

3 Examples.

Example 3.1 (One-sample t -test) Suppose that X_1, \dots, X_n are i.i.d. with $E(X_1) = \mu$ and $Var(X_1) = \sigma^2$. Consider testing $H : \mu \leq \mu_0$ versus $K : \mu > \mu_0$. The normal theory test is “reject H if $T_n \geq t_{n-1,\alpha}$ ” where

$$T_n \equiv \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{S_n}$$

with $S_n^2 \equiv (n-1)^{-1} \sum_1^n (X_i - \bar{X}_n)^2$ and where $P(t_{n-1} \geq t_{n-1,\alpha}) = \alpha$. We are interested in the behavior of this test when the X_i ’s are *not normally distributed*.

(a) What if $\mu = \mu_0$ is true? Note that by the Lindeberg central limit theorem $\sqrt{n}(\bar{X}_n - \mu_0) \rightarrow_d N(0, \sigma^2)$ when $\mu = \mu_0$ is true, and by the WLLN and Slutsky’s theorem

$$S_n^2 = \frac{n}{n-1} \left\{ \frac{1}{n} \sum_{i=1}^n (X_i - \mu_0)^2 - (\bar{X}_n - \mu_0)^2 \right\} \rightarrow_p 1 \{ \sigma^2 - 0 \} = \sigma^2.$$

Thus by Slutsky’s theorem again, $T_n \rightarrow_d Z \sim N(0, 1)$ when $\mu = \mu_0$ is true, and we have $P_{\mu_0}(T_n \geq t_{n-1,\alpha}) \rightarrow P(Z \geq z_\alpha) = \alpha$.

(b) What if $\mu > \mu_0$ is true, with μ fixed? In this case

$$T_n = \frac{\sqrt{n}(\bar{X}_n - \mu)}{S_n} + \frac{\sqrt{n}(\mu - \mu_0)}{S_n} \rightarrow_p Z + \infty/\sigma = \infty,$$

so $P_\mu(T_n > t_{n-1,\alpha}) \rightarrow P(Z + \infty > z_\alpha) = 1$.

(c) What if $\mu = \mu_n > \mu_0$ with $\sqrt{n}(\mu_n - \mu_0) \rightarrow c > 0$? Then it will usually hold that

$$T_n = \frac{\sqrt{n}(\bar{X}_n - \mu_n)}{S_n} + \frac{\sqrt{n}(\mu_n - \mu_0)}{S_n} \rightarrow_d Z + c/\sigma$$

where we may need to apply a Lindeberg-Feller or Liapunov CLT to justify the convergence to normality in the first term. If this holds, then

$$P_{\mu_n}(T_n > t_{n-1,\alpha}) \rightarrow P(Z + c/\sigma > z_\alpha) = P(Z > z_\alpha - c/\sigma) = 1 - \Phi(z_\alpha - c/\sigma)$$

gives the limiting power of the test under the local alternatives μ_n . Note that $1 - \Phi(z_\alpha - c/\sigma) > \alpha$ for $c > 0$.

Example 3.2 (One sample normal - theory test of variance) Now suppose that X_1, \dots, X_n are i.i.d. with $E(X_1) = \mu$, $Var(X_1) = \sigma^2$, and $\mu_4 \equiv E(X_1 - \mu)^4 < \infty$.

(a) Now with $Y_i \equiv (X_i - \mu)^2 \sim (\sigma^2, \mu_4 - \sigma^4)$,

$$\begin{aligned} \frac{\sqrt{n}(n^{-1} \sum_1^n (X_i - \mu)^2 - \sigma^2)}{\sqrt{2}\sigma^2} &= \frac{\sqrt{n}(\bar{Y}_n - \sigma^2)}{\sqrt{2}\sigma^2} \\ &\rightarrow_d \frac{N(0, \mu_4 - \sigma^4)}{\sqrt{2}\sigma^2} \\ &= N\left(0, \frac{\mu_4 - \sigma^4}{2\sigma^4}\right) \\ &= N\left(0, \frac{2\sigma^4 + \mu_4 - 3\sigma^4}{2\sigma^4}\right) \\ &= N(0, 1 + 2^{-1}\gamma_2) \text{ with } \gamma_2 \equiv \frac{\mu_4}{\sigma^4} - 3. \end{aligned}$$

