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Revision of Section 4.4: Consistency of Maximum Likelihood Estimates
Wellner; 11/30/2001

Some Uniform Strong Laws of Large Numbers
Suppose that:
A. X, X1,..., X, are i.i.d. P on the measurable space (X, .A).

B. For each 6 € ©, f(z,0) is a measurable, real-valued function of z, f(-,0) € Ly(P).
Let F = {f(-,0) : 0 € ©}. Since f(-,0) € L1(P) for each 6,

ﬂ@zEﬂXﬁ%=/f@ﬂMH@EF7h®

exists and is finite. Moreover, by the strong law of large numbers,

P, f( /fa:@dP ZfX,,e

(0.1) —as. Bf(X,0)=Pf(,0)= 9(9)‘
It is often useful and important to strengthen (0.1) to hold uniformly in 6 € ©:
(OQ) sup ‘]P)nf<> 0) - Pf(7 9)‘ —as 0.

C)

Note that the left side in (0.2) is equal to
|P,, — P||x =sup|P,f — Pf].
feFr

Here is how (0.2) can be used: suppose that we have a sequence é\n of estimators, pos-
sibly dependent on X7, ..., X,,, such that 6,, —, 6. Suppose that g(f) is continuous
at 8y. We would like to conclude that

03 B0 = L3 1008 a0

The convergence (0.3) does not fo]]oz;lfrom (0.1): but (0.3) does follow from (0.2):
Puf (0 = 900)] < [Puf(-8) = 9(@)| + |9B) — 9(00)

Puf(,0) = 9(0)| + |9(@) — 9(00)|

-~

I, = Pl + |9(Bn) - g(60)]
—as 0+0=0.
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The following theorems, due to Le Cam, give conditions on f and P under which (2)
holds. The first theorem is a prototype for what are now known in empirical process
theory as “Glivenko-Cantelli theorems”.

Theorem 1. Suppose that:

(a) © is compact.

(b) f(z,-) is continuous in 6 for all z.

(c) There exists a function F(z) such that EF(X) < oo and |f(z,0)| < F(x) for all
reX,0e0.

Then (0.2) holds; i.e.
Sup‘Pnf(We)__]jf(He)‘_%ws.o-

0coO

The second theorem is a “one-sided” version of theorem 1 which is useful for the
theory of maximum likelihood estimation.

Theorem 2. Suppose that:
(a) © is compact.
(b) f(x,-) is upper 1 in @ for all x.
(c) There exists a function F(x) such that EF(X) < oo and f(z,0) < F(z) for all
re X, 0e€0.
(d) For all  and all sufficiently small p > 0
sup f(z,0")

0/~0]<p
is measurable in x.
Then

limsup,, .. sup P, f(+,0) <, sup Pf(-,0) = sup g().
0O 00 00

We proceed by first proving Theorem 2. Then Theorem 1 will follow as a conse-
quence of Theorem 2.

Proof of Theorem 2. Let

U(x,0,p) = sup f(x,0").

|0'—0|<p

Then 1 is measurable (for p sufficiently small), bounded by an integrable function F,
and

Y(x,0,0) \ f(z,0)  as p\.0 by (b).

Thus by the monotone convergence theorem
[otw0.0aP) N [ @0)aPw) = 900).

2



Let € > 0. For each 6, find py so that

/¢(w,9,p)dP(x) < g(f) + ¢

The spheres
S0, po) = 10 : 16/ — 6] < po}

cover O, so by (a) there exists a finite sub cover: © C UL, S5(0;, pg,). for each 6 € ©
there is some j, 1 < j < m, such that 6 € S(6;, ps,); hence from the definition of ¥ it
follows that

f<x79) < w($70j7p9j)

for all . Therefore
P f(-, ) < Pnﬂ( vae)

and hence
sup Pnf(a 9) S sup nw( 79 p9 )
) 1<j<m
—a.s. sup P¢( J7p9 )
1<j<m
< sup g(0;) +e
1<j<m
<  supg(f) +e.
0cO
Hence

limsupn—wo sup ]P)nf('7 0) <a.s. SUD g(9> te
0co 0co
Letting € | 0 completes the proof.

