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Chapter 13

Sufficiency and Unbiased Estimation

1 Conditional probability and expectation

References:

• Sections 2.3, 2.4, and 2.5, Lehmann and Romano, TSH; pages 34 - 46.

• Billingsley, 1986, pages 419 - 479;

• Williams, 1991, pages 83 - 92.

Basic Notation. Suppose that X is an integrable random variable on a probability space
(Ω,A, P ), and that A0 ⊂ A is a sub-sigma field. Typically A0 = T−1(B) where T is another
random variable on (Ω,A, P ), T : (Ω,A) → (T,B)

Definition 1.1 A conditional expectation of X given A0, denoted E(X|A0), is an integrable A0−
measurable random variable satisfying

∫

A0

E(X|A0)dP =

∫

A0

XdP for all A0 ∈ A0.(1)

Proposition 1.1 E(X|A0) exists.

Proof. Consider X ≥ 0. Define ν on A0 by

nu(A0) =

∫

A0

XdP for A0 ∈ A0.

The measure ν is finite since X is integrable, and ν is absolutely continuous with respect to P |A0 .
Hence by the Radon - Nikodym theorem there is an A0−measurable function f such that

∫

A0

XdP = ν(A0) =

∫

A0

fdP.

This function f has the desired properties; i.e. f = E(X|A0). if X = X+−X−, then E(X+|A0)−
E(X−|A0) works. !
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4 CHAPTER 13. SUFFICIENCY AND UNBIASED ESTIMATION

Theorem 1.1 (Properties of conditional expectations). Let X,Y, Yn be integrable random vari-
ables on (Ω,A, P ). Let D be a sub-sigma field of A. Let g be measurable. Then for any versions
of the conditional expectations the following hold:

(i) (Linearity) E(aX + bY |D) = aE(X|D + bE(Y |D).

(ii) EY = E[E(Y |D)].

(iii) (Monotonicity) X ≤ Y a.s. P implies E(X|D) ≤ E(Y |D) a.s.

(iv) (MCT) If 0 ≤ Yn ↑ Y a.s. P , then E(Yn|D) ↑ E(Y |D) a.s.

(v) (Fatou) If 0 ≤ Yn a.s. P , then E(limYn|D) ≤ limE(Yn|D) a.s.

(vi) (DCT) If |Yn| ≤ X for all n and Yn →a.s. Y a.s. P , then E(Yn|D) → E(Y |D) a.s.

(vii) If Y is D−measurable and XY is integrable, then E(XY |D) = Y E(X|D) a.s.

(viii) If F(Y ) and D are independent, then E(Y |D) = E(Y ) a.s.

(ix) (Stepwise smoothing). If D ⊂ E ⊂ A, then E[E(Y |D)] = E[Y |D] a.s.

(x) If F(Y,X1) is independent of F(X2), then E(Y |X1,X2) = E(Y |X1) a.s.

(xi) cr, Hölder, Liapunov, Minkowski, and Jensen inequaltieis hold for E(·|D). Jensen: g(E(Y |D)) ≤
E[g(Y )|D) a.s. P |D for g convex and g(Y ) integrable.

(xii) If Yn →r Y for r ≥ 1, then E(Yn|D) →r E(Y |D).

(xiii) g is a version of E(Y |D) if and only if E(XY ) = E(Xg) for all bounded D−measurable
random variables X.

(xiv) If P (D) = 0 or 1 for all D ∈ D, then E(Y |D) = EY a.s.

In the case A0 = T−1(B) where T : (Ω,A) → (T,B), the assertion that f = E(X|A0) is A0-
measurable is equivalent to stating that f(ω) = g(T (ω)) for all ω ∈ Ω where g is a B-measurable
function on T; see lemma 2.3.1, TSH, page 35. Thus for A0 = T−1(B) with B ∈ B, the change of
variable theorem (lemma 2.3.2) TSH page 36 yields

∫

A0

fdP =

∫

T−1(B)
fdP =

∫

T−1(B)
g(T )dP =

∫

B
gdPT

where PT is the measure induced on (T,B) by PT (B) ≡ P (T−1(B)). We may write

f(ω) = E(X|A0)(ω) = E(X|T (ω)), A0 −measurable,

or vies it as the B−measurable function g on T

g(t) ≡ E(X|t), B −measurable.

For X = 1A, A ∈ A, the conditional expectation is called conditional probability. Its defining
equation is thus

P (A0 ∩A) =

∫

A0

fdP for all A0 ∈ A0,
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and we denote it by P (A|A0) on Ω and by P (A|t) on T when A0 ≡ T−1(B) where T : (Ω,A) →
(T,B). Thus for each fixed set A ∈ A, we have defined uniquely a.s. PT a function P (A|t). But in
elementary classes we think of P (A|t) as a distribution on (Ω,A) for each fixed t. The following
theorem says that this is usually justified.

Theorem 1.2 (Existence of regular conditional probabilities). If (Ω,A) is Euclidean, then there
exist determinations of the functions P (A|t) on T such that for each fixed t the function P (·|t) from
A to [0, 1] is a probability measure over A. We denote them by PX|t(A), A ∈ A. (These are called
regular conditional probabilities.)

Theorem 1.3 If X is a random vector and f(X) is integrable, then

E{f(X)|t} =

∫

X
f(x)dPX|t(x)

for all t except possibly in some set B having PT (B) = 0.
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2 Sufficiency

References:

• Section 1.6, Lehmann and Casella, TPE;

• Sections 1.9 and 2.6, Lehmann and Romano, TSH.

Notation. The typical statistical setup is often

Prob(X ∈ A) = Pθ(A) when θ ∈ Θ is true

where (X ,A, Pθ) is a probability space for each θ ∈ Θ.

Definition 2.1 T : (X ,A) → (T,B) is sufficient for θ (or for P ≡ {Pθ : θ ∈ Θ}) if there exist
versions of Pθ(A|t) or of their densities pθ(x|t) which do not depend on θ.

