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Chapter �

Measures� Integration� Convergence

� Measures

Let 	 be a �xed non�void set�

De�nition ��� � �elds� ���elds� monotone classes� A non�void class A of subsets of 	 is
called a


�i� �eld or algebra if A�B � A implies A � B � A and Ac � A�

�ii� ���eld or ��algebra if A�A�� A�� � � �� A implies ��� An � A and Ac � A�

�iii� monotone class if An is a monotone � ��� sequence in A implies ��� An � A ���� An � A��

�iv� �	�A� with A a ���eld of subsets of 	 is called a measurable space�

Remark ��� �i� A�B � A imply A �B � A for a �eld�
�ii� A�� � � � � An� � � � � A implies ��n��An � A for a ���eld�
�iii� ��	 � A for both a �eld and ���eld�
�iv� To prove that A is a �eld ����eld� it su�ces to show that A is closed under complements and
�nite �countable� intersections�

Proposition ��� �i� Arbitrary intersections of �elds ����elds� ��monotone classes�� are �elds
����elds� ��monotone classes���
�ii� There exists a minimal �eld ��� �eld� ��monotone class�� ��C� generated by any class of subsets
of 	�
�iii� a ���eld is a monotone class and conversely if it is a �eld�

�

Proof� �iii� ��� ��n��An � ��n����
n
k��Ak� � ��� Bn where Bn �� �

Notation ��� If 	 is a set
 �� is the family of all subsets of 	�
�� is always a ���eld�

Example ��� If 	 � R
 let B� consist of � together with all �nite unions of disjoint intervals of
the form �ni���ai� bi�
 or �

n
i���ai� bi�� �an���	�
 ��	� bn�����

n
i���ai� bi�
 with ai� bi � R� Then B�

is a �eld�

�
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Example ��� If 	 � ��� ��
 let B� consist of � together with all �nite unions of disjoint intervals
of the form �ni���ai� bi�
 � 
 ai 
 bi 
 �� Then B� is a �eld� But note that B� does not contain
intervals of the form �a� b� or �a� b�� however �a� b� � ��n���a� b� ��n��

Example ��	 If 	 � R
 let C � B� of example ���
 and let B be the ���eld generated by B��
B � ��B��� B is a ���eld which contains all intervals
 open
 closed or half�open� From real analysis

any open set O � R can be written as a countable union of �disjoint� open intervals


O � ��n���an� bn��

Thus B contains all open sets in R� This particular B � B� is called the family of Borel sets� In
fact
 B � ��O�
 where O is the collection of all open sets in R�

Example ��
 Suppose that 	 is a metric space with metric �� Let O be the collection of open
subsets of 	� The the ���eld B � ��O� is called the Borel ���eld� In particular
 for 	 � Rk with
the Euclidean metric ��x� y� � jx� yj � f

Pk
� jxi � yij

�g���
 B � Bk � ��O� is the ���eld of Borel
sets�

De�nition ��� �i� A measure ��nitely additive measure� is a function � 
 A � ���	� such that
���� � � and ��

P
An� �

P
��An� for countable ��nite� disjoint sequences An in A�

�ii� A measure space is a triple �	�A� �� with A a ���eld and � a measure�

De�nition ��	 �i� � is a �nite measure if ��	� �	�
�ii� � is a probability measure if ��	� � ��
�iii� � is an in�nite measure if ��	� �	�
�iv� A measure � on a �eld ����eld� A is called ���nite if there exists a partition fFngn�� � A
such that 	 �

P�
� Fn and ��Fn� �	 for all n 
 ��

�v� A probability space is a measure space �	�A� �� with � a probability measure�

De�nition ��
 �i� A measure � on �	�A� is discrete if there are �nitely or countably many points
�i in 	 and masses mi � ���	� such that

��A� �
X
�i�A

mi for A � A�

�ii� If � is de�ned on �	� ���
 	 arbitrary
 by ��A� � � of points in A
 ��A� �	 if A is not �nite

then � is called counting measure�

Example ��� �i� A discrete measure � on �	�A� � �R��B��
 xi � i
 mi � �i�
�ii� A discrete measure � on �	�A� � �Z�� �Z

