

Statistics 581, Plots for Weibull Example

Wellner; 11/20/2002, 11/03/2014

Example 1. Here $\mathcal{P} = \{P_\theta : \theta \in R^{+2}\}$ is the Weibull model and $\nu(P_\theta) = E_\theta(X) = \alpha\Gamma(1 + 1/\beta)$. The following plots show the information bounds $I^{-1}(P_\theta|\nu, \mathcal{P})$ and $I^{-1}(P_\theta|\nu, \mathcal{P}_0)$ for the submodel \mathcal{P}_0 when $\beta = \beta_0$ is known, together with the corresponding asymptotic variance $Var_\theta(X)$ of the non-parametric estimator of ν , namely \bar{X}_n .

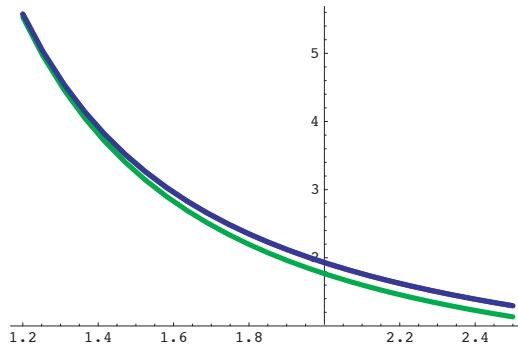


Figure 1: Information bounds, $\alpha = 3$, $1.2 \leq \beta \leq 2.5$; green = $I^{-1}(P|\nu, \mathcal{P}_0)$, purple = $I^{-1}(P|\nu, \mathcal{P})$, blue = $Var_\theta(X)$; (purple coincides with blue so not visible!)

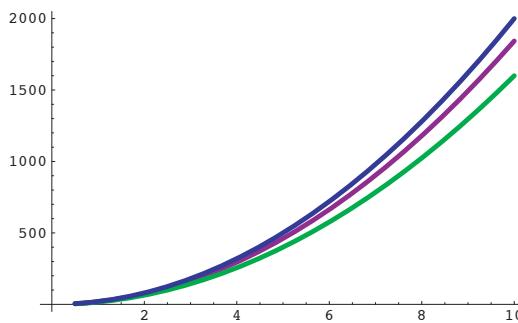


Figure 2: Information bounds, $.5 \leq \alpha \leq 10$, $\beta = .5$; green = $I^{-1}(P|\nu, \mathcal{P}_0)$, purple = $I^{-1}(P|\nu, \mathcal{P})$, blue = $Var_\theta(X)$

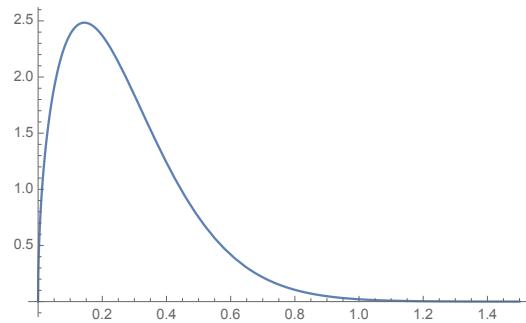


Figure 3: Weibull density $\alpha = .3, \beta = 1.5$

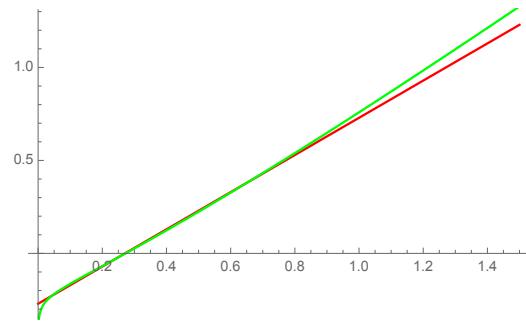


Figure 4: Two Influence functions: sample mean and efficient, Weibull model $\alpha = .3, \beta = 1.5$

