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3 Examples.

Example 3.1 (One-sample t—test) Suppose that Xi,...,X, are iid. with F(X;) = p and
Var(X1) = 0% Consider testing H : pu < po versus K : pu > po. The normal theory test is
“reject H if T}, > t,—1,,” where

V(X — o)

Sn
with S2 = (n — 1)7 Y. 7(X; — X,,)? and where P(t,—1 > t,—1.) = . We are interested in the
behavior of this test when the X;’s are not normally distributed.
(a) What if = po is true? Note that by the Lindeberg central limit theorem /n(X, — po) —4
N(0,02) when p = pg is true, and by the WLLN and Slutsky’s theorem

T, =

n

n 1 _
S = n—1 {nZ(Xi—Mo)z—(X—MO)Q} —p 1{o? —0} = 0%
i=1

Thus by Slutsky’s theorem again, T;, =4 Z ~ N(0,1) when p = i is true, and we have P, (T}, >
th—1,a) = P(Z > z4) = cu.
(b) What if u > po is true, with p fixed? In this case

VX~ p) | )
Sh, Sh,
so Py(Ty > th—1,a) = P(Z + 00> 2z4) = 1.

(¢) What if g = p,, > po with \/n(pn, — o) — ¢ > 07 Then it will usually hold that
V(X = ) | Vn(pn — o)
_l’_

Sh Sh,

where we may need to apply a Lindeberg-Feller or Liapunov CLT to justify the convergence to
normality in the first term. If this holds, then

T, =

—p Z +00/0 = 00,

T, =

%dZ-i-C/U

P, (Th > th-1,a) > P(Z+cl/o>24) =P(Z > 20 —c/o)=1—=P(24 — c/0)

n

gives the limiting power of the test under the local alternatives p,. Note that 1 — ®(z, —c¢/0) > «
for ¢ > 0.

Example 3.2 (One sample normal - theory test of variance) Now suppose that Xi,..., X, are
iid. with B(X1) = u, Var(X;) = 02, and py = E(X; — p)* < oo.
(a) Now with V; = (X; — )% ~ (02, g — o),
VAT X - 2= 0?) (Y, o)
V20?2 V20?2
N(Ov Mg — 04)
V202

4

H4 — 0

= N[0 —F—
(’ 204 )

_ nfo. 204 + pg — 30
204
_ M4

= N(0,1+27 ') with 1o == —3.
g
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we have

Vi (X~ X2 - o?) ViV —0?) V(X —1) (X — 1)

V20?2 B V20?2 V20?2
—q N(0,1+27 ) = N(0,1) - 0= N(0,1+ 2" 1)

by Slutsky’s theorem. Thus with S2 = (n — 1) 3 (X; — X,,)2,

V(S — o?)
V20?2

Now consider testing H : 0 = o versus K : o > og. If X; ~ N(u,08), then (n —1)S2/03 ~ x2_,

under H, so the usual normal theory test is “reject H if (n — 1)S2/0} > X%Lfl,a”‘ Then since

—q N(0,1+2719).

Y2 (N (p, 0?)) = 0 we have

(n—1)S7

2
@ = Poo,Norm (2 > Xn—l,a>
70

n [ S2 n X271,
= Pao,NOrm(\/Q(gg_1>>\/;<nn_1a_l

— P(Z > z4) = «q,

which forces

2
n [ Xn—1,a
— — —1] = z24.
2<n—1 ) “a

Now suppose we carried out the normal theory test, but the X;’s are not normal. Then, under H,

(n —1)S? 9 n (52 n X?L—l,a
P (Mg ) = (5 ) B

— P(N(0,14271y) > 2,) # «

when 2 # 0. In general the asymptotic size is smaller than « if y9 < 0, but the asymptotic size is
greater than a if vo > 0.

Example 3.3 (Two-sample tests for means) Suppose that Xi,..., X,, are i.i.d. with mean p and
variance o2, and that Y7,...,Y,, are i.i.d. with mean v and variance 72, independent of the Xj’s.
If we suppose that Ay = m/N =m/(m +n) — X € [0,1], then

(X =Yo—(u-v) = \/E\/E(Xm — )= \/Zx/ﬁﬂfn —v)
—q V1=MZ1 —V\Zy (Z1,Z2) ~ N»(0, diag(c?, %))
~  N(0,(1=No%+Ar2).



3. EXAMPLES. 17

Thus we see that

Ym_?n_(ﬂ_’/) _ V%(ym_?"_(ﬂ_y))
S2 S2 n Q2 m Q2
=X =X \/ NOx + NSy
—d N(071)

by Slutsky’s theorem. On the other hand, again by Slutsky’s theorem,

VI (K~ Vo (- v)

Ton(p,v) =
’ \/(m_1)s§+(n—1)s§

N-=-2
N(0, (1 = N)o? + Ar2)

BEENV Ry

B (1—X)o? + A2
= N (0’ Ao?+ (1 - )\)7'2>
4 N

unless A = 1/2 or 02 = 72.

Since the two-sample t—test of H : pp < v versus K : u > v rejects H if T}, ,(0,0) > tn_24, it
follows that the test is not size (or level) robust against violations of the assumption 02 = 72 when

A#£1/2.

Example 3.4 (Simple linear regression with non-normal errors.) Suppose that Y; = a + S(z; —
Z)+¢€ fori=1,...,n where 7 = n !> and €y,...,€, are i.id. with mean zero and finite
variance, Var(e;) = o?; the ¢;’s are not assumed to be normally distributed. In matrix form

1 z1—=

«@
Y=XB+e=] : : <B>—|—e.

1 z,—7x
The least squares estimators & and B of a and [ are given by
_ (@i =3,

> (2 — @)

Claim: if maxi<j<n(2; — %)%/ > 7 (z; — T)? — 0, then

a=Y, B

TN/2(3 _ 3) — \/ﬁ(@_al o2
W xxE-p) = (O ) a0 )

Here is a partial proof. Now
Vn(a —a) = (Y —a) = v/ne —4q N(0,0?)

by the Lindeberg CLT. Thus the first coordinate in (1) converges to the claimed limit marginally.
We now use the Lindeberg-Feller CLT to show that the same is true for the second coordinate, and
hence the two claimed marginal convergences hold. Note that

= O =0—
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in the context of the Lindeberg-Feller CLT where X,,; = (z; — T)¢; for ¢ = 1,...,n, and hence
pni = EXp; =0, U?M- = Var(Xn;) = (z; — T)?0?%, and 02 = 02> ] (x; — T)?>. Thus we need to
verify the condition LF,,(6) — 0 for every 6 > 0 where

n

1
— > E{|Xnil* 1 x, 12600}
1

2
On

LF,(0) =

But in the present case,

LFn((S) = . 7)2Z(xi_f)2E €2

1 - oo
N> CEr P DA L L e
1 5 e _
= EE eil{|e1| > oo/ 11;1%)%@2‘—:8\2/;(%—36)2}
— 0

for every § > 0 by the DCT since the integrand converges a.s. to zero by the hypothesis and since
E(€2) < 00, s0 €7 gives an integrable dominating function. Thus the second coordinate satisfies the
claimed marginal convergence. All that remains to be shown is the claimed joint convergence.
Conclusion: the normal theory tests and confidence intervals for « and 8 have the right asymp-
totic size and coverage probabilities as long as 0 < oo and maxj<i<p |; — Z|?/ > 7 (z; — )% — 0.

Example 3.5 (Multiple linear regression with non-normal errors). Insert?

Example 3.6 (The correlation coefficient). Suppose that (X1,Y1)7,..., (X, Y,)" are i.i.d. with
means F(X1,Y7) = (ux, py), covariance matrix

( O'g( pPOX0Oy >
pPOXTY 032, ’
and E|X|* < 0o, E|Y1|* < co. Let
n n n
Sxy=n') (Xi—X)(Y;i-Y), Sxx=n"") (Xi—X)%, Syy=n') (;-Y),
1 1 1

and consider the sample correlation r = r,, defined by

Sxy

VSxxSyy

Tn
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since 7, is invariant with respect to linear transformations of each axis, we may assume without loss
of generality that ux = py = 0 and 0% = 0% = 1; if not replace (X;,Y;) by (X; — px)/ox, (Y; —
uy)/oy), i=1,...,n. Note that

Sxy —p @ - P op(1)
vnl| Sxx—1 = Vn ‘X;2 -1 + Op(l)
Syy — 1 Y21 op(1)

—a Z~ N3(0,%)
by the multivariate CLT where
B(X*Y?) - p> EX?Y)-p E(XY?) —»p
Y=| BEX})-p EXH-1 EX??)-1
E(XY3) —p BE(X?Y?) -1 EXY*%-1

Since g(u,v,w) = u/+y/vw has Vg(p,1,1) = (1,—p/2,—p/2), it follows by the ¢’ theorem (or delta
method) that

Vinlrn = p) =4 Vo(p, LVZ = 21 = £(Z2 + Zy).

Note that if X; and Y7 are independent, then p = 0 and the covariance matrix 3 becomes

1 0 0
YX=10 mx O ,
0 0  ugy

and hence \/n(r, —0) = y/nr, —4 N(0,1). Thus under independence the test of H : p = 0 versus
K : p > 0 that rejects if \/nr, > 2z, has asymptotic level « even if the true distribution is not
Gaussian (but we have FE|X;/* + E|Yi|* < oo). If the true distribution of the (X;,Y;) pairs is
Normal, then ¥ becomes

1+p% 20 2p
Y= 2p 2 207 |,

and hence

\/ﬁ(rn - p) —d N(07 (17 _P/Q; _p/2)2<17 _p/2 - :0/2)T) = N(Ov (1 - p2)2)'

Finally, it is often useful to transform the distribution of r,, (which always has support in [—1, 1])
to the whole line R: if g(z) = 27! log((1 + z)/(1 — z)), then ¢'(z) = 1/(1 — 2?), and hence, under
normality of the (X;,Y;)’s,

Vn(g(rn) —g(p)) —a N(0,1).

If we let Z, = g(ry,) and & = g(p) (this is sometimes known as Fisher’s Z-transform), then

m<zn§2(n’i1)> ~ N(0,1)

is an excellent approximation.
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Example 3.7 (Chi-square test of a simple null hypothesis). Suppose that A;,..., A, ... are i.i.d.
Multinomial (1, p) random vectors so that A; vector contains only zeros and 1’s, but only one 1.
Thus

N, = Zéi ~ Multg(n, p),
i=1

and ﬁ =n"1N, —pa.s. D-
Consider testing H : p = p, versus K : p #* p,- One simple test statistic is the (Pearson)
chi-square statistic ),, defined by

k

3 (Nj —npog)*

npo,j

Q@n

j=1

To carry out the test based on ), we need to know the distribution of Q),, under the null hypothesis

either exactly (which is complicated: its depends on k, n, and ]20), or at least asymptotically which
is relative easy. We claim that: when p = Py

2
Qn —d Xj—1-

Here is the proof. Set

7 (N1—np0,1 N1—np0,k>T:1§n:YA
- Vipo1 | /bork ne—= -

where The Y,’s are i.i.d. with E(Y,;) = 0, and covariance matrix ¥ = I — \/E)@T where
VP = (/Pots- - y/Pok)’ . Thus
Zn —q L~ Nk(o’ E)

by the multivariate CLT. Now Q,, = ZF;CZ is a continuous function of Z,,, so @, = gﬁgn —q=
777 = Q@ by the Mann-Wald theorem. It remains to show that the distribution of @ is X%-r
To see this, note that for any orthogonal matrix I" we have

Q=2"2=02)"12) =V"V

where V. ~ N(0,I'ST7). Here is a convenient choice of I': choose I' to be the orthogonal matrix
with first row VP T and filled out with orthogonal rows. Then

rer’ = FIFT—F\/@O /By T" =1-(1,0,...,0)"(1,0,...,0)

= (9 )
0 Ip—vyx@k-1) )

Thus V) = 0 with probability 1 and Va,...,V are i.i.d. N(0,1). It follows that Q = Z§:2 Vf ~
X%—l' Thus we have
B (Qn > Xi-1,0) = P12 Xio14) = @
What if p # QO? In this case, since é —p P, We can write

k

n=lQ, = Z (Pj — poy)*

j=1 Po,j _

pO,]
pOJ

=q>0.

m»
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Thus @, —p 0o, and it follows that

PQ(Qn > X%—l,a) —1

as n — oo; i.e. the test is (power) consistent.

What if p = P, satisfies p, =D, tcn —1/2 where 17¢ = 0 and hence 17p =1 for all n? In this
case, by using the Cramér-Wold dev1ce together with either the Liapunov CLT or the Lindeberg-
Feller CLT,

7 (Nl — nPo,1 Ny — npo,k>T
=" Vapol | J/bork
- (Nl i Gk 2 ”pn:k)T + diag(1/ \/B,)v/n(p
ViDor 0 \/TPok =0

1 & ,
= ;Ynz + diag(1/,/p,)c
—a  Z +diag(1/,/py)c

where Z ~ Ni(0,X) with ¥ = I — \/E)\/E)T. Thus it follows by the Mann-Wald theorem that
under the local alternatives p, we have

Qn = ZTZ, —4(Z + diag( 1/./p, T(Z + diag( 1/./p,

= ((Z+d1ag1/\/> > ( Z+d1ag1/\f )

vty

V~N, <Fdiag<1/ )c(o . >>:N< <0 " ))
£ k @*’ 0 Tg—1)xk-1) - R 0 Ik-1)x(k-1)

Noting that HTH = gTdiag(l/BO)Q = Zj 1 ]/po,] and

= /B, diag(1/,/py)c=1"c=

it follows that VIV ~ x2_(§) with § = Z’f c?/poyj. We conclude that

where

PBn (Qn > Xl2§—1,oc) - P(Xi—l((s) > X%—l,a)‘

This leads to approximating the power of the chi-square test based on @, by
Pp(Qn > X%q,a) ~ P(xi_1(0n) > xifl,a)

with 6, = 3°}_; €2 ;/po,j where ¢, = v/n(p —p,).



