter is to understand why and in what sense this
happens.

Example 4. Suppose that an urn contains 10 balls, one ball with the label

1, two balls with the label 2, three balls with the label 3, and four balls
with the label 4. Suppose we choose one ball at random from the urn. Let

X �(the # drawn). Then X has the following probability mass function
p(k) � P (X = k):

k 1 2 3 4

p(k) .1 .2 .3 .4

Example 5. Any 
 = fa1; : : : ; akg and any pi � 0 with p1+� � �+pk = 1 yield
a probability space. Is it useful? Does it model a useful real experiment?

We can study all cases at once, whether useful or not!

Elementary Theorems: (Kelly, pages 93-93)
� P (A) + P (Ac) = 1

� P (A [B) = P (A) + P (B)� P (A \ B)
� P (A [B [ C) = � � � (inclusion - exclusion principle; see page 86).
� If B1; : : : ; Bn is a (disjoint!) partition of 
, then

A = A \ B1 [ � � � [ A \ Bn � AB1 + � � �+ ABn,

P (A) = P (A \ B1) + � � �+ P (A \ Bn) = P (AB1) + � � �+ P (ABn).

De�nition. The conditional probability of A given B, P (AjB), is de�ned
by

P (AjB) � P (A \ B)
P (B)

if P (B) > 0 :

Theorem. P (AB) = P (AjB)P (B) always.
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De�nition. A is \independent" of B if P (AjB) = P (A).

Theorem. P (AB) = P (A)P (B) is A and B are independent.

Why does this de�nition make sense? Because, in the equally likely case

P (AjB) = P (AB)

P (B)
=
NAB=N


NB=N


=
NAB

NB

which makes sense.

Example 1. Draw two cards at random from a deck of 52 cards. Then

P (�rst two cards are diamonds) = P (D1D2) = P (D1)P (D2jD1) =
13

52

12

51
= :0588 :

Note: we solved two problems on trivial sample spaces, instead of one harder
problem on a more complicated probability space.

Fundamental Fact: Conditional probability allows us to revisualize the
problem.

Example 2. Suppose that an urn contains 6 white and 9 black balls. Sup-

pose we draw four balls without replacement from the urn. Then

P (WWBB) =
6

15

5

14

9

13

8

12
� :0659 :

This is trivial with conditional probability, using 4 sample spaces. Worked
on 1 sample space it is \more complicated".

Example 3. Rolling two dice: let X1 � (# on �rst die), X2 � (# on second
die), T � X1 +X2. Then

P (T � 3jT 6= 7) =
3

30
=

1
36
+ 2

36

1� 6
36

;

where the �rst computation can be obtained by \thinking conditionally", and
the second computation comes from the de�nition of conditional probability

and direct computation.

Example 4. Pick one of three urns B1, B2, B3 at random, then pick a ball
at random from that urn. Let A � [the ball picked is R]. Suppose that urn

1 = B1 contains 3R; 2W ; urn 2 = B2 contains 7R; 3W ; urn 3 = B3 contains
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4R; 1W . Then

P (A) = P (AB1) + P (AB2) + P (AB3)

= P (AjB1)P (B1) + P (AjB2)P (B2) + P (AjB3)P (B3)

=
3

5

1

3
+

7

10

1

3
+

4

5

1

3

=
21

10

1

3
= :7 :

Given the event A, what is the probability that it was drawn from urn 1

= B1? This is just

P (B1jA) =
P (B1A)

P (A)
=

6=30

21=30
=

6

21
=

2

7
:

This is an example of what is often called \Bayes formula": The probabili-
ties P (Bi) = 1=3 are called the \prior probabilities", while the probabilities
P (BijA) are called the \posterior probabilities".

Example 5. X1 �(# on Red die), X2 �(# on White die). Then

P (X1 � 5and 2 � X2 � 4) =
2� 3

6� 6
=

2

6
� 3
6
= P (X1 � 5)P (2 � X2 � 4) :

A.4. How to count; or, Combinatorics

m � n Rule: If there are n ways to do step II for each of the m ways to do
step I, then there are m � n ways to do both steps.