Example 2.1 Let X1, . . . ,Xn be i.i.d. Bernoulli(θ) with 0 < θ < 1; let T ≡
∑n

1 Xi. Then T is
sufficient for θ since

pθ(x|t) =
pθ(x, t)

pθ(t)
=
θ
∑

xi(1− θ)n−
∑

xi

(n
t

)
θt(1− θ)n−t

=
1(n
t

)

for all θ and all x having pθ(t) > 0.

Example 2.2 Let X1, . . . ,Xn be i.i.d. Poisson(θ) with 0 < θ < ∞; let T =
∑n

1 Xi. Then T is
sufficient for θ since

pθ(x|t) =
pθ(x, t)

pθ(t)
=

e−nθθ
∑

xi/
∏

xi!

e−nθ(nθ)t/t!
=

(
t

x1 · · · xn

)(
1

n

)t

.

Example 2.3 LetX1, . . . ,Xn be i.i.d. with continuous d.f. F . Then the order statistics (X(1), . . . ,X(n)

are sufficient for F ; equivalently Fn ≡ n−11{Xi ≤ ·} is sufficient for F . (See TSH pages 37 - 176.)

Example 2.4 Let (X ,A) be a measurable space, and let (X n,An) be its n−fold product space.
For any P ∈ M ≡ {all probability measures on A}, let Pn denote the distribution of X1, . . . ,Xn

i.i.d. P . Let Pn ≡ n−1∑n
i=1 δXi be the empirical measure. Then Pn is sufficient for P ∈ M. (For

the proof, see the end of this section.)

Theorem 2.1 (Neyman - Fisher - Halmos - Savage factorization theorem). If the distributions
{Pθ : θ ∈ Θ} have densities pθ with respect to a σ−finite measure µ, then T is sufficient for θ if and
only if there exist nonnegative B−measurable functions gθ on T and a non-negative A−measurable
function h on X such that

pθ(x) = gθ(T (x))h(x) a.e. (X ,A, µ).

Proof. TSH, theorem 2.6.2 and corollary 2.6.1, pages 45 and 46. !
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Example 2.5 (Markov dependent Bernoulli trials). Suppose that Xi ∼ Bernoulli(p), i = 1, . . . , n
as in example 2.1, but now suppose that the Xi form a Markov chain with

P (Xi = 1|Xi−1) = λ, i = 2, 3, . . . , n.

Then the remaining transitions probabilities are all determined and

P (Xi = 1|Xi−1 = 0) = (1− λ)p/q,

P (Xi = 0|Xi−1 = 1) = 1− λ,

P (Xi = 0|Xi−1 = 0) = (1− 2p+ λp)/q,

and

Θ = {(p, λ) : (2p− 1)/p ∨ 0 ≤ λ ≤ 1, 0 ≤ p ≤ 1}.

Then

Pθ(X = x) =
(1− 2p+ λp)

qn−2
arbsct

where

r =
n∑

i=2

xi−1xi, s =
n∑

i=1

xi, t = x1 + xn,

and

a =
λ(1− 2p + λp)

p(1− λ)2
,

b =
(1− λ)2pq

(1− 2p + λp)2
,

c =
(1− 2p+ λp)

q(1− λ)
.

Thus (R,S, T ) ≡ (
∑n

2 Xi−1Xi,
∑n

1 Xi,X1 + Xn) is sufficient for Θ by the factorization theorem;
see Klotz (1973).

Example 2.6 (Univariate normal). Let X1, . . . ,Xn be i.i.d. N(µ, σ2). Then (
∑

Xi,
∑

X2
i ) or

(X,S2) (with S2 ≡
∑

(Xi −X)2/(n − 1) is sufficient for (µ, σ2) by the factorization theorem.

Example 2.7 (Multivariate normal). Let X1, . . . ,Xn be i.i.d. Nk(µ,Σ). Then (
∑

X i,
∑

XiX
T
i )

or (X, Σ̂) (with Σ̂ ≡ n−1∑X iX
T
i −XX

T
) is sufficient for (µ,Σ) by the factorization theorem.

Example 2.8 Suppose that X1, . . . ,Xn are i.i.d. Exponential(µ, σ):

pθ(x) = σ−1 exp(−(x− µ)/σ)1[µ,∞)(x)

where θ = (µ, σ) ∈ R × (0,∞). Then (minXi,
∑n

i=1(Xi −minXj)) is sufficient for θ = (µ, σ) by
the factorization theorem.

Example 2.9 if Y = Xβ + ε in Rn where ε ∼ Nn(0, σ2I), then β̂n ≡ (XTX)−1XTY and SSE ≡
‖Y −Xβ̂‖2 are sufficient for (β, σ2) by the factorization theorem.



8 CHAPTER 13. SUFFICIENCY AND UNBIASED ESTIMATION

Example 2.10 If X1, . . . ,Xn are i.i.d. N(µ, c2µ2) with c2 known, then (X,S2) is sufficient for µ.

Example 2.11 Let X1, . . . ,Xn be i.i.d. Exponential(θ), pθ(x) = θ exp(−θx)1[0,∞)(x). Let x0 > 0
be a fixed number, and suppose we observe only Yi ≡ Xi ∧ x0, δi ≡ 1{Xi ≤ x0}, i = 1, . . . , n. Then

pθ(y, δ) =
n∏

i=1

{θe−θyi}δi{e−θx0}1−δi = θN exp(−θT )

where N ≡
∑n

1 δi = the number of observations failed by time x0 and

T ≡
n∑

i=1

Yiδi + x0(n−N) = total time on test.

Thus (N,T ) is sufficient for θ by the factorization theorem.

Example 2.12 (Buffon’s needle problem). Perlman and Wichura (1975) give a very nice series of
examples of the use of sufficiency in variants of the classical “Buffon’s needle problem”.

Proof. for example 2.5: First, let

Sn ≡ σ{A ∈ An : πA = A for all π ∈ Πn};

here Πn is the collection of all permutations of {1, . . . , n} and πx = (xπ(1), xπ(2), . . . , xπ(n)). We
claim that

Pn(A|Sn) =
1

n!

∑

π∈Π
1A(πX) a.s. Pn.