�

�
 xi � �i
 mi � ��i� �Z� � f�� �� � � �g�
�iii� Counting measure on �R��B��� not a ���nite measure�
�iv� Counting measure on �Z�� �Z

�

��
�v� A probability measure on Q
 the rationals
 With fxig an enumeration of the rationals
 let
mi � ���	�i���

Proposition ��� Let �	�A� �� be a measure space�
�i� If fAngn�� � A with An � An�� for all n
 then ����n��An� � limn�� ��An��
�ii� If ��A�� �	 and An � An�� for all n
 then ����n��An� � limn�� ��An��



�� MEASURES �

Proof� �i�

����� An� � ����� �An nAn���� where A� � �

�
�X
�

��An nAn��� by countable additivity

� lim
n

nX
�

��An nAn���

� lim
n
��

nX
�

�An nAn���� by �nite additivity

� lim
n
��An��

�ii� Let Bn � A� nAn � A� �A
c
n so that Bn � � Thus
 on the one hand we have

lim
n
��Bn� � ����� Bn� by part �i�

� ����� �A� �A
c
n��

� ��A� � �
�
� Ac

n�

� ��A� � ���� An�
c�

� ��A��� ����� An� by �nite additivity�

while on the other hand


lim
n
��Bn� � lim

n
��A� nAn� � lim

n
f��A��� ��An�g by �nite additivity

� ��A��� lim
n
��An��

Combining these two equalities yield the conclusion of �ii�� �

De�nition ���

�i� limAn � �
�
n�� �

�
k�n Ak � f� � 	 
 � � all but a �nite number ofA�ksg � �An a�a���

�ii� limAn � �
�
n�� �

�
k�n Ak � f� � 	 
 � � in�nitely manyA�ksg � �An i�o���

Remark ��� limAn � limAn� limAn � limAn provided limAn � limAn�

Proposition ��	 Monotone � ��� An�s have limAn � ��� An �� ��� An ��

Example ��� Let A � B � ��B�� as in example ���� For B � B�
 let ��B� � the sum of the
lengths of intervals A � B� composing B� Then � is a countably additive measure on B�� Can �

be extended to B� The answers is yes
 and depends on the following


Theorem ��� �Caratheodory Extension Theorem� A measure � on a �eld C can be extended
to a measure on the minimal ���eld ���eld ��C� over C� If � is ���nite on C
 then the extension
is unique and is also ���nite�

Proof� See Billingsley ������
 pages �� � �� and ��� � ���� �
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Example ��
 �example ��	� continued�� The extension of the countably additive measure �
on B� to B� � ��B��
 the Boreal ���eld
 is called Lebesgue measure� thus �R��B�� �� where � is
the extension of the Caratheodory extension theorem
 is a measure space� The usual procedure is
to complete B� as follows�

De�nition ��� If �	�A� �� is a measure space such that B � A with A � A and ��A� � � implies
B � A
 then �	�A� �� is a complete measure space� If ��A� � �
 then A is called a null set� �Of
course there can be non�empty null sets��

Exercise ��� Let �	�A� �� be a measure space� De�ne

A � fA �N 
 A � A� N � B for some B � A such that ��B� � �g

and let ��A �N� � ��A�� Then �	�A� �� is a complete measure space�

Example ��� �example ��	� continued�� Completing �R��B�� �� where � �Lebesgue measure
yields the complete measure space �R��B�� ��� B� is called the ���eld of Lebesgue sets�

So far we know only a few measures� But we will now construct a whole batch of them� and
they are just the ones most useful for probability theory�

De�nition ��
 A measure � on R assigning �nite values to �nite intervals is called a Lebesgue �

Stieltjes measure�

De�nition ��� A function F on R which is �nite
 increasing
 and right continuous is called a
generalized distribution function �generalized df��

F �a� b� � F �b�� F �a�

for �	 � a 
 b � 	 is called the increment function of the generalized df F � We identify
generalized df�s having the same increment function�

Theorem ��� �Correspondence theorem�� The relation

���a� b�� � F �a� b� for �	 � a 
 b �	

establishes a one�to�one correspondence between Lebesgue�Stieltjes measures � on B � B� and
equivalence classes of generalized df�s�

Proof� See Billingsley ������
 pages ���
 ��� � ���� �

De�nition ��� �Probability measures on R�� If ��	� � �
 then � is called a probability dis�

tribution or probability measure and is denoted by P �

De�nition ���� An �
 right�continuous function F on R such that F ��	� � � and F �	� � �
is a distribution function �df��

Corollary � The relation

P ��a� b�� � F �b�� F �a� for �	 � a 
 b �	

establishes a one�to�one correspondence between probability measures on R and df�s�
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� Measurable Functions and Integration

Let �	�A� be a measurable space�
Let X denote a function
 X 
 	� R�

De�nition ��� X 
 	� R is measurable if �X � B� � X���B� � f� � 	 
 X��� � Bg � A for all
B � B��

De�nition ��� �i� For A � A the indicator function of A is the function

�A��� �

�
� if � � A
� if � � Ac �

�ii� A simple function is X��� �
Pn

i�� xi�Ai
��� for

Pn
� Ai � 	
 Ai � A
 xi � R�

�iii� An elementary function is X��� �
P�

i�� xi�Ai
��� for

P�
i��Ai � 	
 Ai � A
 xi � R�

Proposition ��� X is measurable if and only ifX���C� � fX���C� 
 C � Cg � A where ��C� � B�
Hence X is measurable if and only if X����x�	�� � �X 
 x� � A for all x � R�

Proof� ��� This direction is trivial�
��� X���B� � X�����C�� � ��X���C�� since X�� preserves all set operations and since X���C� �
A with A a ���eld by hypothesis�
Further
 ��f�x�	� 
 x � Rg� � B� since �a� b� � �a�	� � �b�	�c
 and B� is generated by intervals
of the form �a� b�� � Note that the assertion of the propostion would work with �x�	� replaced

by any of �x�	�
 ��	� x�
 ��	� x��

Proposition ��� Suppose that fXng are measurable� Then so are supnXn
 �Xn
 infnXn
 limXn

limXn
 and limXn�

Proof� �supXn 
 x� � �n�Xn 
 x��
��Xn 
 x� � �Xn � �x��
inf Xn � � supn��Xn��
limXn � infn�supk�nXk��
limXn � �lim��Xn��
limnXn � limXn when limXn exists� �

Proposition ��	 X is measurable if and only if it is the limit of a sequence of simple functions


Xn � �n��X��n� �
n�nX

k��n�n��

k � �

�n
���k��	��n�X�k��n� � n��X�n��

Proof� ��� The Xn�s exhibited above have jXn����X���j � ��n for jX���j� n�
��� The exhibited Xn�s are simple
 converge to X 
 and limXn is measurable by prop ���� �

Remark ��� If X 
 �
 then � 
 Xn � X �
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Proposition ��
 Let X� Y be measurable� Then X � Y 
 XY 
 X�Y 
 X� � X��X���
 X
� �

�X��X���
 jX j
 g�X� for measurable g are all measurable�

Proof� Let Xn
 Yn be simple functions
 Xn � X 
 Yn � Y � Then Xn � Yn
 XnYn
 Xn�Yn
are simple functions converging to X � Y 
 XY 
 and X�Y 
 and hence the limits are measurable by
prop ���� X� and X� are easy by prop ���
 and jX j � X� �X�� For g 
 R � R measurable we
have
 for B � B�


�gX����B� � X���g���B�� � X��� a Borel set � since g is measurable

� A since X�� is measurable�

�

Remark ��� Any continuous function g is measurable since

g���B� � g�����O�� � ��g���O�� � �� a subcollection of open sets � � B�

Now let �	�A� �� be a measure space
 and leet X� Y denote measurable functions from �	�A�
to �R�B�
 R � R � f�	g
 B � ��B � f	g � f�	g��
CONVENTIONS
 � � 	 � � �	 � �
 x � 	 �	 � x �	 if � � x �	� 	 �	 �	�

De�nition ��	 �i� For X �
Pm

� xi�Ai
with xi 
 �


Pm
� Ai � 	
 then

R
Xd� �

Pm
� xi��Ai��

�ii� For X 
 �

R
Xd� � limn

R
Xnd� where fXng is any 
 �
 � sequence of simple functions


Xn � X �
�iii� For general X 


R
Xd� �

R
X�d��

R
X�d� if one of

R
X�d�


R
X�d� is �nite�

�iv� If
R
Xd� is �nite
 then X is integrable�

JUSTIFICATION
 See Lo�eve pages ��� � ��� or Billingsley ������
 page ����

Proposition ��� �Elementary properties�� Suppose that
R
Xd�


R
Y d�
 and

R
Xd� �

R
Y d�

exist� Then

�i�
R
�X � Y �d� �

R
Xd��

R
Y d�


R
cXd� � c

R
Xd��

�ii� X 
 � implies
R
Xd� 
 �� X 
 Y implies

R
Xd� 


R
Y d�� and X � Y a�e� implies

R
Xd� �R

Y d��
�iii� �integrability�� X is integrable if and only if jX j is integrable
 and either implies that X is a�e�
�nite� jX j 
 Y with Y integrable implies X integrable� X and Y integrable implies that X � Y is
integrable�

Proof� �iii� That X is integrable if and only if
R
X�d� and

R
X�d� �nite if and only if

jX j integrable is easy� Now
R
X�d� � 	 implies X� �nite a�e�� if not
 then ��A� 
 � where

A � f� 
 X���� � 	g
 and then
R
X�d� 


R
X��Ad� � 	 � ��A� � 	
 a contradiction� Now

� 
 X� 
 Y 
 thus � 

R
X�d� 


R
Y d� �	� Likewise

R
X�d� �	� �

Theorem ��� �Monotone convergence theorem�� If � 
 Xn � X 
 then
R
Xnd��

R
Xd��

Corollary � If Xn 
 � then
R P�

n��Xnd� �
P�

n��

R
Xnd��
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Proof� Note that � 

Pn

� Xk �
P�

� Xk and apply the monotone convergence theorem� �

Theorem ��� �Fatou�s lemma�� If Xn 
 � for all n
 then
R
limXnd� 
 lim

R
Xnd� �

Proof� Since Xn 
 infk�nXk � Yn � limXn
 it follows from the MCT thatZ
limXnd� �

Z
lim Ynd� � lim

Z
Ynd� 
 lim

Z
Xnd��

�

De�nition ��
 A sequence Xn converges almost everywhere �or converges a�e� for short�
 denoted
Xn �a�e� X 
 if Xn��� � X��� for all � � 	 n N where ��N� � � �i�e� for a�e� ��� Note that
fXng
 X 
 are all de�ned on one measure space �	�A�� If � is a probability measure
 � � P with
P �	� � �
 we will write �a�s� for �a�e��

Proposition ��� Let fXng
 X be �nite measurable functions� Then �Xn � X � � ��k�� �
�
n��

��m�n�jXm �X j � ��k�
 and is a measurable set�

Corollary � Let fXng
 X be �nite measurable functions� Then Xn �a�e� X if and only if

����n�� �
�
m�n �jXm �X j 
 �� � �

for all � 
 �� If ��	� �	
 Xn �a�e� X if and only if

����m�n �jXm �X j 
 ��� � as n�	

for all � 
 ��

Proof� First note that

�Xn � X �c � ��k�� �
�
n�� �

�
m�n�jXm �X j 
 ��k� � ��k��Ak

with Ak �� and Ak � ��n��Bnk with Bnk � in n� Applying prop ��� gives the result� �

De�nition ��� �Convergence in measure� convergence in probability�� A sequence of ��
nite measurable functions Xn converge in measure to a measurable function X 
 denoted Xn �� X 

if

���jXn �X j 
 ���� �

for all � 
 �� If � is a probability measure
 ��	� � �
 call � � P 
 write Xn �p X 
 and say Xn

converge in probability to X �

Proposition ��
 Let Xn�s be �nite a�e�
�i� If Xn �� X then there exist a subsequence fnkg such that Xnk �a�e� X �
�ii� If ��	� �	 and Xn �a�e� X 
 then Xn �� X �

Theorem ��	 �Dominated Convergence Theorem� If jXnj 
 Y a�e� with Y integrable
 and
if Xn �� X �or Xn �a�e� X�
 then