Sampling with and without replacement:

10 � 10 � 10 � � � versus 10 � 9 � 8 � � � .
n! =(# of permutations of n distinct objects) = n(n� 1) � � �2 � 1.
pnk � (n)k � (# of k long permutations of n distinct objects) = n(n �
1) � � � (n� k + 1)1 = n!=(n� k)!.

Cn
k �

�
n

k

�
�(# of subsets, or combinations, of size k from n distinct objects)

n!=(k!(n� k)!)

Example 1. (# of batting orders using 9 starters) = 9! = 362,880.
(# of batting orders using all 26 on the roster) = p269 = 1:3383� 1012.
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Example 2. (# of poker hands) = C52
5 =

�
52
5

�
= 2; 598; 960

(# of bridge hands) = C52
13 =

�
52
13

�
= 635; 013; 559; 601.

Example 3. T =(# of honor cards in a bridge hand) = X1 + : : : + X13

where Xi = 1 or 0 as the ith card drawn is an honor card or not. Then

P (T = k) =
C16
k C

3
13�k6

C52
13

; k = 0; : : : ; 13 :

These probabilities are given in the following table:

k P (T = k)

0 .0036

1 .0315
2 .1135
3 .2242

4 .2698
5 .2081

6 .1053
7 .0351
8 .0076

9 .0011
10 .0001
11 4:3� 10�6

12 1:0� 10�7

13 8:8� 10�9

Plotting these probabilities shows that there is a \central limit e�ect" even

after adding 13 of these dependent indicator variables, and will we see that

this setting yields a CLT for dependent random variables.

Sampling Without Replacement: (Hypergeometric distribution.) Sup-

pose that we are sampling without replacement from an urn containing R

red balls and W white balls. Suppose that we draw n times from the urn,

and let Xi be 1 or 0 according as the i�th ball drawn is Red or White. These
indicator variables are dependent. Let

T � Tn � X1 + : : :+Xn = (# of Reds in the sample of size n) :

Then the distribution of T is the Hypergeometric(R;N; n) distribution:

P (T = k) =

�
R

k

��
W

n�k

�
�
N

n

�
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for each possible value of k; often k = 0; : : : ; n. Here N � R+W is the total

number of balls in the urn.

Example 4. (Roll a 10-sided die twice.) Outcomes X1 and X2. Let A =

f3; 4; 5g � \success". Then P (X1 2 A) = 3=10 = P (X2 2 A) � p, and

P (X1 2 A; and X2 2 A) = P (X1 2 A)P (X2 2 A) = p � p = p2 :

Samping with replacement: (Binomial distribution.) Suppose that we

are sampling with replacement from an urn containing R red balls and W

white balls. Suppose that we draw n times from the urn, and let Xi be 1 or 0
according as the i�th ball drawn is Red or White. These indicator variables

are independent. Let

T � Tn � X1 + : : :+Xn = (# of Reds in the sample of size n) :

Then the distribution of T is the Binomial(n; p) distribution with p = R=(R+
W ):

P (T = k) =

�
n

k

�
pk(1� p)n�k; k = 0; : : : ; n;

De�nitions for Continuous Distributions

De�nition. A probability density function f satis�es:

(a) f(x) � 0 for all x 2 R;
(b)

R
1

�1
f(x)dx = 1;

(c) for any \reasonable" set A, P (A) =
R
A
f(x)dx.

Example 1. X �Uniform(0; 1) if

f(x) =

�
1; 0 � x � 1
0; otherwise

�
= 1[0;1](x) :

Example 2. X �Uniform(a; b) if

f(x) =

�
1=(b� a); a � x � b

0; otherwise

�
=

1

b� a
1[a;b](x) :
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Example 3. X � exponential(�) if the density function f � fX for X is

given by

f(x) = � exp(��x)1[0;1)(x) :

Example 4. X �N(0; 1) if the density function f for X is given by

f(x) =
1p
2�

e�x
2=2 � �(x); �1 < x <1 :
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