To see this, for any integrable function f : X n → R, let Y = f(X), and set

f0(x) =
1

n!

∑

π∈Π
f(πx) =

1

n!
#of permutations of x in A

if f = 1A. Then f0 is Sn-measurable, since it is a symmetric function of its arguments. Also, since
the X’s are identically distributed, for A0 ∈ Sn ≡ A0,

∫

A0

f(x)dPn(x) =

∫

A0

f(πx)dPn(x)

for all π ∈ Πn. Summing across this equality on π and dividing by n! yields
∫

A0

f(x)dPn(x) =

∫

A0

f0(x)dP
n(x).

and this implies that

E(f(X)|Sn) = E(Y |Sn) = f0(X) ∈ mSn.

To get from Sn to Pn see Dudley (1999), theorem 5.1.9, page 177.
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3 Exponential Families and Sufficiency

Definition 3.1 Suppose that (X ,A) = (Rm,Bm) for some m ≥ 1, and that X ∼ Pθ has density

pθ(x) = c(θ) exp(
k∑

j=1

Qj(θ)Tj(x))h(x)

with respect to a σ−finite measure µ on some subset of Rm. Then {pθ : θ ∈ Θ} is called a
k-parameter exponential family.

Example 3.1 (Bernoulli). If X = (X1, . . . ,Xn) are i.i.d. Bernoulli(θ)

pθ(x) = θ
∑

xi(1− θ)n−
∑

xi = en log(1−θ) exp(log(θ/(1− θ))
n∑

1

xi)

on {0, 1}n is an exponential family, and, by the factorization theorem T =
∑n

1 Xi is sufficient.

Example 3.2 If X = (X1, . . . ,Xn) are i.i.d. N(µ, σ2), θ = (µ, σ2), then

pθ(x) = (2πσ2)−n/2 exp(−(2σ2)−1
n∑

1

(xi − µ)2)

= (2πσ2)−n/2e−nµ/2σ2
exp((−1/2σ2)

n∑

1

x2i + (µ/σ2)
n∑

1

xi)

is an exponential family, and by the factorization theorem (
∑n

1 Xi,
∑n

1 X
2
i ) is sufficient.

Example 3.3 (Counterexample: shifted exponential distributions). Suppose that X1, . . . ,Xn are
i.i.d. with the shifted Exponential(µ, σ) distribution

pθ(x) = σ−1 exp(−(x− µ)/σ)1[µ,∞)(x).

Then

pθ(x) = σ−n exp

{
−

n∑

i=1

(Xi − µ)/σ

}
1[µ,∞)(minxi)

is not an exponential family. As noted in section 2, the factorization theorem still works and shows
that (

∑
(Xi−minXj),minXi) are sufficient. Note that a support set depending on θ is not allowed

for an exponential family.

Example 3.4 (Inverse Gaussian). This distribution is given by the density

p(x;µ, λ) =

(
λ

2π

)1/2

x−3/2 exp

(
−λ(x− µ)2

2µ2x

)
1(0,∞)(x).

Here µ is the mean and λ is a precision parameter. It sometimes is useful to reparametrize using
α = λ/µ2, yielding

p(x;α, λ) = (2πx3)1/2 exp

(
(αλ)1/2 − 1

2
log λ− 1

2
αx− λ

2
x−1

)
,

so that for a sample of size n, (
∑n

1 Xi,
∑n

1 X
−1
i ) is sufficient for the natural parameter (α/2, λ/2).
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Theorem 3.1 For the k−parameter exponential family T = (T1(X), . . . , Tk(X)) is sufficient.

Proof. This follows immediately from the factorization theorem. !

Remark 3.1 If

pθ(x) = c(θ) exp




k∑

j=1

θjTj(x)



 h(x), θ ∈ Θ ⊂ Rk,

with respect to µ, then pθ is said to have its natural parametrization. Note that Θ is convex in this
parametrization since, for 0 < λ < 1, λ ≡ 1− λ, θ, θ∗ ∈ Θ ⊂ Rk,

∫
exp




k∑

j=1

(λθj + λθ∗j )Tj(x)



h(x)dµ(x)

=

∫ 


exp




k∑

j=1

θjTj(x)










λ

exp




k∑

j=1

θ∗jTj(x)










λ

h(x)dµ(x)

≤






∫
exp




k∑

j=1

θjTj(x)



h(x)dµ(x)






λ



∫
exp




k∑

j=1

θ∗jTj(x)



 h(x)dµ(x)






λ

< ∞

by Hölder’s inequality with p = 1/λ, q = 1/λ.

Theorem 3.2 If X has the k = r + s parameter exponential family density

pθ,ξ(x) = c(θ, ξ) exp






r∑

i=1

θiUi(x) +
s∑

j=1

ξjTj(x)




 h(x)

with respect to µ, then the marginal distribution of T is the exponential family

pθ,ξ(t) = c(θ, ξ) exp






s∑

j=1

ξjtj




Hθ(t),

and the conditional distribution of U given T = t is of the exponential family form

pθ(u|t) = ct(θ) exp

{
r∑

i=1

θiui

}

H̃t(u).

Proof. See TSH, page 48, lemma 2.7.2. !
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4 Applications of Sufficiency

Our first application of sufficiency is to show quite generally that nothing is lost in terms of risk if
we base decisions on a sufficient statistic.

Theorem 4.1 Let X ∼ Pθ ∈ P, θ ∈ Θ, and let T = T (X) be sufficient for P. Suppose the
loss function is L : Θ ×A → R+. Then for any procedure d = d(·|X) ∈ D there exists a (possibly
randomized) procedure d∗(·|T ) depending onX only through T (X) which has the same risk function
as d(·|X): R(θ, d∗) = R(θ, d) for all θ ∈ Θ.