(b) Since

$$n^{-1} \sum_1^n (X_i - \bar{X})^2 = n^{-1} \sum_1^n (X_i - \mu)^2 - (\bar{X} - \mu)^2$$

we have

$$\begin{aligned} \frac{\sqrt{n}(n^{-1} \sum_1^n (X_i - \bar{X}_n)^2 - \sigma^2)}{\sqrt{2}\sigma^2} &= \frac{\sqrt{n}(\bar{Y}_n - \sigma^2)}{\sqrt{2}\sigma^2} - \frac{\sqrt{n}(\bar{X}_n - \mu)(\bar{X}_n - \mu)}{\sqrt{2}\sigma^2} \\ &\xrightarrow{d} N(0, 1 + 2^{-1}\gamma_2) - N(0, 1) \cdot 0 = N(0, 1 + 2^{-1}\gamma_2) \end{aligned}$$

by Slutsky's theorem. Thus with $S_n^2 \equiv (n-1)^{-1} \sum_1^n (X_i - \bar{X}_n)^2$,

$$\frac{\sqrt{n}(S_n^2 - \sigma^2)}{\sqrt{2}\sigma^2} \xrightarrow{d} N(0, 1 + 2^{-1}\gamma_2).$$

Now consider testing $H : \sigma = \sigma_0$ versus $K : \sigma > \sigma_0$. If $X_i \sim N(\mu, \sigma_0^2)$, then $(n-1)S_n^2/\sigma_0^2 \sim \chi_{n-1}^2$ under H , so the usual normal theory test is “reject H if $(n-1)S_n^2/\sigma_0^2 > \chi_{n-1, \alpha}^2$ ”. Then since $\gamma_2(N(\mu, \sigma^2)) = 0$ we have

$$\begin{aligned} \alpha &= P_{\sigma_0, Norm} \left(\frac{(n-1)S_n^2}{\sigma_0^2} > \chi_{n-1, \alpha}^2 \right) \\ &= P_{\sigma_0, Norm} \left(\sqrt{\frac{n}{2}} \left(\frac{S_n^2}{\sigma_0^2} - 1 \right) > \sqrt{\frac{n}{2}} \left(\frac{\chi_{n-1, \alpha}^2}{n-1} - 1 \right) \right) \\ &\rightarrow P(Z \geq z_\alpha) = \alpha, \end{aligned}$$

which forces

$$\sqrt{\frac{n}{2}} \left(\frac{\chi_{n-1, \alpha}^2}{n-1} - 1 \right) \rightarrow z_\alpha.$$

Now suppose we carried out the normal theory test, but the X_i 's are *not* normal. Then, under H ,

$$\begin{aligned} P_{\sigma_0} \left(\frac{(n-1)S_n^2}{\sigma_0^2} > \chi_{n-1, \alpha}^2 \right) &= P_{\sigma_0} \left(\sqrt{\frac{n}{2}} \left(\frac{S_n^2}{\sigma_0^2} - 1 \right) > \sqrt{\frac{n}{2}} \left(\frac{\chi_{n-1, \alpha}^2}{n-1} - 1 \right) \right) \\ &\rightarrow P(N(0, 1 + 2^{-1}\gamma_2) \geq z_\alpha) \neq \alpha \end{aligned}$$

when $\gamma_2 \neq 0$. In general the asymptotic size is smaller than α if $\gamma_2 < 0$, but the asymptotic size is greater than α if $\gamma_2 > 0$.

Example 3.3 (Two-sample tests for means) Suppose that X_1, \dots, X_m are i.i.d. with mean μ and variance σ^2 , and that Y_1, \dots, Y_n are i.i.d. with mean ν and variance τ^2 , independent of the X_j 's. If we suppose that $\lambda_N \equiv m/N \equiv m/(m+n) \rightarrow \lambda \in [0, 1]$, then

$$\begin{aligned} \sqrt{\frac{mn}{N}} (\bar{X}_m - \bar{Y}_n - (\mu - \nu)) &= \sqrt{\frac{n}{N}} \sqrt{m} (\bar{X}_m - \mu) - \sqrt{\frac{m}{N}} \sqrt{n} (\bar{Y}_n - \nu) \\ &\xrightarrow{d} \sqrt{1-\lambda} Z_1 - \sqrt{\lambda} Z_2 \quad (Z_1, Z_2) \sim N_2(0, \text{diag}(\sigma^2, \tau^2)) \\ &\sim N(0, (1-\lambda)\sigma^2 + \lambda\tau^2). \end{aligned}$$

Thus we see that

$$\frac{\bar{X}_m - \bar{Y}_n - (\mu - \nu)}{\sqrt{\frac{S_X^2}{m} + \frac{S_Y^2}{n}}} = \frac{\sqrt{\frac{mn}{N}} (\bar{X}_m - \bar{Y}_n - (\mu - \nu))}{\sqrt{\frac{n}{N} S_X^2 + \frac{m}{N} S_Y^2}} \xrightarrow{d} N(0, 1)$$

by Slutsky's theorem. On the other hand, again by Slutsky's theorem,

$$\begin{aligned} T_{m,n}(\mu, \nu) &\equiv \frac{\sqrt{\frac{mn}{N}} (\bar{X}_m - \bar{Y}_n - (\mu - \nu))}{\sqrt{\frac{(m-1)S_X^2 + (n-1)S_Y^2}{N-2}}} \\ &\xrightarrow{d} \frac{N(0, (1-\lambda)\sigma^2 + \lambda\tau^2)}{\sqrt{\lambda\sigma^2 + (1-\lambda)\tau^2}} \\ &= N\left(0, \frac{(1-\lambda)\sigma^2 + \lambda\tau^2}{\lambda\sigma^2 + (1-\lambda)\tau^2}\right) \\ &\neq N(0, 1) \end{aligned}$$

unless $\lambda = 1/2$ or $\sigma^2 = \tau^2$.

Since the two-sample t -test of $H : \mu \leq \nu$ versus $K : \mu > \nu$ rejects H if $T_{m,n}(0, 0) > t_{N-2, \alpha}$, it follows that the test is *not size (or level) robust* against violations of the assumption $\sigma^2 = \tau^2$ when $\lambda \neq 1/2$.

Example 3.4 (Simple linear regression with non-normal errors.) Suppose that $Y_i = \alpha + \beta(x_i - \bar{x}) + \epsilon_i$ for $i = 1, \dots, n$ where $\bar{x} \equiv n^{-1} \sum_1^n x_i$ and $\epsilon_1, \dots, \epsilon_n$ are i.i.d. with mean zero and finite variance, $Var(\epsilon_1) = \sigma^2$; the ϵ_i 's are *not* assumed to be normally distributed. In matrix form

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \equiv \begin{pmatrix} 1 & x_1 - \bar{x} \\ \vdots & \vdots \\ 1 & x_n - \bar{x} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \boldsymbol{\epsilon}.$$

The least squares estimators $\hat{\alpha}$ and $\hat{\beta}$ of α and β are given by

$$\hat{\alpha} = \bar{Y}, \quad \hat{\beta} = \frac{\sum_1^n (x_i - \bar{x}) Y_i}{\sum_1^n (x_i - \bar{x})^2}.$$

Claim: if $\max_{1 \leq i \leq n} (x_i - \bar{x})^2 / \sum_1^n (x_i - \bar{x})^2 \rightarrow 0$, then

$$(1) \quad (\mathbf{X}\mathbf{X}^T)^{1/2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \begin{pmatrix} \sqrt{n}(\hat{\alpha} - \alpha) \\ \sqrt{\sum_1^n (x_i - \bar{x})^2}(\hat{\beta} - \beta) \end{pmatrix} \xrightarrow{d} N_2(0, \sigma^2 I_2).$$

Here is a partial proof. Now

$$\sqrt{n}(\hat{\alpha} - \alpha) = \sqrt{n}(\bar{Y} - \alpha) = \sqrt{n}\bar{\epsilon} \xrightarrow{d} N(0, \sigma^2)$$

by the Lindeberg CLT. Thus the first coordinate in (1) converges to the claimed limit marginally. We now use the Lindeberg-Feller CLT to show that the same is true for the second coordinate, and hence the two claimed marginal convergences hold. Note that

$$\sqrt{\sum_1^n (x_i - \bar{x})^2}(\hat{\beta} - \beta) = \sigma \frac{\sum_1^n (x_i - \bar{x}) \epsilon_i}{\sigma \sqrt{\sum_1^n (x_i - \bar{x})^2}} \equiv \sigma \frac{S_n}{\sigma_n}$$

in the context of the Lindeberg-Feller CLT where $X_{n,i} \equiv (x_i - \bar{x})\epsilon_i$ for $i = 1, \dots, n$, and hence $\mu_{n,i} = E X_{n,i} = 0$, $\sigma_{n,i}^2 = \text{Var}(X_{n,i}) = (x_i - \bar{x})^2 \sigma^2$, and $\sigma_n^2 = \sigma^2 \sum_1^n (x_i - \bar{x})^2$. Thus we need to verify the condition $LF_n(\delta) \rightarrow 0$ for every $\delta > 0$ where

$$LF_n(\delta) \equiv \frac{1}{\sigma_n^2} \sum_1^n E\{|X_{n,i}|^2 1_{\{|X_{n,i}| \geq \delta \sigma_n\}}\}.$$

But in the present case,

$$\begin{aligned} LF_n(\delta) &= \frac{1}{\sigma^2 \sum_1^n (x_i - \bar{x})^2} \sum_1^n (x_i - \bar{x})^2 E \left\{ \epsilon_i^2 1\{|x_i - \bar{x}| |\epsilon_i| \geq \delta \sigma \sqrt{\sum_1^n (x_i - \bar{x})^2}\} \right\} \\ &= \frac{1}{\sigma^2 \sum_1^n (x_i - \bar{x})^2} \sum_1^n (x_i - \bar{x})^2 E \left\{ \epsilon_1^2 1\{|\epsilon_1| \geq \frac{\delta \sigma}{\sqrt{\sum_1^n (x_i - \bar{x})^2}}\} \right\} \\ &\leq \frac{1}{\sigma^2 \sum_1^n (x_i - \bar{x})^2} \sum_1^n (x_i - \bar{x})^2 E \left\{ \epsilon_1^2 1\left\{ |\epsilon_1| \geq \frac{\delta \sigma}{\sqrt{\max_{1 \leq i \leq n} \frac{|x_i - \bar{x}|^2}{\sum_1^n (x_i - \bar{x})^2}}} \right\} \right\} \\ &= \frac{1}{\sigma^2} E \left\{ \epsilon_1^2 1\{|\epsilon_1| \geq \delta \sigma / \sqrt{\max_{1 \leq i \leq n} |x_i - \bar{x}|^2 / \sum_1^n (x_i - \bar{x})^2}\} \right\} \\ &\rightarrow 0 \end{aligned}$$

for every $\delta > 0$ by the DCT since the integrand converges a.s. to zero by the hypothesis and since $E(\epsilon_1^2) < \infty$, so ϵ_1^2 gives an integrable dominating function. Thus the second coordinate satisfies the claimed marginal convergence. All that remains to be shown is the claimed joint convergence.

Conclusion: the normal theory tests and confidence intervals for α and β have the right asymptotic size and coverage probabilities as long as $\sigma^2 < \infty$ and $\max_{1 \leq i \leq n} |x_i - \bar{x}|^2 / \sum_1^n (x_i - \bar{x})^2 \rightarrow 0$.

Example 3.5 (Multiple linear regression with non-normal errors). Insert?

Example 3.6 (The correlation coefficient). Suppose that $(X_1, Y_1)^T, \dots, (X_n, Y_n)^T$ are i.i.d. with means $E(X_1, Y_1) = (\mu_X, \mu_Y)$, covariance matrix

$$\begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix},$$

and $E|X_1|^4 < \infty$, $E|Y_1|^4 < \infty$. Let

$$S_{XY} \equiv n^{-1} \sum_1^n (X_i - \bar{X})(Y_i - \bar{Y}), \quad S_{XX} \equiv n^{-1} \sum_1^n (X_i - \bar{X})^2, \quad S_{YY} \equiv n^{-1} \sum_1^n (Y_i - \bar{Y})^2,$$

and consider the sample correlation $r \equiv r_n$ defined by

$$r_n \equiv \frac{S_{XY}}{\sqrt{S_{XX} S_{YY}}}.$$

since r_n is invariant with respect to linear transformations of each axis, we may assume without loss of generality that $\mu_X = \mu_Y = 0$ and $\sigma_X^2 = \sigma_Y^2 = 1$; if not replace (X_i, Y_i) by $((X_i - \mu_X)/\sigma_X, (Y_i - \mu_Y)/\sigma_Y)$, $i = 1, \dots, n$. Note that

$$\begin{aligned} \sqrt{n} \begin{pmatrix} S_{XY} - \rho \\ S_{XX} - 1 \\ S_{YY} - 1 \end{pmatrix} &= \sqrt{n} \begin{pmatrix} \bar{XY} - \rho \\ \bar{X^2} - 1 \\ \bar{Y^2} - 1 \end{pmatrix} + \begin{pmatrix} o_p(1) \\ o_p(1) \\ o_p(1) \end{pmatrix} \\ &\xrightarrow{d} \underline{Z} \sim N_3(0, \Sigma) \end{aligned}$$

by the multivariate CLT where

$$\Sigma = \begin{pmatrix} E(X^2Y^2) - \rho^2 & E(X^3Y) - \rho & E(XY^3) - \rho \\ E(X^3Y) - \rho & E(X^4) - 1 & E(X^2Y^2) - 1 \\ E(XY^3) - \rho & E(X^2Y^2) - 1 & E(Y^4) - 1 \end{pmatrix}.$$

Since $g(u, v, w) \equiv u/\sqrt{vw}$ has $\nabla g(\rho, 1, 1) = (1, -\rho/2, -\rho/2)$, it follows by the g' theorem (or delta method) that

$$\sqrt{n}(r_n - \rho) \xrightarrow{d} \nabla g(\rho, 1, 1) \underline{Z} = Z_1 - \frac{\rho}{2}(Z_2 + Z_3).$$

Note that if X_1 and Y_1 are independent, then $\rho = 0$ and the covariance matrix Σ becomes

$$\Sigma = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \mu_{4,X} & 0 \\ 0 & 0 & \mu_{4,Y} \end{pmatrix},$$

and hence $\sqrt{n}(r_n - 0) = \sqrt{n}r_n \xrightarrow{d} N(0, 1)$. Thus under independence the test of $H : \rho = 0$ versus $K : \rho > 0$ that rejects if $\sqrt{n}r_n > z_\alpha$ has asymptotic level α even if the true distribution is not Gaussian (but we have $E|X_1|^4 + E|Y_1|^4 < \infty$). If the true distribution of the (X_i, Y_i) pairs is Normal, then Σ becomes

$$\Sigma = \begin{pmatrix} 1 + \rho^2 & 2\rho & 2\rho \\ 2\rho & 2 & 2\rho^2 \\ 2\rho & 2\rho^2 & 2 \end{pmatrix},$$

and hence

$$\sqrt{n}(r_n - \rho) \xrightarrow{d} N(0, (1 - \rho/2, -\rho/2) \Sigma (1, -\rho/2 - \rho/2)^T) = N(0, (1 - \rho^2)^2).$$

Finally, it is often useful to transform the distribution of r_n (which always has support in $[-1, 1]$) to the whole line \mathbb{R} : if $g(x) \equiv 2^{-1} \log((1+x)/(1-x))$, then $g'(x) = 1/(1-x^2)$, and hence, under normality of the (X_i, Y_i) 's,

$$\sqrt{n}(g(r_n) - g(\rho)) \xrightarrow{d} N(0, 1).$$

If we let $Z_n \equiv g(r_n)$ and $\xi \equiv g(\rho)$ (this is sometimes known as *Fisher's Z-transform*), then

$$\sqrt{n-3} \left(Z_n - \xi - \frac{\rho}{2(n-1)} \right) \approx N(0, 1)$$

is an excellent approximation.

Example 3.7 (Chi-square test of a simple null hypothesis). Suppose that $\underline{\Delta}_1, \dots, \underline{\Delta}_n, \dots$ are i.i.d. Multinomial $_k(1, \underline{p})$ random vectors so that $\underline{\Delta}_i$ vector contains only zeros and 1's, but only one 1. Thus

$$\underline{N}_n \equiv \sum_{i=1}^n \underline{\Delta}_i \sim \text{Mult}_k(n, \underline{p}),$$

and $\hat{\underline{p}}_n \equiv n^{-1} \underline{N}_n \rightarrow_{p,a.s.} \underline{p}$.

Consider testing $H : \underline{p} = \underline{p}_0$ versus $K : \underline{p} \neq \underline{p}_0$. One simple test statistic is the (Pearson) chi-square statistic Q_n defined by

$$Q_n \equiv \sum_{j=1}^k \frac{(N_j - np_{0,j})^2}{np_{0,j}}.$$

To carry out the test based on Q_n we need to know the distribution of Q_n under the null hypothesis either exactly (which is complicated: its depends on k , n , and \underline{p}_0), or at least asymptotically which is relative easy. We claim that: when $\underline{p} = \underline{p}_0$,

$$Q_n \rightarrow_d \chi_{k-1}^2.$$

Here is the proof. Set

$$\underline{Z}_n = \left(\frac{N_1 - np_{0,1}}{\sqrt{np_{0,1}}}, \dots, \frac{N_k - np_{0,k}}{\sqrt{np_{0,k}}} \right)^T \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n \underline{Y}_i$$

where The \underline{Y}_i 's are i.i.d. with $E(\underline{Y}_i) = \underline{0}$, and covariance matrix $\Sigma = I - \sqrt{\underline{p}_0} \sqrt{\underline{p}_0}^T$ where $\sqrt{\underline{p}_0} = (\sqrt{p_{0,1}}, \dots, \sqrt{p_{0,k}})^T$. Thus

$$\underline{Z}_n \rightarrow_d \underline{Z} \sim N_k(0, \Sigma)$$

by the multivariate CLT. Now $Q_n = \underline{Z}_n^T \underline{Z}_n$ is a continuous function of \underline{Z}_n , so $Q_n = \underline{Z}_n^T \underline{Z}_n \rightarrow_d = \underline{Z}^T \underline{Z} \equiv Q$ by the Mann-Wald theorem. It remains to show that the distribution of Q is χ_{k-1}^2 .

To see this, note that for any orthogonal matrix Γ we have

$$Q = \underline{Z}^T \underline{Z} = (\Gamma \underline{Z})^T (\Gamma \underline{Z}) \equiv \underline{V}^T \underline{V}$$

where $\underline{V} \sim N(0, \Gamma \Sigma \Gamma^T)$. Here is a convenient choice of Γ : choose Γ to be the orthogonal matrix with first row $\sqrt{\underline{p}_0}^T$, and filled out with orthogonal rows. Then

$$\begin{aligned} \Gamma \Sigma \Gamma^T &= \Gamma I \Gamma^T - \Gamma \sqrt{\underline{p}_0} \sqrt{\underline{p}_0}^T \Gamma^T = I - (1, 0, \dots, 0)^T (1, 0, \dots, 0) \\ &= \begin{pmatrix} 0 & \underline{0}^T \\ \underline{0} & I_{(k-1) \times (k-1)} \end{pmatrix}. \end{aligned}$$

Thus $V_1 = 0$ with probability 1 and V_2, \dots, V_k are i.i.d. $N(0, 1)$. It follows that $Q = \sum_{j=2}^k V_j^2 \sim \chi_{k-1}^2$. Thus we have

$$P_{\underline{p}_0}(Q_n \geq \chi_{k-1, \alpha}^2) \rightarrow P(\chi_{k-1}^2 \geq \chi_{k-1, \alpha}^2) = \alpha.$$

What if $\underline{p} \neq \underline{p}_0$? In this case, since $\hat{\underline{p}}_n \rightarrow_p \underline{p}$, we can write

$$n^{-1} Q_n = \sum_{j=1}^k \frac{(\hat{p}_j - p_{0,j})^2}{p_{0,j}} \rightarrow_p \sum_{j=1}^k \frac{(p_j - p_{0,j})^2}{p_{0,j}} \equiv q > 0.$$

Thus $Q_n \rightarrow_p \infty$, and it follows that

$$P_{\underline{p}}(Q_n \geq \chi_{k-1,\alpha}^2) \rightarrow 1$$

as $n \rightarrow \infty$; i.e. the test is (power) consistent.

What if $\underline{p} = \underline{p}_n$ satisfies $\underline{p}_n = \underline{p}_0 + \underline{c}n^{-1/2}$ where $\underline{1}^T \underline{c} = 0$ and hence $\underline{1}^T \underline{p}_n = 1$ for all n ? In this case, by using the Cramér-Wold device together with either the Liapunov CLT or the Lindeberg-Feller CLT,

$$\begin{aligned} \underline{Z}_n &= \left(\frac{N_1 - np_{0,1}}{\sqrt{np_{0,1}}}, \dots, \frac{N_1 - np_{0,k}}{\sqrt{np_{0,k}}} \right)^T \\ &= \left(\frac{N_1 - np_{n,1}}{\sqrt{np_{0,1}}}, \dots, \frac{N_1 - np_{n,k}}{\sqrt{np_{0,k}}} \right)^T + \text{diag}(1/\sqrt{\underline{p}_0})\sqrt{n}(\underline{p}_n - \underline{p}_0) \\ &= \frac{1}{\sqrt{n}} \sum_{i=1}^n \underline{Y}_{n,i} + \text{diag}(1/\sqrt{\underline{p}_0})\underline{c} \\ &\rightarrow_d \underline{Z} + \text{diag}(1/\sqrt{\underline{p}_0})\underline{c} \end{aligned}$$

where $\underline{Z} \sim N_k(0, \Sigma)$ with $\Sigma = I - \sqrt{\underline{p}_0} \sqrt{\underline{p}_0}^T$. Thus it follows by the Mann-Wald theorem that under the local alternatives \underline{p}_n we have

$$\begin{aligned} Q_n &= \underline{Z}_n^T \underline{Z}_n \rightarrow_d (\underline{Z} + \text{diag}(1/\sqrt{\underline{p}_0})\underline{c})^T (\underline{Z} + \text{diag}(1/\sqrt{\underline{p}_0})\underline{c}) \\ &= \left(\Gamma(\underline{Z} + \text{diag}(1/\sqrt{\underline{p}_0})\underline{c}) \right)^T \left(\Gamma(\underline{Z} + \text{diag}(1/\sqrt{\underline{p}_0})\underline{c}) \right) \\ &\equiv \underline{V}^T \underline{V} \end{aligned}$$

where

$$\underline{V} \sim N_k \left(\Gamma \text{diag}(1/\sqrt{\underline{p}_0})\underline{c}, \begin{pmatrix} 0 & \underline{0}^T \\ \underline{0} & I_{(k-1) \times (k-1)} \end{pmatrix} \right) \equiv N_k \left(\underline{\mu}, \begin{pmatrix} 0 & \underline{0}^T \\ \underline{0} & I_{(k-1) \times (k-1)} \end{pmatrix} \right)$$

Noting that $\underline{\mu}^T \underline{\mu} = \underline{c}^T \text{diag}(1/\sqrt{\underline{p}_0})\underline{c} = \sum_{j=1}^k c_j^2/p_{0,j}$ and

$$\mu_1 = \sqrt{\underline{p}_0}^T \text{diag}(1/\sqrt{\underline{p}_0})\underline{c} = \underline{1}^T \underline{c} = 0,$$

it follows that $\underline{V}^T \underline{V} \sim \chi_{k-1}^2(\delta)$ with $\delta = \sum_1^k c_j^2/p_{0,j}$. We conclude that

$$P_{\underline{p}_n}(Q_n \geq \chi_{k-1,\alpha}^2) \rightarrow P(\chi_{k-1}^2(\delta) > \chi_{k-1,\alpha}^2).$$

This leads to approximating the power of the chi-square test based on Q_n by

$$P_{\underline{p}}(Q_n \geq \chi_{k-1,\alpha}^2) \approx P(\chi_{k-1}^2(\delta_n) > \chi_{k-1,\alpha}^2)$$

with $\delta_n \equiv \sum_{j=1}^k c_{n,j}^2/p_{0,j}$ where $\underline{c}_n \equiv \sqrt{n}(\underline{p} - \underline{p}_0)$.