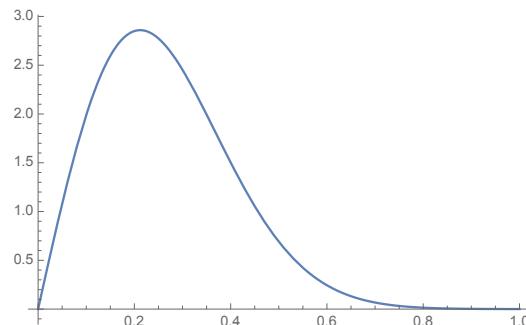


Figure 5: Weibull density $\alpha = .3, \beta = 2$

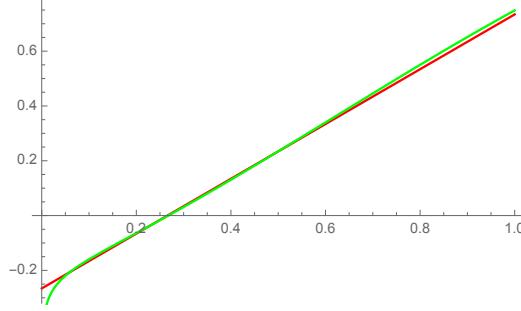


Figure 6: Two Influence functions: sample mean and efficient, Weibull model $\alpha = .3$, $\beta = 2$

Example 2. Here $\mathcal{P} = \{P_\theta : \theta \in R^{+2}\}$ is the Weibull model and $\nu(P_\theta) = P_\theta(X \geq x_0) = \exp(-(x_0/\alpha)^\beta)$. The following plots show the information bounds $I^{-1}(P_\theta|\nu, \mathcal{P})$ and $I^{-1}(P_\theta|\nu, \mathcal{P}_0)$ for the submodel \mathcal{P}_0 when $\beta = \beta_0$ is known, together with the corresponding asymptotic variance $Var_\theta(X)$ of the nonparametric estimator of ν , namely \bar{X}_n .

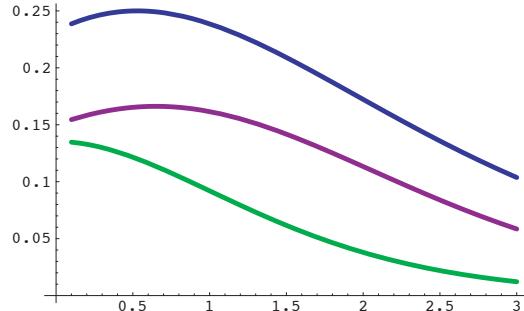


Figure 7: Information bounds for $\nu(P_\theta) = P_\theta(X \geq x_0)$, $\alpha = 1$, $x_0 = .5$, $.1 \leq \beta \leq 3$: green = $I^{-1}(P|\nu, \mathcal{P}_0)$, purple = $I^{-1}(P|\nu, \mathcal{P})$, blue = $nVar(\bar{X}_n) = P_\theta(X \geq x_0)(1 - P_\theta(X \geq x_0))$

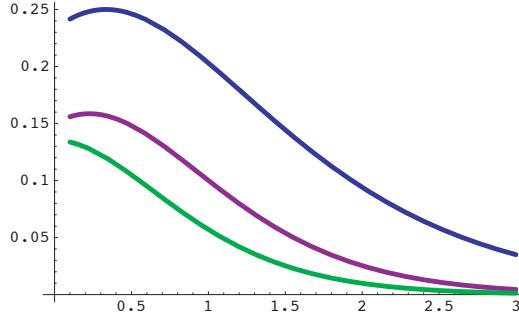


Figure 8: Information bounds for $\nu(P_\theta) = P_\theta(X \geq x_0)$, $\alpha = 3$, $x_0 = 1$, $.1 \leq \beta \leq 3.0$; green = $I^{-1}(P|\nu, \mathcal{P}_0)$, purple = $I^{-1}(P|\nu, \mathcal{P})$, blue = $nVar(\mathbb{F}_n(x_0)) = P_\theta(X \geq x_0)(1 - P_\theta(X \geq x_0))$

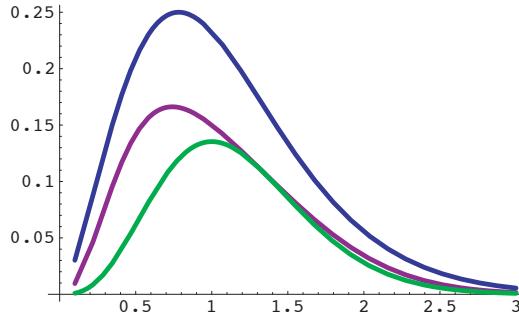


Figure 9: Information bounds for $\nu(P_\theta) = P_\theta(X \geq x_0)$, $\alpha = 1$, $\beta = 1.5$, $.1 \leq x_0 \leq 3.0$; green = $I^{-1}(P|\nu, \mathcal{P}_0)$, purple = $I^{-1}(P|\nu, \mathcal{P})$, blue = $nVar(\mathbb{F}_n(x_0)) = P_\theta(X \geq x_0)(1 - P_\theta(X \geq x_0))$

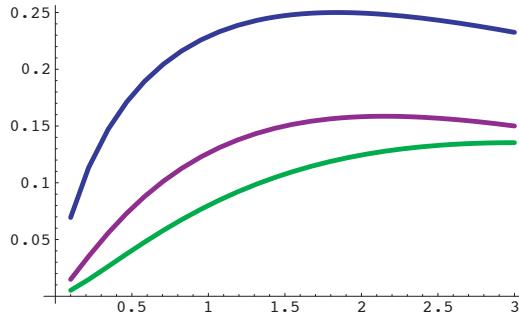


Figure 10: Information bounds for $\nu(P_\theta) = P_\theta(X \geq x_0)$, $\alpha = 3$, $\beta = .75$, $.1 \leq x_0 \leq 3.0$; green = $I^{-1}(P|\nu, \mathcal{P}_0)$, purple = $I^{-1}(P|\nu, \mathcal{P})$, blue = $nVar(\mathbb{F}_n(x_0)) = P_\theta(X \geq x_0)(1 - P_\theta(X \geq x_0))$

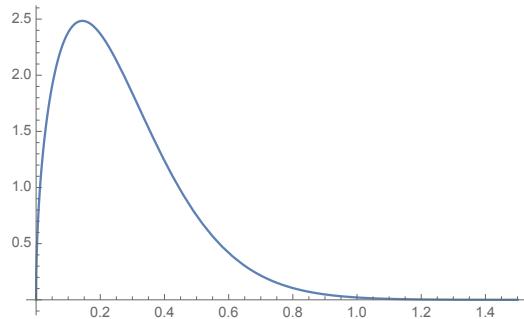


Figure 11: Weibull density $\alpha = .3, \beta = 1.5$

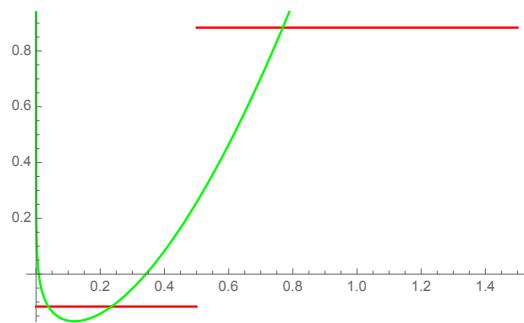


Figure 12: Two Influence functions: empirical and efficient, Weibull model $\alpha = .3, \beta = 1.5$

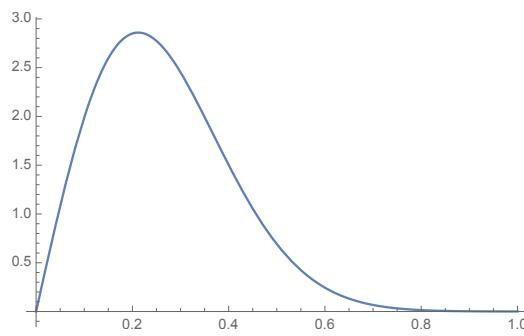


Figure 13: Weibull density $\alpha = .3, \beta = 2$

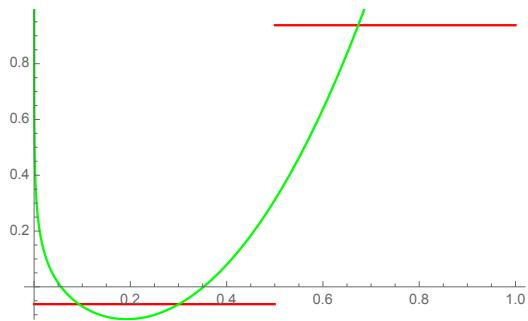


Figure 14: Two Influence functions: empirical and efficient, Weibull model
 $\alpha = .3, \beta = 2$