Proof. First we give the proof for a finite action space A = {a1, . . . , ak}. Define a new rule d∗

by

d∗(ai|T ) ≡ E{d(ai|X)|T};

by sufficiency d∗ does not depend on θ. Then

R(θ, d) = EθL(θ, d(·|X))

=

∫

X

k∑

i=1

L(θ, ai)d(ai|x)dPθ(x)

=
k∑

i=1

L(θ, ai)Eθ{d(ai|X)}

=
k∑

i=1

L(θ, ai)Eθ{E[d(ai|X)|T ]}

=
k∑

i=1

L(θ, ai)Eθ{d∗(ai|T )}

=

∫

T

k∑

i=1

L(θ, ai)d
∗(ai|t)dP T

θ (t)

= R(θ, d∗),

completing the proof in the case that A is finite. !

Now we prove the statement for a general action space A under the assumption that regular
conditional expectations exist. Our proof will use the following lemma:

Lemma 4.1 if f ≥ 0, then
∫

fdµ =

∫ ∞

0
µ({x : f(x) > h})dh.

Proof. This is almost exactly the same as in the case of a probability measure µ:
∫

fdµ =

∫

X

∫

(0,f(x))
dhdµ(x) =

∫ ∞

0

∫

{x:f(x)>h}
dµ(x)dh.

!
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Proof. (continued). Now for the general proof: for a.e. (PT ) fixed value of T = t, P (·|T = t)
is a probability distribution that does not depend on θ (since T is sufficient). Thus for B ∈ BA (a
sigma-field of subsets of the actions space A) we may define

d∗(B|t) =
∫

X
d(B|x)dPX|T (x|t) = E{d(B|X)|T = t};

here d(B|x) is a bounded measurable function of x. Thus d∗ : BA × T → [0, 1] is a decision rule.
Then by using the lemma (at the second and seventh equalities), Fubini (at the third and sixth
equalities), and by computing conditionally (at the fourth equality),

R(θ, d) =

∫

X

∫

A
L(θ, a)d(da|x)dPθ(x)

=

∫

X

∫ ∞

0
d({a : L(θ, a) > h}|x)dhdPθ(x)

=

∫ ∞

0

∫

X
d({a : L(θ, a) > h}|x)dPθ(x)dh

=

∫ ∞

0

∫

T

∫

X
d({a : L(θ, a) > h}|x)dPX|T (x|t)dP T

θ (t)dh

=

∫ ∞

0

∫

T
d∗({a : L(θ, a) > h}|t)dP T

θ (t)dh

=

∫

T

∫ ∞

0
d∗({a : L(θ, a) > h}|t)dhdP T

θ (t)

=

∫

T

∫

A
L(θ, a)d∗(da|t)dP T

θ (t)

= R(θ, d∗);

where we used the definition of d∗ in the fifth equality. !

Here is a related result which does not involve sufficiency per se, but illustrates the role of
convexity of the loss function L(θ, a).

Proposition 4.1 if L(θ, ·) is convex for each θ ∈ Θ and if A is convex, then for any rule φ ∈ D
there is a nonrandomized rule φ∗ which is at least as good: R(θ, φ∗) ≤ R(θ, φ) for all θ.

Proof. This is a straightforward application of Jensen’s inequality:

R(θ, φ) =

∫

X

∫

A
L(θ, a)φ(da|x)dPθ(x)

≥
∫

X
L(θ,

∫

A
aφ(da|x))dPθ(x) by Jensen’s inequality since L is convex

≡
∫

X
L(θ, φ∗(x))dPθ(x)

= R(θ, φ∗).

!

Note that we can think of φ∗ as either

φ∗(B|x) = δ∫
A aφ(da|x)(B), φ∗ : BA × X → [0, 1],
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or as

φ∗(x) =

∫

A
aφ(da|x), φ∗ : X → A.

The following result shows that by conditioning on a sufficient statistic in the presence of a
convex loss function we always yields smaller risk.

Theorem 4.2 (Rao-Blackwell theorem). Let X ∼ Pθ ∈ P ≡ {Pθ : θ ∈ Θ} and let T be sufficient
for P. Suppose that L(θ, a) is a convex function of a for each θ ∈ Θ and that S is an estimator of
g(θ) (possibly randomized, S = φ(·|X)) with finite risk

R(θ, S) = EθL(θ, S) for all θ ∈ Θ.

Let S∗ ≡ E(S|T ). Then

R(θ, S∗) ≤ R(θ, S) for all θ ∈ Θ.(1)

If L(θ, a) is a strictly convex function of a, then strict inequality holds in (1) unless S = S∗.

Proof. By Jensen’s inequality for conditional expectations we have

E[L(θ, S)|T ] ≥ L(θ,E(S|T ))] a.s.

Hence

R(θ, S) = EθL(θ, S) = Eθ{E[L(θ, S)|T ]}
≥ Eθ{L(θ,E(S|T ))}
= EθL(θ, S

∗) = R(θ, S∗).

if L is strictly convex, then the inequality is strict unless S = S∗ a.s. !
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5 Ancillarity and completeness

The notion of sufficiency involves lack of dependence on θ of a conditional distribution. But it is
also of interest to know what functions V ≡ V (X) have unconditional distributions which do not
depend on θ.

Definition 5.1 Let X ∼ Pθ ∈ P = {Pθ : θ ∈ Θ}. A statistic V = V (X) ( V : (X ,A) → (V, C)) is
ancillary if Pθ(V (X) ∈ C) does not depend on θ for all C ∈ C. V is first - order ancillary if EθV (X)
does not depend on θ.

Definition 5.2 Let X ∼ Pθ and suppose that T is sufficient . Then PT ≡ {P T
θ : θ ∈ Θ} is

complete (or T is complete) if Eθh(T ) = 0 for all θ ∈ Θ implies h(T ) = 0 a.s. PT . Equivalently, T
is complete if no non-constant function h(T ) is first order ancillary.

Theorem 5.1 (Completeness of an exponential family). Suppose that X has the exponential
family distribution with its natural parametrization as in remark 3.1, T = (T1, . . . , Tk) and PT =
{P T

θ : θ ∈ Θ0}. The family PT is complete provided Θ0 contains a k−dimensional rectangle.

Proof. Uniqueness of Laplace transforms. See TSH pages 49 and 116. !

Here are some examples of ancillarity and completeness.

