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Some Uniform Strong Laws of Large Numbers

Suppose that:

A. X, X1, . . . , Xn are i.i.d. P on the measurable space (X ,A).

B. For each θ ∈ Θ, f(x, θ) is a measurable, real-valued function of x, f(·, θ) ∈ L1(P ).

Let F = {f(·, θ) : θ ∈ Θ}. Since f(·, θ) ∈ L1(P ) for each θ,

g(θ) ≡ Ef(X, θ) =

∫
f(x, θ)dP (x) ≡ Pf(·, θ)

exists and is finite. Moreover, by the strong law of large numbers,

Pnf(·, θ) ≡
∫

f(x, θ)dPn(x) =
1

n

n∑
i=1

f(Xi, θ)

→a.s. Ef(X, θ) = Pf(·, θ) = g(θ).(0.1)

It is often useful and important to strengthen (0.1) to hold uniformly in θ ∈ Θ:

sup
θ∈Θ

|Pnf(·, θ) − Pf(·, θ)| →a.s. 0 .(0.2)

Note that the left side in (0.2) is equal to

‖Pn − P‖F ≡ sup
f∈F

|Pnf − Pf | .

Here is how (0.2) can be used: suppose that we have a sequence θ̂n of estimators, pos-

sibly dependent on X1, . . . , Xn, such that θ̂n →a.s. θ0. Suppose that g(θ) is continuous
at θ0. We would like to conclude that

Pnf(·, θ̂n) =
1

n

n∑
i=1

f(Xi, θ̂n) →a.s. g(θ0).(0.3)

The convergence (0.3) does not follow from (0.1); but (0.3) does follow from (0.2):∣∣∣Pnf(·, θ̂n) − g(θ0)
∣∣∣ ≤

∣∣∣Pnf(·, θ̂n) − g(θ̂n)
∣∣∣ +

∣∣∣g(θ̂n) − g(θ0)
∣∣∣

≤ sup
θ∈Θ

∣∣∣Pnf(·, θ) − g(θ)
∣∣∣ +

∣∣∣g(θ̂n) − g(θ0)
∣∣∣

= ‖Pn − P‖F +
∣∣∣g(θ̂n) − g(θ0)

∣∣∣
→a.s. 0 + 0 = 0 .
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The following theorems, due to Le Cam, give conditions on f and P under which (2)
holds. The first theorem is a prototype for what are now known in empirical process
theory as “Glivenko-Cantelli theorems”.

Theorem 1. Suppose that:
(a) Θ is compact.
(b) f(x, ·) is continuous in θ for all x.
(c) There exists a function F (x) such that EF (X) < ∞ and |f(x, θ)| ≤ F (x) for all
x ∈ X , θ ∈ Θ.

Then (0.2) holds; i.e.
sup
θ∈Θ

|Pnf(·, θ) − Pf(·, θ)| →a.s. 0 .

The second theorem is a “one-sided” version of theorem 1 which is useful for the
theory of maximum likelihood estimation.

Theorem 2. Suppose that:
(a) Θ is compact.
(b) f(x, ·) is upper 1 in θ for all x.
(c) There exists a function F (x) such that EF (X) < ∞ and f(x, θ) ≤ F (x) for all
x ∈ X , θ ∈ Θ.
(d) For all θ and all sufficiently small ρ > 0

sup
|θ′−θ|<ρ

f(x, θ′)

is measurable in x.

Then
limsupn→∞ sup

θ∈Θ
Pnf(·, θ) ≤a.s. sup

θ∈Θ
Pf(·, θ) = sup

θ∈Θ
g(θ).

We proceed by first proving Theorem 2. Then Theorem 1 will follow as a conse-
quence of Theorem 2.

Proof of Theorem 2. Let

ψ(x, θ, ρ) ≡ sup
|θ′−θ|<ρ

f(x, θ′).

Then ψ is measurable (for ρ sufficiently small), bounded by an integrable function F ,
and

ψ(x, θ, ρ) ↘ f(x, θ) as ρ ↘ 0 by (b).

Thus by the monotone convergence theorem∫
ψ(x, θ, ρ)dP (x) ↘

∫
f(x, θ)dP (x) = g(θ).
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Let ε > 0. For each θ, find ρθ so that∫
ψ(x, θ, ρ)dP (x) < g(θ) + ε .

The spheres

S(θ, ρθ) = {θ′ : |θ′ − θ| < ρθ}
cover Θ, so by (a) there exists a finite sub cover: Θ ⊂ ∪m

j=1S(θj, ρθj
). for each θ ∈ Θ

there is some j, 1 ≤ j ≤ m, such that θ ∈ S(θj, ρθj
); hence from the definition of ψ it

follows that

f(x, θ) ≤ ψ(x, θj, ρθj
)

for all x. Therefore

Pnf(·, θ) ≤ Pnψ(·, θj, ρθj
),

and hence

sup
θ∈Θ

Pnf(·, θ) ≤ sup
1≤j≤m

Pnψ(·, θj, ρθj
)

→a.s. sup
1≤j≤m

Pψ(·, θj, ρθj
)

≤ sup
1≤j≤m

g(θj) + ε

≤ sup
θ∈Θ

g(θ) + ε .

Hence

limsupn→∞ sup
θ∈Θ

Pnf(·, θ) ≤a.s. sup
θ∈Θ

g(θ) + ε .

Letting ε ↓ 0 completes the proof.

�

Proof of Theorem 1. Since f is continuous in θ, condition (d) of Theorem 2 is
satisfied: for any countable set D dense in {θ′ : |θ′ − θ| < ρ},

sup
|θ′−θ|<ρ

f(x, θ′) = sup
θ′∈D

f(x, θ′)

where the right side is measurable since it is a countable supremum of measurable
functions. Furthermore, g(θ) is continuous in θ:

lim
θ′→θ

g(θ) = lim
θ′→θ

∫
f(x, θ′)dP (x) =

∫
f(x, θ)dP (x)
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by the dominated convergence theorem. Now Theorem 1 follows from Theorem 2
applied to the functions h(x, θ) ≡ f(x, θ) − g(θ) and −h(x, θ): by Theorem 2 applied
to {h(x, θ) : θ ∈ Θ},

limsupn→∞ sup
θ∈Θ

(Pnf(·, θ) − g(θ)) ≤ 0 a.s.

By Theorem 2 applied to {−h(x, θ) : θ ∈ Θ},

limsupn→∞ sup
θ∈Θ

(g(θ)) − Pnf(·, θ)) ≤ 0 a.s.

The conclusion of Theorem 1 follows since

0 ≤ sup
θ∈Θ

|Pnf(·, θ) − g(θ)|

= sup
θ∈Θ

(Pnf(·, θ) − g(θ)) ∨ sup
θ∈Θ

(g(θ) − Pnf(·, θ)) .

�

For our application of Theorem 2 to consistency of maximum likelihood, the following
Lemma will be useful.

Lemma 1. If the conditions of Theorem 2 hold, then g(θ) is upper-semicontinuous:
i.e.

limsupθ′→θg(θ′) ≤ g(θ).

Proof. Since f(x, θ) is upper semicontinuous,

limsupθ′→θf(x, θ′) ≤ f(x, θ) for all x ;

i.e.

liminfθ′→θ {f(x, θ) − f(x, θ′)} ≥ 0 for all x .

Hence it follows by Fatou’s lemma that

0 ≤ Eliminfθ′→θ {f(X, θ) − f(X, θ′)}
≤ liminfθ′→θE {f(X, θ) − f(X, θ′)}
= Ef(X, θ) − limsupθ′→θEf(X, θ′) ;

i.e.

limsupθ′→θEf(X, θ′) ≤ Ef(X, θ) = g(θ) .

�
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Now we are prepared to tackle consistency of maximum likelihood estimates.

Theorem 3. (Wald, 1949). Suppose that X, X1, . . . , Xn are i.i.d. Pθ0 , θ0 ∈ Θ with
density p(x, θ0) with respect to the dominating measure ν, and that:
(a) Θ is compact.
(b) p(x, ·) is upper semi-continuous in θ for all x.
(c) There exists a function F (x) such that EF (X) < ∞ and

f(x, θ) ≡ log p(x, θ) − log p(x, θ0) ≤ F (x)

for all x ∈ X , θ ∈ Θ.
(d) For all θ and all sufficiently small ρ > 0

sup
|θ′−θ|<ρ

p(x, θ′)

is measurable in x.
(e) p(x, θ) = p(x, θ0) a.e. ν implies that θ = θ0.

Then for any sequence of maximum likelihood estimates θ̂n of θ0,

θ̂n →a.s. θ0 .

Proof. Let ρ > 0. The functions {f(x, θ) : θ ∈ Θ} satisfy the conditions of theorem
2. But we will apply Theorem 2 with Θ replaced by the subset

S ≡ {θ : |θ − θ0| ≥ ρ} ⊂ Θ .

Then S is compact, and by Theorem 2

Pθ0

(
limsupn→∞ sup

θ∈S
Pnf(·, θ) ≤ sup

θ∈S
g(θ)

)
= 1

where

g(θ) = Eθ0f(X, θ) = Eθ0

{
log

p(X, θ)

p(X, θ0)

}
= −K(Pθ0 , Pθ) < 0 for θ ∈ S.

Furthermore by the Lemma, g(θ) is upper semicontinuous and hence achieves its supre-
mum on the compact set S. Let δ = supθ∈S g(θ). Then by Lemma 4.1.2 it follows that
δ < 0 and we have

Pθ0

(
limsupn→∞ sup

θ∈S
Pnf(·, θ) ≤ δ

)
= 1 .
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Thus with probability 1 there exists an N such that for all n > N

sup
θ∈S

Pnf(·, θ) ≤ δ/2 < 0 .

But

Pnf(·, θ̂n) = sup
θ∈Θ

Pnf(·, θ)

= sup
θ∈Θ

1

n
{ln(θ) − ln(θ0)} ≥ 0 .

Hence θ̂n /∈ S for n > N ; that is, |θ̂n−θ0| < ρ with probability 1. Since ρ was arbitrary,

θ̂n is a.s. consistent.

Remark 3. Theorem 3 is due to Wald (1949). The present writeup is an adaptation
of Chapters 16 and 17 of Ferguson (1996). For further Glivenko - Cantelli theorems,
see chapter 2.4 of Van der Vaart and Wellner (1996).
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