R
jXn �X jd�� � and lim

R
Xnd� �

R
Xd��
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Proof� We give the proof under the assumption Xn �a�e� X � Then Zn � jXn � X j � � a�e�
and Zn 
 jXnj� jX j 
 �Y � Z� Thus Z � Zn 
 � and by Fatou�s lemmaZ

Zd� �
Z

lim�Z � Zn�d� 
 lim
Z
�Z � Zn�d� �

Z
Zd�� lim

Z
Znd��

and this implies

lim

Z
Zn � lim

Z
jXn �X jd� 
 ��

Thus

j

Z
Xn �

Z
X j � j

Z
�Xn �X�d�j 


Z
jXn �X jd�� ��

�

De�nition ��� Let X be a �nite meaurable function on a probability space �	�A� P � �so that
P �	� � ��� Then X is called a random variable and

PX�B� � P �X � B� � P �f� � 	 
 X��� � Bg�

for all B � B is called the �induced� probability distribution of X �on R�� The df associated with
PX is denoted by FX and is called the df of the random variable X � Thus �R�B� PX� is a probability
space�

Theorem ��
 �Theorem of the unconscious statistician�� If g is a �nite measurable function
from R to R
 then Z

�
g�X����dP ��� �

Z
R
g�x�dPX�x� �

Z
R
g�x�dFX�x��

Proposition ��� �Interchange of integral and limit or derivative�� Suppose thatX��� t� is
measurable for each t � �a� b��
�i� If X��� t� is a�e� continuous in t at t� and jX��� t�
 Y ��� a�e� for jt� t�j � � with Y integrable

then

R
X��� t�d� is continuous in t at t��

�ii� Suppose that �
�tX��� t� exists for a�e� �
 all t � �a� b�
 and j ��tX��� t�j 
 Y ��� integrable a�e�

for all t � �a� b�� Then




t

Z
�
X��� t�d���� �

Z
�





t
X��� t�d�����

Proof� �ii�� By the mean value theorem

X��� t� h��X�t�

h
�





t
X��� t�jt�s

for some t 
 s 
 t� h� Also the left side of the display converges to �
�tX��� t� as h� � for a�e� �


and by the equality of the display and the hypothesized bound
 the di�erence quotient on the left
side of the display is bounded in absolute value by Y � Therefore





t

Z
X��� t�d���� � lim

h��

�

h

�Z
X��� t� h�d�����

Z
X��� t�d����

�

� lim
h��

Z �
X��� t� h��X��� t�

h

�
d����

�

Z




t
X��� t�d����

where the last equality holds by the dominated convergence theorem� �
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� Absolute Continuity� Radon�Nikodym Theorem� Fubini�s The�

orem

Let �	�A� �� be a measure space
 and let X be a non�negative measurable function on 	� For
A � 	
 set

��A� �

Z
A
Xd� �

Z
�
�AXd��

Then � is another measure on �	�A� and � is �nite if and only if X is integrable �X � L������

De�nition 	�� The measure � de�ned by �� is said to have density X with respect to ��

Note that ��A� � � implies that ��A� � ��

De�nition 	�� If �
 � are any two measures on �	�A� such that ��A� � � implies ��A� � � for
any A � A
 then � is said to be absolutely continuous with respect to �
 and we write � �� �� We
also say that � is dominated by ��

Theorem 	�� �Radon�Nikodym theorem�� Let �	�A� �� be a ���nite measure space
 and let
� be a measure on �	�A� with � �� �� Then there exists a measurable function X 
 � such that
��A� �

R
AX� for all A � A� The function X � d�

d� is unique in the sense that if Y is another such
function
 then Y � X a�e� with respect to �� X is called the Radon�Nikodym derivative of � with
respect to ��

Proof� See Billingsley ������
 page ���� �

Corollary � �Change of Variable Theorem�� Suppose that �
 � are ���nite measures de�ned
on a measure space �	�A� with � �� �
 and suppose that Z is a measurable function such thatR
Zd� is well�de�ned� Then for all A � A