Example 5.1 (Bernoulli) If (X1, . . . ,Xn) are i.i.d. Bernoulli(θ), then T =
∑n

1 Xi is sufficient and
complete by theorem 5.1.

Example 5.2 (Normal, one sample). If X = (X1, . . . ,Xn) are i.i.d. N(µ, σ2), then (Xn, S2) is
sufficient and complete by theorem 5.1.

Example 5.3 (Normal, two samples). If X = (X1, . . . ,Xm) are i.i.d. N(µ, σ2), Y = (Y1, . . . , Yn)
are i.i.d. N(ν, τ2) and independent of the Xj ’s, then (X, y, S2

X , S2
Y ) is sufficient and complete by

theorem 13.5.3.

Example 5.4 (Normal; two samples with equal means). If the model is as in example 5.3, but
µ = ν, then (X,Y , S2

X , S2
Y ) is sufficient, but it is not complete since X − Y = µ − µ = 0, but

h(T ) ≡ X − Y 0= 0. [A consequence is that there is no UMVUE of g(θ) = µ in this model.
Question: what is the MLE and what is its asymptotic behavior?]

Example 5.5 (Uniform(0, θ)). If X = (X1, . . . ,Xn) are i.i.d. Uniform(0, θ) for all θ, then T ≡
max1≤i≤nXi = X(n) is sufficient and complete:

Eθh(T ) =

∫ θ

0
h(t)

n

θ
tn−1dt = 0 for all θ;

which implies that
∫ θ

0
h(t)tn−1dt = 0 for all θ;

which implies, since h = h+ − h−, that
∫ θ

0
h+(t)tn−1dt =

∫ θ

0
h−(t)tn−1dt = 0 for all θ;
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which implies, by taking differences over θ and then passing to the sigma-field of sets generated by
the intervals (the Borel sigma - field), that

∫

A
h+(t)tn−1dt =

∫

A
h−tn−1dt = 0 for all Borel sets A.

By taking A = {t : h(t) > 0} in this last equality we find that
∫

[t:h(t)>0]
h+(t)tn−1dt = 0

which implies that h+(t) = 0 a.e. Lebesgue. Choosing A = {t : h(t) < 0} yields h−(t) = 0 a.e.
Lebesgue, and hence h = 0 a.e. Lebesgue. Thus we conclude that

Pθ(h(T ) = 0) = 1 for all θ

or h(T ) = 0 a.s. PT .

Example 5.6 (Uniform(θ − 1/2, θ + 1/2)). If X1, . . . ,Xn are i.i.d. Uniform(θ − 1/2, θ + 1/2),
θ ∈ R, then T = (X(1),X(n)) is sufficient, but V (X) = X(n) −X(1) is ancillary and hence T is not
complete:

Eθ

{
X(n) −X(1) −

n− 1

n+ 1

}
=

{(
n

n+ 1
+ θ − 1/2

)
−

(
1

n+ 1
+ θ − 1/2

)
− n− 1

n+ 1

}
= 0

for all θ.

Example 5.7 (Normal location ancillary). If X = (X1, . . . ,Xn) are i.i.d. N(θ, 1), then V (X) =
(X1−X, . . . ,Xn−X)T ∼ Nn(0, I−n−111T ) is ancillary. [Note that X is equivalent to (X,V (X)).]

Example 5.8 If X = (X1, . . . ,Xn) are i.i.d Logistic(θ, 1), then T (X) = (X(1), . . . ,X(n)) is suffi-
cient for θ (in fact T is minimal sufficient; see Lehmann TPE page 43), but V (X) = v(T (X)) =
(X(n) − X(1), . . . ,X(n) − X(n−1)) has a distribution which is not a function of θ and hence V is
ancillary; thus T is not complete.

Example 5.9 (Nonparametric family; sufficiency of order statistics; ancillarity of the ranks). If
X = (X1, . . . ,Xn) are i.i.d. F ∈ Fc ≡ {all continuous df’s}, then T (X) = (X(1), . . . ,X(n))
is sufficient for F from example 2.3. As will be seen below, T is complete for F ∈ Fac ≡
{all df’s F with a density function f w.r.t. Lebesgue measure λ} ⊂ Fc. If R = (R1, . . . , Rn) ≡
V (X) with Ri ≡ {number of X ′

js ≤ Xi}, then X is equivalent to (T,R), and V (X) = R is an-
cillary: PF (R = r) = 1/n! for all r ∈ Π ≡ {all permutations of {1, . . . , n}}. In fact, T and R are
independent:

PF (T ∈ A, R = r) =
1

n!

∫

A
n! dFn(x), A ∈ Bn(ordered), r ∈ Π.

The phenomenon exhibited in the last example is quite general, as is shown by the following
theorem.

Theorem 5.2 (Basu). if T is complete and sufficient for the family P = {Pθ : θ ∈ Θ}, then any
ancillary statistic V is independent of T .
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Proof. Since V is ancillary, Pθ(V ∈ A) ≡ pA does not depend on θ for all A. Since T is
sufficient for P, P (V ∈ A|T ) does not depend on θ, and EθP (V ∈ A|T ) = P (V ∈ A) ≡ pA, or

Eθ{P (V ∈ A|T )− pA} = 0 for all θ.

Hence by completeness P (V ∈ A|T ) = pA almost surely P. Hence V is independent of T . !

Now we will prove the completeness of the order statistics claimed in example 5.9 above.

Theorem 5.3 (Completeness of the order statistics). Let F be a convex class of absolutely con-
tinuous df’s which contains all uniform densities. If X = (X1, . . . ,Xn) are i.i.d. F ∈ F , then
T (X) = (X(1), . . . ,X(n)) is a complete statistic for F ∈ F .

Proof. We have to show that EFh(T ) = 0 for all F ∈ F implies PF (h(T ) = 0) = 1 for all
F ∈ F .
Step 1: A function δ(x) (such as δ(x) ≡ h(T (x)) is a function of T only if it is symmetric in its
arguments; δ(πx) = δ(x) with πx ≡ (xπ(1), . . . , xπ(n)) for any permutation π = (π(1), . . . , π(n)) of
(1, . . . , n).
Step 2: Let f1, . . . , fn be n densities corresponding to F1, . . . , Fn ∈ F , and let α1, . . . , αn > 0. Then
f(x) =

∑n
i=1 αifi/

∑n
i=1 αi is a density corresponding to F ∈ F , and EFh(T ) = 0 implies

∫
· · ·

∫
δ(x1, . . . , xn)f(x1) · · · f(xn) dx = 0

or

∫
· · ·

∫
δ(x1, . . . , xn)

n∏

j=1

(
n∑

i=1

αifi(xj)

)

dx = 0

for all α1, . . . , αn > 0. The left side may be rewritten as a polynomial in α1, . . . , αn which is
identically zero, and hence its coefficients must all be zero. In particular, the coefficient of α1, . . . , αn

must be zero. This coefficient is

C ≡
∑

π∈Π

∫
· · ·

∫
δ(x1, . . . , xn)f1(xπ(1)) · · · fn(xπ(n))dx

=
∑

π∈Π

∫
· · ·

∫
δ(πx)

n∏

i=1

fi(xi)dx

=
∑

π∈Π

∫
· · ·

∫
δ(x)

n∏

i=1

fi(xi)dx by symmetry of δ

= n!

∫
· · ·

∫
δ(x)

n∏

i=1

fi(xi)dx.

Now let fi(x) = (bi − ai)−11[ai,bi](x), i = 1, . . . , n; i.e. uniform densities on [a, b]. Hence C = 0
implies

∫ b1

a1

· · ·
∫ bn

an

δ(x)dx = 0;
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that is, the integral of δ over any n−dimensional rectangle is 0, and this implies that δ = 0 except
on a set of Lebesgue measure 0. Thus PF (h(T ) = 0) = 1 for all F ∈ F . !

For another method of proof, see Lehmann and Romano TPE, example 4.3.4, page 118.

Remarks on Sufficiency and Ancillarity
Suppose we have our choice of two experiments:

(i) We observe X ∼ PX
θ ;

(ii) We observe T ∼ P T
θ , and then conditional on T = t we observe X ∼ PX|t.

Then the distribution of X is PX
θ in both cases. Thus it seems reasonable that:

A. Inferences about θ should be identical in both models.

B. Only the experiment of observing T ∼ P T
θ is informative about θ.

We are thus lead to:

Sufficiency principle: If T is sufficient for θ in a given model, then identical conclusions should be
drawn from data points x1 and x2 having T (x1) = T (x2). Thus T partitions the sample space X
into regions on which identical conclusions are to be drawn. The adequacy of this principle in a
decision theoretic framework was demonstrated in Theorem 4.1.

Testing the adequacy of the model: The adequacy of the model can be tested by seeing whether the
data X given T = t behave in accord with the known (if the model is true) conditional distribution
PX|T=t.

Recall that a sufficient statistic T induces a partition of the sample space; and in fact it is this
partition, rather than the particular statistic inducing the partition, that is the fundamental object.

If no coarser partition of the sample space that retains sufficiency is possible, then T is called
minimal sufficient. See Lehmann and Casella, TPE, pages 39, 69, and 78.

Consider again the typical statistical setup X ∼ Pθ on (X ,A) for some unknown θ ∈ Θ.

Definition 5.3 If X = (T, V ) where the distribution of V is independent of θ, then V is called an
ancillary statistic. Then T is called conditionally sufficient for θ: we have fθ(t, v) = fθ(t|v)f(v).

More generally, suppose that θ = (θ1, θ2) where θ2 is a nuisance parameter and Θ = Θ1 × Θ2.

Now suppose that X = (T, V ) where P V
θ = P V

θ2
and P T |V=v

θ = P T |V=v
θ1

for all v. Then V is
called ancillary for θ1 in the presence of θ2: fθ1,θ2(t, v) = fθ1(t|v)fθ2(v). This leads to the following
conditionality principle:

Conditionality Principle: Conclusions about θ1 are to be drawn as if V were fixed
at its observed v. Conditioning on ancillaries leads to partitioning the sample space
(just as sufficiency does). The degree to which these sets contain differing amounts of
information about θ1 determines the benefits to be derived from such conditioning.

Examples showing the reasonableness of this principle appear inn Cox and Hinkley (197x),
pages 32, 34, 38. They concern:

• Random sample size.
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• Mixtures of two normal distributions.

• Conditioning on the independent variables in multiple regression.

• Two measuring instruments.

• Configurations in location - scale models.

Examples showing difficulties with this principle center on non-uniqueness and lack of general
methods for constructing them.
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6 Unbiased estimation

One of the classical ways of restricting the class of estimators which are to be considered is by
imposing the restriction of unbiasedness. This is a rather severe restriction, and in fact, if a
complete sufficient statistic T is available, then there exists a unique uniform minimum variance
unbiased estimator, or UMVUE.

Theorem 6.1 (Lehmann - Scheffé). Suppose that T is complete and sufficient for θ. Let S be
unbiased for g(θ) with finite variance. Then S∗ = E(S|T ) is the unique UMVUE of g(θ): for any
unbiased estimator d = d(X) of g(θ),

R(θ, S∗) ≡ Eθ(g(θ)− S∗)2 ≤ Eθ(g(θ)− d(X))2 = R(θ, d)

for all θ.

Proof. First,

EθS
∗ = EθE(S|T ) = EθS = g(θ),

by the unbiasedness of S, and hence S∗ is also unbiased. Also V arθ[S∗] ≤ V arθ[S] by Blackwell -
Rao. Moreover, S∗ does not depend on the choice of S: if S1 is unbiased then

Eθ(S
∗ − S∗

1) = Eθ{E(S|T ) − E(S1|T )} = Eθ(S)− Eθ(S1) = g(θ)− g(θ) = 0

for all θ ∈ Θ. Thus S∗ = S∗
1 a.s. PT by completeness. !