O

Proof of Theorem 1. Since f is continuous in €, condition (d) of Theorem 2 is
satisfied: for any countable set D dense in {¢' : |0’ — 0| < p},

sup f(z,0) = sup f(z,0)

|0’—0|<p 0'eD

where the right side is measurable since it is a countable supremum of measurable
functions. Furthermore, g(6) is continuous in 6:

lim g(6 —hm/fo/dP /fa:HdP

0'—0 0'—0
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by the dominated convergence theorem. Now Theorem 1 follows from Theorem 2
applied to the functions h(x,0) = f(z,0) — g(0) and —h(x,0): by Theorem 2 applied
to {h(z,0): 0 € O},

limsupnaoo Sup(Pnf('a 9) o 9(9)) <0 a.8.
0co

By Theorem 2 applied to {—h(x,0) : 6 € O},

limsup,, .. sup(g(0)) — P, f(-,0)) <0 a.s.
60

The conclusion of Theorem 1 follows since

0 < sup [P, f(-,0) — g(0)]
9eo

= sup(P,f(-,0) = g(0)) V sup(g(6) — P, f(:,0)) .
0€O 0€O

O

For our application of Theorem 2 to consistency of maximum likelihood, the following
Lemma will be useful.

Lemma 1. If the conditions of Theorem 2 hold, then ¢(f) is upper-semicontinuous:
i.e.
limsupy _yg(0") < g(0).

Proof. Since f(x,0) is upper semicontinuous,
limsupy _of(z,0") < f(z,0)  for all z;
i.e.
liminfy g {f(z,0) — f(z,0)} >0  forall z.

Hence it follows by Fatou’s lemma that

0 < Eliminfy%g {f<X7 9) - f(Xa 9/)}
S hmlnfgl_)@E {f(X, 9) - f(Xa 9,)}

1.e.

thUpegeEf(Xa 9/) < Ef(Xv 9) = g(e) :



Now we are prepared to tackle consistency of maximum likelihood estimates.

Theorem 3. (Wald, 1949). Suppose that X, X;,..., X, are i.i.d. Fp,, 0y € © with
density p(z,6y) with respect to the dominating measure v, and that:

(a) © is compact.

(b) p(x,-) is upper semi-continuous in 6 for all z.

(c) There exists a function F'(z) such that EF(X) < oo and

f(z,0) =logp(x,0) —logp(x,0y) < F(x)

forallz € X, 0 € ©.
(d) For all # and all sufficiently small p > 0

sup p(z,0)
|0/ —0|<p

is measurable in z.
(e) p(x,0) = p(z,0) a.e. v implies that § = 0.
Then for any sequence of maximum likelihood estimates @\n of 6y,

o~

en —a.s. 00-

Proof. Let p > 0. The functions {f(z,0) : 0 € O} satisfy the conditions of theorem
2. But we will apply Theorem 2 with © replaced by the subset

S={0:10—-6y>p} CO.
Then S is compact, and by Theorem 2
P90 <hmsupn—>oo sup Pnf(v 0) < sup 9(0)) =1
0eS 0eS

where

9(0) = Eg f(X,0) = Ly, {log}%}

= —K<PQO,P9)<0 for # € S.

Furthermore by the Lemma, g(#) is upper semicontinuous and hence achieves its supre-
mum on the compact set S. Let § = supyeg ¢(#). Then by Lemma 4.1.2 it follows that
0 < 0 and we have

Py, (limsupn_m supP, f(+,0) < (5) =1.
0esS
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Thus with probability 1 there exists an N such that for all n > N

supP, f(-,0) <6/2 <0.
oes

But

Pnf(;@l) = Suanf('7‘9>
0cO

— sup - {1,(6) — L,(60)} > 0.
pece N

Hence 8, ¢ S for n > N; that is, ](/9\71 —0y| < p with probability 1. Since p was arbitrary,
f,, is a.s. consistent.

Remark 3. Theorem 3 is due to Wald (1949). The present writeup is an adaptation
of Chapters 16 and 17 of Ferguson (1996). For further Glivenko - Cantelli theorems,
see chapter 2.4 of Van der Vaart and Wellner (1996).
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