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3 Examples.

Example 3.1 (One-sample t−test) Suppose that X1, . . . , Xn are i.i.d. with E(X1) = µ and
V ar(X1) = σ2. Consider testing H : µ ≤ µ0 versus K : µ > µ0. The normal theory test is
“reject H if Tn ≥ tn−1,α” where

Tn ≡
√
n(Xn − µ0)

Sn

with S2
n ≡ (n − 1)−1�n

1 (Xi − Xn)2 and where P (tn−1 ≥ tn−1,α) = α. We are interested in the
behavior of this test when the Xi’s are not normally distributed.
(a) What if µ = µ0 is true? Note that by the Lindeberg central limit theorem

√
n(Xn − µ0) →d

N(0, σ2) when µ = µ0 is true, and by the WLLN and Slutsky’s theorem

S2
n =

n

n− 1

�
1

n

n�

i=1

(Xi − µ0)
2 − (X − µ0)

2

�
→p 1

�
σ2 − 0

�
= σ2.

Thus by Slutsky’s theorem again, Tn →d Z ∼ N(0, 1) when µ = µ0 is true, and we have Pµ0(Tn ≥
tn−1,α) → P (Z ≥ zα) = α.
(b) What if µ > µ0 is true, with µ fixed? In this case

Tn =

√
n(X − µ)

Sn
+

√
n(µ− µ0)

Sn
→p Z +∞/σ = ∞,

so Pµ(Tn > tn−1,α) → P (Z +∞ > zα) = 1.
(c) What if µ = µn > µ0 with

√
n(µn − µ0) → c > 0? Then it will usually hold that

Tn =

√
n(X − µn)

Sn
+

√
n(µn − µ0)

Sn
→d Z + c/σ

where we may need to apply a Lindeberg-Feller or Liapunov CLT to justify the convergence to
normality in the first term. If this holds, then

Pµn(Tn > tn−1,α) → P (Z + c/σ > zα) = P (Z > zα − c/σ) = 1− Φ(zα − c/σ)

gives the limiting power of the test under the local alternatives µn. Note that 1−Φ(zα − c/σ) > α
for c > 0.

Example 3.2 (One sample normal - theory test of variance) Now suppose that X1, . . . , Xn are
i.i.d. with E(X1) = µ, V ar(X1) = σ2, and µ4 ≡ E(X1 − µ)4 < ∞.
(a) Now with Yi ≡ (Xi − µ)2 ∼ (σ2, µ4 − σ4),

√
n(n−1�n

1 (Xi − µ)2 − σ2)√
2σ2

=

√
n(Y n − σ2)√

2σ2

→d
N(0, µ4 − σ4)√

2σ2

= N

�
0,

µ4 − σ4

2σ4

�

= N

�
0,

2σ4 + µ4 − 3σ4

2σ4

�

= N(0, 1 + 2−1γ2) with γ2 ≡
µ4

σ4
− 3.
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(b) Since

n−1
n�

1

(Xi −X)2 = n−1
n�

1

(Xi − µ)2 − (X − µ)2

we have
√
n(n−1�n

1 (Xi −Xn)2 − σ2)√
2σ2

=

√
n(Y n − σ2)√

2σ2
−

√
n(Xn − µ)(Xn − µ)√

2σ2

→d N(0, 1 + 2−1γ2)−N(0, 1) · 0 = N(0, 1 + 2−1γ2)

by Slutsky’s theorem. Thus with S2
n ≡ (n− 1)−1�n

1 (Xi −Xn)2,

√
n(S2

n − σ2)√
2σ2

→d N(0, 1 + 2−1γ2).

Now consider testing H : σ = σ0 versus K : σ > σ0. If Xi ∼ N(µ, σ2
0), then (n − 1)S2

n/σ
2
0 ∼ χ2

n−1

under H, so the usual normal theory test is “reject H if (n − 1)S2
n/σ

2
0 > χ2

n−1,α”. Then since

γ2(N(µ, σ2)) = 0 we have

α = Pσ0,Norm

�
(n− 1)S2

n

σ2
0

> χ2
n−1,α

�

= Pσ0,Norm

��
n

2

�
S2
n

σ2
0

− 1

�
>

�
n

2

�
χ2
n−1,α

n− 1
− 1

��

→ P (Z ≥ zα) = α,

which forces
�

n

2

�
χ2
n−1,α

n− 1
− 1

�
→ zα.