Remark 6.1 Note that by the Rao-Blackwell theorem 4.2, an analogous result for UM(Risk)UE
holds when L(θ, ·) is convex for each θ: S∗ ≡ E(S|T ) in fact minimizes R(θ, S) ≡ EθL(θ, S) for all
θ in the class of unbiased estimates. See Lehmann and Casella, TPE, theorem 2.1.11, page 88.

For a treatment of the asymptotic efficiency of UMVUE’s in parametric problems, see Portnoy
(1977).

Methods for finding UMVUE estimators: When T is sufficient and complete we can produce
UMVUE’s by several different approaches.

A. Produce an estimator of g(θ) that is a function of T and is unbiased.

B. Find an unbiased estimator S of g(θ) and compute E(S|T ).

C. Solve Eθd(T ) = g(θ) for d.

Example 6.1 (Normal(µ, σ2)). Suppose that X1, . . . ,Xn are i.i.d. N(µ, σ2). Then (X,S2) is
sufficient and complete by theorems 3.1 and 5.1.
A. For estimation of g(θ) = µ, EθX = µ, so X is the UMVUE of g(θ) = µ.
B. If µ = 0 is known, then Y ≡

∑n
1 X

2
i is sufficient and complete, and Y/σ2 ∼ χ2

n, so

E

(
Y

σ2

)r/2

= E(χ2
n)

r/2 = K−1
n,r ≡

2r/2Γ
(
n+r
2

)

Γ(n/2)

for r > −n and Kn,rY r/2 is the UMVUE of g(θ) ≡ σr.
C.(i) If θ = (µ, σ2) as in A, then Y ≡

∑n
1 (Xi − X)2 has (Y/σ2) ∼ χ2

n−1, so Kn−1,rY r/2 =
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Kn−1,r(n− 1)r/2Sr is the UMVUE of σr by method A.
C.(ii) If g(θ) = µ/σ, then XKn−1,−1S−1 is the UMVUE of g(θ) by independence of X , S (under
normality only!), and method A.
C.(iii) If g(θ) = µ+ zpσ ≡ xp where P (X ≤ xp) = p for a fixed p ∈ (0, 1), then X + zpKn−1,1S is
the UMVUE.
C.(iv) If σ = 1 is known and g(θ) ≡ Pµ(X ≤ x) = Φ(x − µ) with x ∈ R fixed, then Φ((x −
X)/

√
1− 1/n) is the UMVUE. [Question: what is the UMVUE of this probability if σ is unknown?]

Proof. This goes by method B: S(X) = 1{X1 ≤ x} is an unbiased estimator of g(θ) = Pµ(X ≤
x); and

S∗ ≡ E(S|T ) = P (X1 ≤ x|X)

= P (X1 −X ≤ x−X|X)

= P (X1 −X ≤ x− x|X = x) on [X = x]

= Φ((x− x)/
√

1− 1/n) on [X = x]

by Basu’s theorem since the ancillary X1 −X ∼ N(0, 1 − 1/n) is independent of X. !

Example 6.2 (Bernoulli(θ)). Let X1, . . . ,Xn be i.i.d. Bernoulli(θ).
(i) Then X = T/n has Eθ(X) = θ and hence is the UMVUE/ of θ.
(ii) If g(θ) = θ(1− θ), (T/n)(n − T )/(n− 1) is the UMVUE.
(iii) If g(θ) = θr with r ≤ n, then

S∗ = S∗(T ) =
T

n
· T − 1

n− 1
· · · T − r + 1

n− r + 1

is the UMVUE.

Proof. (ii) Here we use method C: Let d(t) be the estimator; then we want to solve

Eθd(T ) =
n∑

t=0

d(t)

(
n

t

)
θt(1− θ)n−t = θ(1− θ) ≡ g(θ).

Equivalently,
n∑

t=0

d(t)

(
n

t

)(
θ

1− θ

)t

=
θ(1− θ)

(1− θ)n
=

θ

1− θ

(
1 +

θ

1− θ

)n−2

.

By setting ρ ≡ θ/(1− θ) and expanding the power on the right side we find that

n∑

t=0

d(t)

(
n

t

)
ρt = ρ(1 + ρ)n−2 = ρ

n−2∑

k=0

(
n− 2

k

)
ρk =

n−1∑

t=1

(
n− 2

t− 1

)
ρt.

Equating coefficients of ρt on both sides yields d(0) = d(n) = 0,

d(t) =

(
n− 2

t− 1

)
/

(
n

t

)
, t = 1, . . . , n− 1,

or

d(t) =
t(n− t)

n(n− 1)
, t = 0, . . . , n.

This is just the claimed unbiased estimator. !
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Example 6.3 (Two normal samples with equal means). Suppose that X = (X1, . . . ,Xn) are i.i.d.
N(µ, σ2), and that Y = (Y1, . . . , Yn) are i.i.d. N(µ, τ2). A UMVUE estimator of g(θ) = µ does not
exist.

Proof. Suppose that a = τ2/σ2 is known. Then the joint density is given by

C · exp



− 1

2τ2



a
m∑

i=1

X2
i −

n∑

j=1

Y 2
j



+
µ

τ2



a
m∑

i=1

Xi +
n∑

j=1

Yj









so

Ta =



a
m∑

i=1

X2
i −

n∑

j=1

Y 2
j , a

m∑

i=1

Xi +
n∑

j=1

Yj





is a complete sufficient statistic. Since

E




m∑

i=1

Xi +
1

a

n∑

j=1

Yj



 = µ

(
m+

1

a
n

)
,

Sa(X,Y ) =

(∑m
i=1Xi +

1
a

∑n
j=1 Yj

)

(
m+ 1

an
)

is a UMVU estimator of µ. Note that Sa is unbiased for the original model for any a > 0. Suppose
there exists a UMVUE of g(θ) = µ in the original model, say S∗. Then V arθ(S∗) ≤ V arθ(Sa),
hence also when τ2 = aσ2. But then Sa is the unique UMVUE, which implies S∗ = Sa. But since
a can be arbitrary, this is a contradiction; S∗ cannot be equal to two different estimators at the
same time. !