Z
A
Zd� �

Z
A
Z
d�

d�
d��

Proof� �i� If Z � �B� then

Z
A
�Bd� � ��A �B� �

Z
A�B

d�

d�
d� �

Z
A
�B

d�

d�
d��

�ii� If Z �
Pm

� zi�Ai

 then

Z
A
Zd� �

mX
�

zi

Z
A
�Ai

d�

�
mX
�

zi

Z
A
�Ai

d�

d�
d� by �i�

�
Z
A
Z
d�

d�
d�
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�iii� If Z 
 �
 let Zn 
 � be simple functions � Z� ThenZ
A
Zd� � lim

Z
A
Znd� by the monotone convergence thm�

� lim
Z
Zn

d�

d�
d� by part �ii�

�

Z
A
Z
d�

d�
d� by the monotone convergence thm�

�iv� If Z is measurable
 Z � Z� � Z� where one of Z�
 Z� is ��integrable
 thenZ
A
Zd� �

Z
A
Z�d� �

Z
A
Z�d�

�
Z
A
Z� d�

d�
d� �

Z
A
Z�

d�

d�
d� by �iii�

�
Z
A
Z
d�

d�
d��

�

Example 	�� Let �	�A� P � be a probability space� often this will be �Rn�Bn� P �� Often in statis�
tics we suppose that P has a density f with respect to a ���nite measure � on �	�A� so that

P �A� �
Z
A
fd� for A � A�

If � is Lebesgue measure on Rn
 then f is the density function� If � is counting measure on a
countable set
 then f is the frequency function or mass function�

Proposition 	�� �Sche��e�s theorem�� Suppose that �n�A� �
R
A fnd�
 that ��A� �

R
A fd�

where fn are densities and �n�	� � ��	� �	 for all n
 and that fn � f a�e� �� Then

sup
A�A

j�n�A�� ��A�j �
�

�

Z
�
jfn � f j � ��

Proof� For A � A


j�n�A�� ��A�j � j
Z
A
�fn � f�d�j



Z
A
jfn � f jd� 


Z
�
jfn � f jd��

and this implies that

sup
A�A

j�n�A�� ��A�j 

Z
�
jfn � f jd��

Let gn � f � fn� Now g�n � � a�e� �
 and g�n 
 f which is integrable� Thus by the dominated
convergence theorem

R
g�n d�� �� But

� �
Z
gnd� �

Z
�
�f � fn�d� �

Z
�
�g�n � g�n �d��
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so
R
g�n d� �

R
g�n d�
 and henceZ

jgnjd� �

Z
g�n d��

Z
g�n d� � �

Z
g�n d�� ��

proving the claimed convergence� To prove that equality holds as claimed in the statement of the
proposition
 note that for the event B � �f � fn 
 �� we have

sup
A�A

j�n�A�� ��A�j 
 j�n�B� � ��B�j � j

Z
�f�fn���

�fn � f�d�j

�

Z
�g�n���

g�n d� �

Z
g�n d�

�
�

�

Z
jfn � f jd��

But on the other hand

j�n�A�� ��A�j � j

Z
A
fnd��

Z
A
fd�j

� j

Z
A
�f � fn�d�j

� j
Z
A�B

�f � fn�d��
Z
A�Bc

�f � fn�d�j



Z
g�n d��

so

sup
A�A

j�n�A�� ��A�j 

Z
g�n d� �

�

�

Z
jfn � f jd��

�

Now supppose that �X�X � �� and �Y�Y � �� are two ���nite measure spaces� If A � X 
 B � Y 

a measurable rectangle is a set of the form A� B �X�Y�

Let X � Y � ��fA�B 
 A � X � B � Yg�� De�ne a measure 	 on �X�Y�X � Y� by

	�A� B� � ��A���B�

for measurable rectangles A�B�

Theorem 	�� �Fubini � Tonelli theorem�� Suppose that f 
X�Y� R is X �Y�measurable
and f 
 �� Then Z

Y

f�x� y�d��y� is X � measurable �

Z
X

f�x� y�d��x� is Y � measurable �

and Z
X�Y

f�x� y�d	�x� y� �

Z
X

�Z
Y

f�x� y�d��y�

�
d��x� �

Z
Y

�Z
X

f�x� y�d��x�

�
d��y�����

If f � L��	� �so
R
X�Yjf jd	 �	�
 then ��� holds�


