Chapter 1
Special Distributions

1. Special Distributions
Bernoulli, binomial, geometric, and negative binomial
Sampling with and without replacement; Hypergeometric
Finite sample variance correction
Poisson and an “informal” Poisson process
Stationary and independent increments
Exponential and Gamma; Strong Markov property
Normal, and the classical CLT; Chi-square
Uniform, beta, uniform order statistics
Cauchy
Rademacher, and symmetrization
Multinomial, and its moments

2. Convolution and related formulas
Sums, products, and quotients
Student’s ¢; Snedecor’s F'; and beta

3. The multivariate normal distribution
Properties of covariance matrices
Characteristic function
Marginals, independence, and linear combinations
Linear independence
The multivariate normal density
Conditional densities
Facts about Chi-square distributions

4. General integration by parts formulas
Representations of random variables
Formulas for means, variances, and covariances via integration by parts






Chapter 1

Special Distributions

1 Special Distributions

Independent Bernoulli Trials

If PIX =1)=p=1—-P(X =0), then X is said to be a Bernoulli(p) random variable. We
refer to the event [X = 1] as success, and to [X = 0] as failure.

Let X1,..., X, beiid. Bernoulli(p), and let S,, = X;+- -+ X,, denote the number of successes
in n independent Bernoulli(p) trials. Now

P(Xz =x;, 1=1,... 7n) :pZ?aEi(l _p)n—Z?zi
if all x; equal 0 or 1; this formula gives the joint distribution of X1, ..., X,. From this we obtain

(1)  P(S,=k) = (Z)pk(l —p)" Tk for k=0,...,n,

since each of the (z) different placings of k£ 1’s in an n—vector containing k£ 1’s and n — k 0’s has
probability p*(1 — p)"~* from the previous sentence. We say that S,, ~ Binomial(n, p) when (1)
holds. Note that Binomial(1, p) is the same as Bernoulli(p).

Let X1, Xo,... be i.i.d. Bernoulli(p). Let Y1 = W) = min{n: S,, = 1}. Since [Y1 = k] = [X1 =
0,..., X1 =0,X; =1], we have

(2) PYi=k) =1-pr1p for k=1,2,... .

We say that Y7 ~ Geometric(p). Now let Wy, = min{n : S, = m}. We call W,,, the waiting
time to the m-th success. Let Y,, = W,, — W,,,_1 for m > 1, with Wy = 0; we call the Y,,’s the

interarrival times. Note that [W,, = k] = [Sx—1 = m — 1, X}, = 1]. Hence

k-1
m—1

(3) PW,, =k)= ( )pm(l—p)k_m for k=m,m+1,....

We say that W, ~ Negative Binomial(m,p).

Exercise 1.1 Show that Y7,Ys, ... are i.i.d. Geometric(p).

Since the number of successes in nj +no trials is the number of successes in the first ny trials plus
the number of successes in the next ng trials, it is clear that for independent Z; ~Binomial(n;, p),

(4) Z1 + Zy ~ Binomial(ny + na, p).
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Likewise, for independent Z; ~Negative Binomial(m;, p),

(5) Z1 + Zy ~ Negative Binomial(my + ma,p) .

Urn Models

Suppose that an urn contains N balls of which M bear the number 1 and N — M bear the
number 0. Thoroughly mix the balls in the urn. Draw one ball at random. Let X; denote the
number on the ball. Then X; ~ Bernoulli(p) with p = M/N. Now replace the ball back in
the urn, thoroughly mix, and draw at random a second ball with number X5, and so forth. Let
Sp =X1 + -+ X,, ~ Binomial(n, p) with p = M/N.

Suppose now that the same scheme is repeated except that the balls are not replaced. In this
sampling without replacement scheme Xi,..., X, are dependent Bernoulli(p) random variables
with p = M/N. Also
(%) o)

()

n
provided the value k is possible (ie. & < M and n — k < N — M). We say that S, ~
Hypergeometric(N, M, n).

Suppose now that sampling is done without replacement, but the N balls in the urn bear the
numbers aq,...,ay. Let Xq,..., X, denote the numbers on the first n balls drawn, and let S,, =
X1+ --+X,,. We call this the finite sampling model. Call a = Ziv a;/N and o2 = Zjlv(ai —a)?/N
the population mean and population variance. Note that X; has expectation @ and variance o2 for

all i =1,...,n, since we now assume n < N. Now from the formula for the variance of a sum of
random variables and symmetry we have

6)  P(Sn=k) =

N
(7)  0=Var (Z XZ-> = NVar(X;) + N(N — 1)Cov(X1, X3)
1

since Zf[ X is a constant. Thus
(8)  Cov[Xy,Xo] = —02/(N —1).

Thus an easy computation gives

©)  Var[s,/n] = % <1 - ;j) ,

n

where (1 — (n —1)/(N — 1)) is called the correction factor for finite sampling.
Exercise 1.2 Verify (8) and (9).

Exercise 1.3 If X ~ Binomial(m,p) and Y ~ Binomial(n, p) are independent, then the conditional
distribution of X given that X +Y = N is Hypergeometric(m + n, N, m).

The Poisson Process

Suppose now that X,i1, X,2,..., are i.i.d. Bernoulli(p,) where np, — X as n — oo. Let
Sp = Xn1 + -+ -+ Xy so that S, ~ Binomial(n, p,). An easy calculation shows that
)\k

(10) P(Sn:k)%ye_* for k=0,1,....
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If P(S = k) = Me/k! for k = 0,1,..., then we say that S ~ Poisson(\). The above can be
used to model the following Geiger counter experiment. A radioactive source with “large” half -
life is placed near a Geiger counter. Let N(¢) denote the number of particles registered by time
t; we will say that {N(¢) : ¢ > 0} is a Poisson process. (Do note that our treatment is purely
informal.) Physical considerations lead us to believe that N(¢1),N(¢1,t2], - - -, N(¢tx—1, tx] should be
independent random variables where N(¢;_1,t;] denotes the increment N(¢;) — N(¢;_1); we say that
N has independent increments. We now define

(11) A= EN(1) = the intensity of the process .

Let M denote the number of radioactive particles in our source, and let X; equal 1 or 0 depending
on whether or not the i—th particle registers by time = 1 or not. It seems a reasonable model to
assume that Xi,..., X/ are i.i.d. Bernoulli. Since N(1) = Xj + - -+ X s has mean A = EN(1) =
ME(X), this leads to N(1) ~ Binomial(M, A\/M). By the first paragraph of this section N(1) is
thus approximately a Poisson(\) random variable. We now alter our point of view slightly, and use
this approximation as our model.

Thus N(1) is a Poisson(A) random variable. By the stationary and independent increments we
thus have

(12)  N(s,t] ~ Poisson(A(t — s)) forall 0<s<t
while
(13) N has independent increments .

Note also that N(0) = 0. (This is actually enough to rigorously specify a Poisson process.)
Let Y1 = Wi =inf{t > 0: N(¢) = 1}. Since

(14) Y1 > 1] = [N(t) = 0],

we see that P(Y; > t) = P(N(t) = 0) = e~ by (12). Thus Y; has distribution function 1—exp(—A\t)
for ¢t > 0 and density

(15)  fy, (t) = Ae™ for t>0;

we say that Y7 ~ Exponential(A). Now let W, = inf{t > 0: N(¢) = m}; we call W,, the m—th
waiting time. We call Y, = Wy, — W,,—1, m > 1, the interarrival times. In light of the physical
properties of our Geiger counter model, and using (13), it seems reasonable that

(16) Y7, Ys, ... areiid. Exponential(A).
Our assumption of the previous sentence could be expressed as
(17) Y1 and Ny(t) =N(Y1,Y; +¢| are independent
and Nj is again a Poisson process with intensity A;
we will call this the strong Markov property of the Poisson process. Now
(18)  [Win > t] = [N(t) <m],
so that P(Wy,, > t) = ;Cn:_ol()\t)ke*M /k!; differentiating this expression shows that W, has density
(19)  fw,, (t) = Xt e /D (m) for t>0;

we say that W,, ~ Gamma(m,\). Contained in this is a proof that for independent Z; ~
Gamma(m;, A),

(20)  Zy + Zy ~ Gamma(m + ma, ).
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Exercise 1.4 Verify (10).
Exercise 1.5 Verify (16).

Exercise 1.6 Verify (19).

It is true that (19) is a density for any real number m > 0; and the property (20) still holds for
real m;’s.

Exercise 1.7 If X ~ Poisson(A1) and Y ~ Poisson(A2) are independent, then the conditional
distribution of X given X +Y = n is Binomial(n, \1/(A1 + A2)).

Exercise 1.8 If X ~ Gamma(a,\) and Y ~ Gamma(f, \) are independent, show that X /(X +
Y) ~ Beta(a, B); i.e. U= X/(X +Y) has density {I'(a+ 8)/T'(a)T(8)}u® (1 —-u)’~1 0 <u<1.

The Normal Distribution
Suppose that the random variable Z has density
1 22
(21)  o(z) = exp(——) for — o0 <z < o0;

Vor 2

then Z is said to be a standard normal random variable. We let the corresponding distribution
function be denoted by ®. Thus

(22 e)-Pz<= [ T o(y)dy.

If b > 0, then Fy1pz(x) = Pla+bZ <z) = P(Z < (v —a)/b) = ®((x — a)/b). Thus a + bZ has
density

r—a

(23)  farbz(x) = %gf) ( 2 ) for —oc0o<z< 0.

Note that (23) holds for Z ~ f; if we replace ¢ by fz.

Exercise 1.9 Show that ¢ given in (21) is a density. Show that this density has mean 0 and
variance 1.

Thus X = p+ 0Z ~ (p, 0?) with density

1 1 m—u)Q
24 exp [ —= for —oco< < o0;
ey —— p( ; (= )

we say that X ~ Normal(u,o?) or just N(u,o?).

The importance of the normal distribution derives from the following theorem. Recall from the
properties of expectation and variance that if X1, ..., X, areii.d. (u,0?), then \/n(X, —u)/o has
mean 0 and variance 1 where X, = (X; + --- + X,,)/n. But much more is true.
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Theorem 1.1 (Classic CLT). If Xi,...,X,, areii.d. (u,0?), then
(25)  Vn(X, —pu) —q N(0,0°) as nm — 00.

Hence if 0 > 0

(26)  Vn(X, —p)/o —4 N(0,1) as n — 00.

This result will be stated again in Chapter 2 along with other central limit theorems. We will
use it in the meantime for motivational purposes.
Suppose that Z is N(0,1). Then

(27) Fp@) = P22 <z)=P(—Vi<Z< 7
— Fy(Va) - Fy(~Va)
— B(v7) - B(—Va):

thus Z?2 has density
(28)  fre(x) = 2\1/5 {6(Vz) + ¢(—V2)} for x>0.

Plugging into (21) shows that
(29)  fr2(z) = (2m2) YPexp(~z/2)  for x> 0;

this is called the Chisquare(1) density. Note that Chisquare(1) is the same as Gamma(1/2,1/2).
Thus (20) shows that
(30) if Xy,...,X, areiid. N(0,1), then ZXZQ ~ Chisquare(m)

1

where Chisquare(m) = Gamma(m/2,1/2).

Uniform and Related Distributions

If fx(z) = 1ia4)(z)/(b — a) for real numbers —co < a < b < oo, then we say that X ~
Uniform(a, b). By far the most important special case is Uniform(0, 1). Note that if U ~ Uniform(0, 1),
then X = (b—a)U + a ~ Uniform(a, b).

A generalization of this is the Beta(c,d) family. We say X ~ Beta(c,d) if fx(z) = 27 1(1 —
x)" 19 1) (x)/B(c, d) where B(c,d) =T (c)I'(d)/T'(c + d).

Suppose that &i,...,&, are ii.d. Uniform(0,1). Let 0 < &,.1 < ... < &u.p < 1 denote the
ordered values of the &;’s; we call the &,.;’s the uniform order statistics. (Alternatively, if n is
understood, then we also write {;) for £,, i = 1,...,n.) It seems intuitive that ,; equals x if
(i —1) of the &’s fall in [0, ), 1 of the &’s is equal to =, and n —i of the &’s fall in (x,1). There are
n!/[(1 — 1)!(n — 4)!] such designations of the ¢’s, and the chance of the falling in the correct parts
of [0,1] is 2'~1(1 — z)»~*. Thus

n!

Bl fe.(x) = (= Di(n—i)

in other words, &,.; ~ Beta(i,n —i+ 1). Also note that the joint density of (§,.1,...,&nn) is given
by

N1 =) g gy (@) 5

(32) ffn:ly---vgn:n (’LLl, te ,Un) = n!]‘A(ulﬁ e ,Un)
where A = {(u1,...,u,) €[0,1]": 0<u; <...<w, <1}.
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Exercise 1.10 Give a rigorous proof of (31) by computing F¢, . and differentiating.

Exercise 1.11 Give a proof of (32).

The Cauchy Distribution

If fx(z) = {br[l+ (z—a)?/b?*]} ! on (—o0, 00), then we say that X ~ Cauchy(a,b). By far the
most important special case is Cauchy(0, 1); in this case we say simply that X ~ Cauchy, and its
density is [7(1 + 22)]7! on (—o0, 00). Verify that F|X| = co. We will see below that if X1,..., X,
are i.i.d. Cauchy, then X, = (X1 +---+ X,,)/n ~ Cauchy. These two facts make the Cauchy ideal
for many counterexamples.

Rademacher Random Variables and Symmetrization

May problems become simpler if the problem is symmetrized. One way of accomplishing this is
by the appropriate introduction of Rademacher random variables. We say that € is a Rademacher
random variable if P(e = 1) = P(e = —1) = 1/2. Thus € ~ 2 Bernoulli(1/2) — 1.

We say that X is a symmetric random variable if X ~ —X. If X and X’ are i.i.d., then
X=(X-X)~(X'—X)=—(X - X') = —X?; hence X* is a symmetric random variable.

Exercise 1.12 if X is a symmetric random variable independent of the Rademacher random vari-
able €, then X ~ eX.

The Multinomial Distribution
Suppose that By U ---U By, = R for Borel sets B; with B; N B; = () for i # j; we call this a
partition of R. Let Y7,...,Y, be ii.d. random variables on (Q2, 4, P). Let X, = (Xi1,..., Xi) =
(1p,(Y3),...,1p,(Y;)) for i =1,...,n, and set
n
33) N = (Npy,...,Np)=)>» X,
i=1

= (ZXlsz) = (ZlBl(mv'--’ZlBk(Yi)) .
=1 =1 =1 =1

Note that X1, ..., X,; are i.i.d. Bernoulli(p;) with p; = P(Y; € B;) and thus N; ~ Binomial(n, p;)
marginally. Note that Ny,..., Ny are dependent random variables; in particular, N1 +-- -+ Ni = n.
The joint distribution of (N7, ..., N) is called the Multinomial(n, p) = Multinomial,(n, (p1,...,pr))
distribution. The number of ways to designate n; of the Y;’s to fall in By, ..., ny of the Yj’s to fall
in By, is the multinomial coefficient

n n!
(34) =—— where nj +---+np=n.
ny---ng nyl---nyg!

Each such designation occurs with probability Hle p;*. Hence

(35) F(il\/——@> = F(l\/l =ni,...,Np = nk) = ( " )p?l-..pgk.
ny---ng
Now it is a trivial calculation that for j # I,

(36)  Cov[Xyj, Xul = E(1p;(Yi)1p,(Y:)) — E(1p,(Y:))E(1p,(Yi)) = —pjpi -
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Thus
(37)  Cov[N;, Ni| = —np;p for j#1.
Hence it follows that

Ny D1 pi(l—p1) - - - —pipk
(38) : ~ |In| - , N

N, Dk -pipe - - - pe(l—pr)

Exercise 1.13 Consider, in the context of the multinomial distribution, two subsets C' = U;¢; B;
and D = UjcsB; for some subsets I,J C {1,...,k}, not necessarily disjoint, so that C' and D are
not necessarily disjoint either. Let

No=>_Ni pc=Y_p, pc=Nc/n,
1€l el

and
ND:ZNja pDZZPj, pp = Np/n.
jeJ jeJ

Compute Cov[N¢, Np]. [Hint: it will involve the probability pcnp = P(Y1 € C N D).]
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2 Convolution and Related Formulas

Convolution
If X and Y are independent random variables on (2,.4, P), then

Fxiv(z) = P(X+Y <2)= // dFx (z)dFy (y)
r+y<z

-/ Z / OO dFy (y)dFx (x)

(1) = / Fy(z —x)dFx(z) = Fx x Fy(2)

is a formula called the convolution formula, for Fxy in terms of Fx and Fy (the symbol * stands
for convolution). In case X and Y have densities fx and fy with respect to Lebesgue measure,

then so does X + Y. In fact, since
[ m-amewa = [T s aaf
= /OO Fy(Z—l‘)de(J?) :Fx+y(z),

—00

it follows from (1) that X + Y has a density given by
@) fev)= [ e ofsds = (o).

Exercise 2.1 Use (2) to show that for X and Y independent:

(i) X ~ N(u1,0%) and Y ~ N(ug,03) implies X +Y ~ N(pu1 + p2, 03 + 03).

(ii) X ~ Cauchy(0,01) and Y ~ Cauchy(0, 02) implies X + Y ~ Cauchy(0, 01 + 02).
(iii) X ~ Gamma(ry,d) and Y ~ Gamma(rg, §) implies X +Y ~ Gamma(r; + ro,6).

Exercise 2.2 (i) If Xy,...,X,, are iid. N(0,1), then (X1 +---+ X,,)/v/n ~ N(0,1).
(i) If Xq,..., X, are ii.d. Cauchy(0,1), then (X7 + --- + X,,)/n ~ Cauchy(0,1).

If X and Y are independent random variables taking values in 0,1, 2, ..., then clearly
k
(3) PX+Y=k=> PX=0)P(Y =k-i) for k=0,1,2,....
i=0

Exercise 2.3 Use (3) to show that for X and Y independent:

(i) X ~ Poisson(A1) and Y ~ Poisson(A2) implies X 4+ Y ~ Poisson(A; + Az2).

(ii) X ~ Negative Binomial(mi,p) and Y ~ Negative Binomial(mg, p) implies X + Y ~ Negative
Binomial(m; + ma, p).

A fundamental problem in probability theory is to determine constants a, and b, > 0 for which
i.i.d. random variables X1, Xo, ..., X,,,... satisfy

(4) (Xi+--+ X, —an)/bp =4 G as n — 00

for some non-degenerate distribution G. Exercise 2 gives us two examples of such convergence; each
was derived via the convlution formula. However, except in certain special cases, such as exercises
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2.1 - 2.3, the various convolution formulas are too difficult to deal with directly, at least for n—fold
convolutions for large n. For this reason we need a variety of central limit theorems. These will be
stated in Chapter 2.

Other Formulas

Exercise 2.4 Suppose that X and Y are independent with P(Y > 0) = 1. Show that

(5)  Fxy(z)= P(XY < 2) = /0 T Fx(z/y)dFy(y)  forall 2,

(6) Fx)y(2) = P(X/Y <z2) = /OOO Fx(zy)dFy(y) for all z.

If Fx has a bounded density fx and Fy has a density fy (these are overly strong hypotheses),
then Fxy and F,y have densities given by

0 fxr(z) = /Oooylfx(Z/y)fy(y)dy for all 2,
and

(8) fX/Y(Z) = /0°° yfx(zy) fy(y)dy for all z.

Exercise 2.5 Let X ~ N(0,1), Y ~ x2,, and Z ~ x2 be independent. Show that

9) \/;(/7 ~ Student’s t,, =t(m),
m

Y/m

(10) Zin ~ Snedecor’s Fy,, = F(m,n), and
Y
(11) vz~ Beta(m/2,n/2)
where
I'((m+1)/2 1

and

L((m+n)/2) (m/n)m/2gm/2~1
T(m/2)0(n)2) (1 + ma/n) )72

(13) fF(m,n) (l‘) = 1(0,00) (x) .

Exercise 2.6 If Y7,...,Y, 4 are i.i.d. Exponential(#), then
Vit 1Y
(14) z= Attt
Vit Yoo

in other words the ratio on the left has the same distribution as the ith order statistic of a sample
of n Uniform(0, 1) random variables.

~ Beta(i,n —i+1);

Exercise 2.7 IfY,...,Y, 1 areii.d. Exponential(f), as in Exercise 2.6, then the joint distribution
of (Zi,...,7,) is the same as that of the order statistics (&,:1,- - ., &nn) of n Uniform(0, 1) random
variables.
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3 The Multivariate Normal Distribution

We say that Y = (Y1,...,Y,) is jointly normal with 0 means if there exist i.i.d. N(0,1) random
variables X1,..., Xj and an n x k matrix A of known constants for which Y = AX. Note that the
n X m covariance matrix > of Y is

(1) S=EYY')=FEAXX'A)=AA.

Theorem 3.1 The following are equivalent:

(2) by is the covariance matrix of some random vector Y .
(3) z is symmetric and non-negative definite.
(4) There exists an n x n matrix A such that ¥ = AA4’.

Proof. (2) implies (3): X is symmetric since E(Y;Y;) = E(Y;Y;). Also a’Ya = Var(a'Y) > 0,
so that X > 0.

(3) implies (4): Since ¥ is symmetric, there exists an orthogonal matrix I such I"XI' = D with
D diagonal. We let a =T'b, and since ¥ > 0 we have

n
0<dSa=bT"STh=0Db="> dyb}
=1
for all b, implying that all d;; > 0. Thus
Y =I'DIY = DY2DY21' = (TDY?)(PDY?) = AA’

where D'/2 denotes the diagonal matrix with entries v/d;; on the diagonal.
(4) implies (2): Let Xy,...,X,, be iid. N(0,1). Let X = (X3,...,X,) and Y = AX. Then
Y has covariance matrix ¥ = AA’. O

Theorem 3.2 If Y = A"k X**! wwhere X ~ N(0,I), then
L 1
(5) by (t) = Ee™Y =exp (—225'225) with ¥ = AA
and rank(X) = rank(A). Conversely, if ¢y (t) = exp(—t'Xt/2) with ¥ > 0 of rank k, then

(6) Y =AVFXPL with rank(A) =k and X ~ N(0,1).

(Thus only rank(A) independent X;’s are needed.)

Proof. We use the fact that the characteristic function of a standard normal random variable
X, is Ee'™™i = exp(—t?/2) in the proof. Now

¢y (t) = Fexp(it' AX) = Eexp(i(A't)'X)
~ exp <—;(A’t)’(A’t)>

= exp <—;t’AA't>
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where we used
dx(t) = Eexp(it’ X) = exp( ]t] /2)

to get the third equality.
Conversely, suppose that ¢y (t) = exp(—t'Xt/2) with rank(X) = k. Then there exists an
orthogonal matrix I' such that

(a) r’zr:(loj 8)

where D is diagonal and k x k. Let Z =T"Y so that

e (D O
ZZ—FZF—<O O)'

Then

() dz(t) = ¢y (I't) = exp(—t'T'SIt/2) = Hexp —t2d;; /2) H 1

i=k+1
so that Zi,...,Z are independent N(0,d11),...,N(0,dgx) and Zy1q = -+ = Z, = 0. Let X; =
Zi/Vdi ~ N(0,1) for i =1,... k with X311 =-- EX = 0. Then

Y:FZ:F<\/E O>XTLX1:F<\/E>X]€X1:A’H,X]€X]€X1
0 O 0

with A of rank k. O

Theorem 3.3 (i) f Y = (Yi,..., Y Yis1,- .., Ys) ~ Ny(0,%) with
Y11 212 >

) n= ,

™) ( o1 Yoo

then

8 (Yi,....Y%) ~ Np(0,51).

(8)

(ii) If X192 =0, then (Y3,...,Y:) and (Yiy1,...,Ys) are independent.

(iii) If (Y1,Y2)' is jointly normal, then Y7 and Y5 are independent if and only if Cov[Y7, Y] = 0.
(iv) Linear combinations of normals are normal.

Proof. (i) Use the first k coordinates of the representation ¥ = AX.

(ii) Use the fact that

@ ot =ew (5t (31 g, )t) —exp-hEun 2 en(-nn2).
22

which is the product of the characteristic functions of the marginal distributions.
(iii) Just apply (ii).
(iv) Now Zzmxl = pmxnynxl — B(AX) = (BA)X. O
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The preceding development can be briefly summarized by introducing the notation X ~ N, (0,1) =
N(0,I) and Y ~ N,(0,%). We will write Y ~ N(u, %) if Y — p ~ N(0,3). Note that Py is com-
pletely specified by p and 3. We call Y non-degenerate, and Y1,...,Y, will be called linearly
independent if rank(3) = n. Of course

9) Y is non-degenerate if and only if rank(A)=n.
Exercise 3.1 Show that (Y7, Y2) can have normal marginals without being jointly normal. [Hint:

consider starting with a joint N (0, I) density on R? and move mass in a symmetric fashion to make
the joint distribution non-normal, but still keeping the marginals normal.]

Theorem 3.4 If Y ~ N(0,X) is nondegenerate, then Y has density (with respect to Lebesgue
measure on R™) given by

1 1, .
(10)  fr(y) = Wexp (—23/2 1y> for all y € R".

Proof. NowY = AX where AA’ =X, rank(A) =n, |A| #0, X ~ N(0,I). Hence for any Borel
set B, € B,

@ POCEB) = [ln@fx@ds = [1a,@)ow) - o) ds,
where fx(z) = (2m)"™/? exp(—a'2/2). Since X = A~1Y, for any Borel set B,,,
P(YeB, = P(AXcB,)=P(XcA'B,)= / La1p, (z)fx(z)dz
= /1A 18, (A7 y)fx(A ’6 ‘dy
1 o 0
[ e e (<5t a5y
= [ en s e (< sty dy
B, 2
since (A_l)’(A_l) =(AA) 1 =371 and

0) |5 =147 = VIATIAT = VIET = 1/ VS

|

Our last theorem about the multivariate normal distribution concerns the conditional distribu-
tion of one block of a joint normal random vector given a second block.

Theorem 3.5 If
v )~ (i )50 52))
11 Y = ~ N 9 9
( ) < v (2) M(2) Yo1 Yoo
where Y1) is a k— vector, Y@ is an n — k - vector, and where Y99 is nonsingular, then

(12) (v® ‘Y(Q)) ~ N((pM + S1o555 (V) = p®)) 211 = £1955, Ta1).
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Moreover, with Y11.0 = 11 — 2122521221,

YW — @ —wpn (v ® — 42) 0 Y112 0
(13) < Y@ — 4@ >NN”<<0>’< 0 Ezg))'

Proof. Without loss of generality, suppose that ,u(i) =0, ¢ = 1, 2; otherwise subtract u(i) from
Y@ i=1,2. Then

(1) v o=y (2)
(a) Z= ( 7 ) = ( Y1(22) > )

is just a linear combination of the Y;’s; and so it is normal, and all we need to know is pz and X z.
But X712 = Y12 — 21222_21222 = 0, so that ZM and Z@ are independent by Theorem 3.3. Also,
22722 = 222 and

(b) Y711 = D11 — 2812855 Uo1 + D12%55 oo ¥os Bo1 = B11 — B19%55 o1 = X110
Note that

(c) %] = [Saa|Z11 — T12X55 Xo1 -

Some Facts about Chi-Square Distributions

If X ~ N,(0,1), then | X||? = X'X = > | X? ~ %2, the Chisquare distribution with n degrees
of freedom.

Corollary 1 If Y ~ N,(0,%) with X positive definite, then Y'Y 1Y ~ y2.

Proof. Y = AX where A is nonsingular and X ~ N,(0,1) and ¥ = AA’. Hence X7 =
(A")7'A~1 and it follows that Y'Y = X'A/(A) 1A TTAX = X'X ~ 2. O

Now for the noncentral Chisquare distributions: we will develop these in a series of steps as
follows:

a) Suppose that X ~ N(u,1). Define Y = X2, § = 2. Then Y has density
1 Iz

@) A= pr(6/2)g(y; 2k +1)/2,1/2)

k=0
where py(6/2) = exp(—8/2)(6/2)F/k!, and g(-; (2k + 1)/2,1/2) is the Gamma(2k + 1)/2,1/2) =
Chisquare(2k+1) density. Another way to say this is: (YK = k) ~ x3,,, where K ~ Poisson(5/2).
We will say that Y has the noncentral chisquare distribution with 1 degree of freedom and noncen-
trality parameter §, and write Y ~ x?(§) in this case.

(b) Now suppose that X7 ~ N(u,1), and Xs,..., X, ~ N(0,1), and all of X1,..., X, are inde-
pendent. Define Y = X’X = |X|?, § = p?. Then Y has density

[e.e]

B) Sy =D pr(6/2)g(y; (2k +n)/2,1/2)

k=0
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where pi(6/2) = exp(—0/2)(6/2)%/k!, and g(-; (2k +n)/2,1/2) is the Gamma((2k + n)/2,1/2) =
Chisquare(2k+n) density. Another way to say thisis: (Y|K = k) ~ x3;,, where K ~ Poisson(5/2).
We will say that Y has the noncentral chisquare distribution with n degrees of freedom and non-
centrality parameter §, and write Y ~ x2(8) in this case.

¢) Now suppose that X ~ N,,(u,I) and let Y = X’X. Then Y ~ x2(6) with 6 = p/p = |p|?.
n g

Proof. Let T be an n x n orthogonal matrix with first row pu/|u| = pu// 1. Then Z =TX ~
N, (Tp, ITY) = Ny ((Jul, 0, ..., 0)', I), and hence by (b) above

(a) Y=X'X=2ZTU'Z=27~%0)

with 6 = |p|? = @/'p. O

(d) Now suppose that X ~ N, (u, ¥) where ¥ is nonsingular. Let Y = X’S71X. Then Y ~ x2(6)
with § = /S~ .

Proof.  Define Z = ¥~1/2X where XV/2(£1/2) = %, Then Z ~ N, (X2, 1), so by (c),
(a) Y =X2"'X=2'7Z~x20)

with 6 = /(21282 = W/y~1u. O

Exercise 3.2 Verify (4).

Exercise 3.3 Verify (5).
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4 Integration by Parts

Integration by Fubini’s theorem or “integration by parts” formulas are useful in many contexts.
Here we record a few of the most useful ones.

Proposition 4.1 Suppose that the left-continuous function U and the right-continuous function
V' are nondecreasing functions (1). Then for any a < b

1) UL BV ) = UV (a) = /[ U /[ v

9 UBV(D) - U@V(a)= | UdV VdU
2 UGV - U@V /(a’b] +/w
where Uy (z) = limy, U(y) and V_(x) = limy, V(y).

Proof. = We can apply Fubini’s theorem 4.1.2 at steps (a) and (b) to obtain

U4 (6) — U@][V(b) — V-(a)] = /[ b]{ /[ b] dU}dv

(@) - /[‘a,b] [a,b]{1x<y](xa y) + 1[12y]}dU(m)dV(y)

(b) - /M] U(y) - Ua)dV (y) + / Vi(z) - V_(a)]dU )

[a,b]

_ / UdV — U(a)[V(h) - V_(a)] + / VAU — V_(a)[U+ (b) — U(a)].
[a,b] [a,b]

A bit of algebra now gives (1). The proof of (2) is similar. O

Mean, Variances, and Covariances

If £ ~ Uniform(0, 1) and F is an arbitrary distribution function, then we will see in section 2.3
that X = F~1(¢) has distribution function F. Note note that this X satisfies

(3) X= FH(t)dle<y
(0,1)

and

4)  X= /( e

where 1¢<y is a random distribution function that puts mass 1 at the point {(w) and 1jx<,) is a
random distribution function that puts mass 1 at the point X (w). If X has mean p, then

= -1 = x x).
(5) = /((mF (t)dt = /(OO,OO) aF ()
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Moreover, when p is finite we can write

6) X -—p =/ FH (t)d(leey — ) = —/ (Lie<t) — )AF 1 (2)
(0.1) (0.1)
or

(1) X = /( gy~ F) = - /( (pxsa = @)

The first formula in each of (6) and (7) is trivial; the second follows from integration by parts. For
example, (6) is justified by

[tF~1 \<]/ (s)ds| =0 as t—0

when E|X| = fo |F~1(t)|dt < oo, and the analogous result (1 —¢)F~1(#) — 0 as t — 1. Thus when
Var(X) < oo, Fubini’s theorem gives

= —s)dF (s <y — !
Var(X) = E{/(Oﬁl)u[&] ¥ ()/(071)(1[5_] 1dF (t)}

_ / R H(s)dF T (t)

= S —s -1
(8) _ /01/01 At — st)dF~L(s)dF~ (1)

via (6), and the parallel formula

©)  Var(x / / Pz Ay) — F(2)F(y)]dady

via (7). Of course we already know that

o0

1
(10) Var(X)= /0 [F~Y(t) — p)?dt = / (z — p)*dF(z).

Now suppose that X, Y are random variables and let G, H denote measurable functions.

Proposition 4.2 (Formulas for means, moments, and covariances).
(i) If X > 0 has distribution function F', then

oo 1
(11) E(X):/0 (1F(:c))d:c:/0 F~l(t)dt.
(ii) If F|X| < oo, then
0 o 1
- _ 2)dx — x))dx = -1 .
(12) E(X)= /OOF( )d —l—/o (1 - F(x))d /0 F~(t)dt

(iii) If X > 0, then

00 1
(13) E(Xr)zr/o xr_l(l—F(m))dm:/O [F=Y(t)])"dt .
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(iv) If (X,Y) has joint distribution function F' with marginal distribution functions Fx, Fy, and
G, H are nondecreasing, then

(1) Colc),HY)) = [ [ [Fw) - F@RGWGE@HE).
Note the special case G = H = I with I(x) =z for all z € R.

(v) If K is 1 and left continuous and ¢ ~ Uniform(0,1) (perhaps K = h(F~!) for an 1 left
continuous function h and for X = F~1(¢) for a distribution function F')

1 1

(15)  Var[K(€)] = / / (s At — st)dE (s)dK (1)

(16) -/ / Fla A y) - F(a)F(y)]dh(z)dh(y)
Var[h

(vi) If X > 0 is integer - valued,

(18) E(X)= ip(x > k)
k=1

and

hE

(19) E(X)H =) (2k+1)P(X > k).

B
Il

0

Exercise 4.1 Prove the formulas (11) - (13) using Fubini’s theorem.

Exercise 4.2 Give an extension of (13) to arbitrary random variables in the case r = an integer
k.

Exercise 4.3 Prove formulas (14) and (15).

Exercise 4.4 For any distribution function F' we have
/[F(z+9)—F(:E)]d:U:0 for each 6 >0.

Exercise 4.5 How should the left side of (1) be altered if we replace [a,b] in both places on the
right side of (1) by (a,b), or by (a,b], or by [a,b)?