Now suppose we carried out the normal theory test, but the Xi’s are not normal. Then, under H,

Pσ0

�
(n− 1)S2

n

σ2
0

> χ2
n−1,α

�
= Pσ0

��
n

2

�
S2
n

σ2
0

− 1

�
>

�
n

2

�
χ2
n−1,α

n− 1
− 1

��

→ P (N(0, 1 + 2−1γ2) ≥ zα) �= α

when γ2 �= 0. In general the asymptotic size is smaller than α if γ2 < 0, but the asymptotic size is
greater than α if γ2 > 0.

Example 3.3 (Two-sample tests for means) Suppose that X1, . . . , Xm are i.i.d. with mean µ and
variance σ2, and that Y1, . . . , Yn are i.i.d. with mean ν and variance τ2, independent of the Xj ’s.
If we suppose that λN ≡ m/N ≡ m/(m+ n) → λ ∈ [0, 1], then

�
mn

N

�
Xm − Y n − (µ− ν)

�
=

�
n

N

√
m(Xm − µ)−

�
m

N

√
n(Y n − ν)

→d

√
1− λZ1 −

√
λZ2 (Z1, Z2) ∼ N2(0, diag(σ

2, τ2))

∼ N(0, (1− λ)σ2 + λτ2).
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Thus we see that

Xm − Y n − (µ− ν)�
S2
X
m +

S2
Y
n

=

�
mn
N

�
Xm − Y n − (µ− ν)

�
�

n
N S2

X + m
N S2

Y

→d N(0, 1)

by Slutsky’s theorem. On the other hand, again by Slutsky’s theorem,

Tm,n(µ, ν) ≡
�

mn
N

�
Xm − Y n − (µ− ν)

�
�

(m−1)S2
X+(n−1)S2

Y
N−2

→d
N(0, (1− λ)σ2 + λτ2)�

λσ2 + (1− λ)τ2

= N

�
0,

(1− λ)σ2 + λτ2

λσ2 + (1− λ)τ2

�

�= N(0, 1)

unless λ = 1/2 or σ2 = τ2.

Since the two-sample t−test of H : µ ≤ ν versus K : µ > ν rejects H if Tm,n(0, 0) > tN−2,α, it
follows that the test is not size (or level) robust against violations of the assumption σ2 = τ2 when
λ �= 1/2.

Example 3.4 (Simple linear regression with non-normal errors.) Suppose that Yi = α + β(xi −
x) + �i for i = 1, . . . , n where x ≡ n−1�n

1 xi and �1, . . . , �n are i.i.d. with mean zero and finite
variance, V ar(�1) = σ2; the �i’s are not assumed to be normally distributed. In matrix form

Y = Xβ + � ≡




1 x1 − x
...

...
1 xn − x




�

α
β

�
+ �.

The least squares estimators α̂ and β̂ of α and β are given by

α̂ = Y , β̂ =

�n
1 (xi − x)Yi�n
1 (xi − x)2

.

Claim: if max1≤i≤n(xi − x)2/
�n

1 (xi − x)2 → 0, then

(XXT )1/2(β̂ − β) =

� √
n(α̂− α)��n

1 (xi − x)2(β̂ − β)

�
→d N2(0, σ

2I2).(1)

Here is a partial proof. Now
√
n(α̂− α) =

√
n(Y − α) =

√
n� →d N(0, σ2)

by the Lindeberg CLT. Thus the first coordinate in (1) converges to the claimed limit marginally.
We now use the Lindeberg-Feller CLT to show that the same is true for the second coordinate, and
hence the two claimed marginal convergences hold. Note that

����
n�

1

(xi − x)2(β̂ − β) = σ

�n
1 (xi − x)�i

σ
��n

1 (xi − x)2
≡ σ

Sn

σn
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in the context of the Lindeberg-Feller CLT where Xn,i ≡ (xi − x)�i for i = 1, . . . ,n, and hence
µn,i = EXn,i = 0, σ2

n,i = V ar(Xn,i) = (xi − x)2σ2, and σ2
n = σ2�n

1 (xi − x)2. Thus we need to
verify the condition LFn(δ) → 0 for every δ > 0 where

LFn(δ) ≡
1

σ2
n

n�

1

E{|Xn,i|21[|Xn,i|≥δσn]}.

But in the present case,

LFn(δ) =
1

σ2
�n

1 (xi − x)2

n�

i=1

(xi − x)2E




�2i 1{|xi − x||�i| ≥ δσ

����
n�

1

(xi − x)2}






=
1

σ2
�n

1 (xi − x)2

n�

i=1

(xi − x)2E




�211{|�1| ≥
δσ�
|xi−x|2�n
1 (xi−x)2

}






≤ 1

σ2
�n

1 (xi − x)2

n�

i=1

(xi − x)2E




�211




|�1| ≥
δσ�

max1≤i≤n
|xi−x|2�n
1 (xi−x)2











=
1

σ2
E




�211{|�1| ≥ δσ/

����max
1≤i≤n

|xi − x|2/
n�

1

(xi − x)2}






→ 0

for every δ > 0 by the DCT since the integrand converges a.s. to zero by the hypothesis and since
E(�21) < ∞, so �21 gives an integrable dominating function. Thus the second coordinate satisfies the
claimed marginal convergence. All that remains to be shown is the claimed joint convergence.

Conclusion: the normal theory tests and confidence intervals for α and β have the right asymp-
totic size and coverage probabilities as long as σ2 < ∞ and max1≤i≤n |xi − x|2/

�n
1 (xi − x)2 → 0.

Example 3.5 (Multiple linear regression with non-normal errors). Insert?

Example 3.6 (The correlation coefficient). Suppose that (X1, Y1)T , . . . , (Xn, Yn)T are i.i.d. with
means E(X1, Y1) = (µX , µY ), covariance matrix

�
σ2
X ρσXσY

ρσXσY σ2
Y

�
,

and E|X1|4 < ∞, E|Y1|4 < ∞. Let

SXY ≡ n−1
n�

1

(Xi −X)(Yi − Y ), SXX ≡ n−1
n�

1

(Xi −X)2, SY Y ≡ n−1
n�

1

(Yi − Y )2,

and consider the sample correlation r ≡ rn defined by

rn ≡ SXY√
SXXSY Y

.
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since rn is invariant with respect to linear transformations of each axis, we may assume without loss
of generality that µX = µY = 0 and σ2

X = σ2
Y = 1; if not replace (Xi, Yi) by ((Xi − µX)/σX , (Yi −

µY )/σY ), i = 1, . . . , n. Note that

√
n




SXY − ρ
SXX − 1
SY Y − 1



 =
√
n




XY − ρ

X2 − 1

Y 2 − 1



+




op(1)
op(1)
op(1)





→d Z ∼ N3(0,Σ)

by the multivariate CLT where

Σ =




E(X2Y 2)− ρ2 E(X3Y )− ρ E(XY 3)− ρ
E(X3Y )− ρ E(X4)− 1 E(X2Y 2)− 1
E(XY 3)− ρ E(X2Y 2)− 1 E(Y 4)− 1



 .

Since g(u, v, w) ≡ u/
√
vw has ∇g(ρ, 1, 1) = (1,−ρ/2,−ρ/2), it follows by the g� theorem (or delta

method) that

√
n(rn − ρ) →d ∇g(ρ, 1, 1)Z = Z1 −

ρ

2
(Z2 + Z3).

Note that if X1 and Y1 are independent, then ρ = 0 and the covariance matrix Σ becomes

Σ =




1 0 0
0 µ4,X 0
0 0 µ4,Y



 ,

and hence
√
n(rn − 0) =

√
nrn →d N(0, 1). Thus under independence the test of H : ρ = 0 versus

K : ρ > 0 that rejects if
√
nrn > zα has asymptotic level α even if the true distribution is not

Gaussian (but we have E|X1|4 + E|Y1|4 < ∞). If the true distribution of the (Xi, Yi) pairs is
Normal, then Σ becomes

Σ =




1 + ρ2 2ρ 2ρ
2ρ 2 2ρ2

2ρ 2ρ2 2



 ,

and hence

√
n(rn − ρ) →d N(0, (1,−ρ/2,−ρ/2)Σ(1,−ρ/2− ρ/2)T ) = N(0, (1− ρ2)2).

Finally, it is often useful to transform the distribution of rn (which always has support in [−1, 1])
to the whole line R: if g(x) ≡ 2−1 log((1 + x)/(1− x)), then g�(x) = 1/(1− x2), and hence, under
normality of the (Xi, Yi)’s,

√
n(g(rn)− g(ρ)) →d N(0, 1).

If we let Zn ≡ g(rn) and ξ ≡ g(ρ) (this is sometimes known as Fisher’s Z-transform), then

√
n− 3

�
Zn − ξ − ρ

2(n− 1)

�
≈ N(0, 1)

is an excellent approximation.
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Example 3.7 (Chi-square test of a simple null hypothesis). Suppose that ∆1, . . . ,∆n, . . . are i.i.d.
Multinomialk(1, p) random vectors so that ∆i vector contains only zeros and 1’s, but only one 1.
Thus

Nn ≡
n�

i=1

∆i ∼ Multk(n, p),

and p̂
n
≡ n−1Nn →p,a.s. p.

Consider testing H : p = p
0
versus K : p �= p

0
. One simple test statistic is the (Pearson)

chi-square statistic Qn defined by

Qn ≡
k�

j=1

(Nj − np0,j)2

np0,j
.

To carry out the test based on Qn we need to know the distribution of Qn under the null hypothesis
either exactly (which is complicated: its depends on k, n, and p

0
), or at least asymptotically which

is relative easy. We claim that: when p = p
0
,

Qn →d χ2
k−1.

Here is the proof. Set

Zn =

�
N1 − np0,1√

np0,1
, . . . ,

N1 − np0,k√
np0,k

�T

≡ 1√
n

n�

i=1

Y i

where The Y i’s are i.i.d. with E(Y i) = 0, and covariance matrix Σ = I − √p
0
√p

0
T where

√p
0
= (

√
p0,1, . . . ,

√
p0,k)T . Thus

Zn →d Z ∼ Nk(0,Σ)

by the multivariate CLT. Now Qn = ZT
nZn is a continuous function of Zn, so Qn = ZT

nZn →d=
ZTZ ≡ Q by the Mann-Wald theorem. It remains to show that the distribution of Q is χ2

k−1.
To see this, note that for any orthogonal matrix Γ we have

Q = ZTZ = (ΓZ)T (ΓZ) ≡ V TV

where V ∼ N(0,ΓΣΓT ). Here is a convenient choice of Γ: choose Γ to be the orthogonal matrix
with first row √p

0
T , and filled out with orthogonal rows. Then

ΓΣΓT = ΓIΓT − Γ
�
p
0

�
p
0
TΓT = I − (1, 0, . . . , 0)T (1, 0, . . . , 0)

=

�
0 0T

0 I(k−1)×(k−1)

�
.

Thus V1 = 0 with probability 1 and V2, . . . , Vk are i.i.d. N(0, 1). It follows that Q =
�k

j=2 V
2
j ∼

χ2
k−1. Thus we have

Pp
0
(Qn ≥ χ2

k−1,α) → P (χ2
k−1 ≥ χ2

k−1,α) = α.

What if p �= p
0
? In this case, since p̂

n
→p p, we can write

n−1Qn =
k�

j=1

(p̂j − p0,j)2

p0,j
→p

k�

j=1

(pj − p0,j)2

p0,j
≡ q > 0.
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Thus Qn →p ∞, and it follows that

Pp(Qn ≥ χ2
k−1,α) → 1

as n → ∞; i.e. the test is (power) consistent.
What if p = p

n
satisfies p

n
= p

0
+ cn−1/2 where 1T c = 0 and hence 1T p

n
= 1 for all n? In this

case, by using the Cramér-Wold device together with either the Liapunov CLT or the Lindeberg-
Feller CLT,

Zn =

�
N1 − np0,1√

np0,1
, . . . ,

N1 − np0,k√
np0,k

�T

=

�
N1 − npn,1√

np0,1
, . . . ,

N1 − npn,k√
np0,k

�T

+ diag(1/
�
p
0
)
√
n(p

n
− p

0
)

=
1√
n

n�

i=1

Y n,i + diag(1/
�
p
0
)c

→d Z + diag(1/
�
p
0
)c

where Z ∼ Nk(0,Σ) with Σ = I − √p
0
√p

0
T . Thus it follows by the Mann-Wald theorem that

under the local alternatives p
n
we have

Qn = ZT
nZn →d (Z + diag(1/

�
p
0
)c)T (Z + diag(1/

�
p
0
)c)

=
�
Γ(Z + diag(1/

�
p
0
)c)

�T �
Γ(Z + diag(1/

�
p
0
)c)

�

≡ V TV

where

V ∼ Nk

�
Γdiag(1/

�
p
0
)c,

�
0 0T

0 I(k−1)×(k−1)

��
≡ Nk

�
µ,

�
0 0T

0 I(k−1)×(k−1)

��

Noting that µTµ = cTdiag(1/p
0
)c =

�k
j=1 c

2
j/p0,j and

µ1 =
�
p
0
Tdiag(1/

�
p
0
)c = 1T c = 0,

it follows that V TV ∼ χ2
k−1(δ) with δ =

�k
1 c

2
j/p0,j . We conclude that

Pp
n
(Qn ≥ χ2

k−1,α) → P (χ2
k−1(δ) > χ2

k−1,α).

This leads to approximating the power of the chi-square test based on Qn by

Pp(Qn ≥ χ2
k−1,α) ≈ P (χ2

k−1(δn) > χ2
k−1,α)

with δn ≡
�k

j=1 c
2
n,j/p0,j where cn ≡ √

n(p− p
0
).