Also see Lehmann, TPE, example 6.1, page 444. If σ2 and τ2 are known, then the estimator

λX + (1− λ)Y with λ ≡ τ2/n

σ2/m+ τ2/n

has minimal variance over convex combinations of X and Y ; and if σ2 and τ2 are unknown, then
a perfectly reasonable estimator is obtained by replacing λ by

λ̂ ≡ τ̂2/n

σ̂2/m+ τ̂2/n

where τ̂ and σ̂ are estimates of τ and σ.

Example 6.4 (An inadmissible UMVUE). Suppose that X1, . . . ,Xn are i.i.d. N(θ, 1), g(θ) = θ2.
Then

Eθ{X
2 − 1

n
} = V arθ(X) + {Eθ(X)}2 − 1

n
= θ2,

so X
2 − 1/n is the UMVUE of θ2. But it is inadmissible since sometimes X

2 − 1/n ≤ 0 whereas

θ2 ≥ 0. Thus the estimator δ(X) = (X
2 − 1/n) ∨ 0 has smaller risk: recall Lemma 5.1, TPE, page

113.
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Proof. If g(θ) ∈ [a, b] for all θ ∈ Θ, then

R(θ, d) = EθL(θ, d)

= EθL(θ, d){1{d(X) < a}+ 1{d(X) > b}+ EθL(θ, d)1{a ≤ d(X) ≤ b}.

!

Example 6.5 (Another inadmissible UMVUE). Suppose that X1, . . . ,Xn are i.i.d. N(0, σ2). Then
T =

∑n
1 X

2
i is sufficient and complete so the MLE T/n = n−1∑n

1 X
2
i is the UMVUE of σ2 since

Eσ2(T/n) = σ2. But T/n is inadmissible for squared error loss: consider estimates of the form
dc(T ) = cT . Then

R(σ2, dc) = Eσ2(σ2 − cT )2

= E{cσ2(T/σ2 − n) + (nc− 1)σ2}2

= c2σ42n+ (nc− 1)2σ4

= σ4{1− 2nc+ n(n+ 2)c2}

which is minimized by c = (n+2)−1. Thus d1/(n+2)(T ) = T/(n+2) has minimum squared error in
the class dc. It is, in fact, also inadmissible; see TPE page 274, and Ferguson pages 134 - 136.

See Ferguson pages 123 -124 for a nice description of a bioassay problem in which sufficiency
was used to good advantage.
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7 Nonparametric Unbiased Estimation; U - statistics

Suppose that P is a probability distribution on some sample space (X ,A) and suppose that
X1, . . . ,Xm are i.i.d. P . Let h : Xm → R be a symmetric “kernel” function:

h(πx) ≡ h(xπ(1), . . . , xπ(m)) = h(x1, . . . , xm) = h(x).

for all x ∈ Xm and π ∈ Πm; if h is not symmetric we can symmetrize it: replace h by

hs(x) ≡
1

m!

∑

π∈Πm

h(πx).

Note that

EPh(X1, . . . ,Xm) =

∫
· · ·

∫
h(x1, . . . , xm)dP (x1) · · · dP (xm) ≡ g(P ).

Now suppose that X1, . . . ,Xn are i.i.d. P with n ≥ m, write X = (X1, . . . ,Xn), and let

Un ≡ Un(X) ≡ 1(n
m

)
∑

c

h(Xi1 , . . . ,Xim)

where
∑

c denotes summation over the
(n
m

)
combinations of m distinct elements {i1, . . . , im} of

{1, . . . , n}. Un is called an m−th order U−statistic. Clearly Un is an unbiased estimator of g(P ):

EPUn = g(P ).

Moreover, Un is a symmetric function of the data:

Un(X) = Un(πX)

for all π ∈ Πn. All this becomes more explicit when X = R, and we write F instead of P for the
probability measure described in terms of its distribution function. Then we write the empirical
measure Pn in terms of the empirical distribution Fn, and this is equivalent to the order statistics
T ≡ X(·), and Un = Un(X(·)). In fact, if S = h(X1, . . . ,Xm) so that EFS = g(F ), then

S∗ ≡ E{S|T} = Un.

Example 7.1 Let F2 ≡ {F ∈ Fc : EFX2 < ∞}, g(F ) ≡ EFX =
∫
xdF (x). Then

X ≡ 1

n

n∑

i=1

Xi =
1

n

n∑

i=1

X(i)

is the UMVUE of g(F ) (since T (X) = (X(1), . . . ,X(n)) is sufficient and complete for F2. Note that

E(X1|T (X) = X.

Example 7.2 If F2 ≡ {F ∈ Fc : EFX2 < ∞} and g(F ) ≡ (EFX)2 = EF (X1X2), then

Un =
1(n
2

)
∑

1≤i<j≤n

XiXj

is the UMVUE of g(F ) = (EFX)2.
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Example 7.3 If F4 ≡ {F ∈ Fc : EFX4 < ∞} and

g(F ) ≡ V arF (X) =
1

2
EF (X1 −X2),

then

Un =
1(n
2

)
∑

1≤i<j≤n

1

2
(Xi −Xj)

2 =
1

n− 1

n∑

i=1

(Xi −X)2 = S2

is the unique UMVUE of g(F ) = V arF (X).

Example 7.4 If F ∈ Fc

g(F ) ≡ F (x0) =

∫
1(−∞,x0](x)dF (x),

then Un = n−1∑n
i=1 1(−∞,x0](Xi) = Fn(x0) is the unique UMVUE of g(F ).

Example 7.5 Suppose that (X1, Y1), . . . , (Xn, Yn) are i.i.d. F on R2. Set

g(F ) ≡
∫ ∫

[F (x, y)− F (x,∞)F (∞, y)]2dF (x, y) =

∫
· · ·

∫
h(z1, . . . , z5)dF (z1) · · · dF (z5)

where zi = (xi, yi), i = 1, . . . , 5, and

h(z1, . . . , z5) =
1

4
ψ(x1, x2, x3)ψ(x1, x4, x5)ψ(y1, y2, y3)ψ(y1, y4, y5)

where

ψ(u1, u2, u3) = 1[u2≤u1] − 1[u3≤u1].

Remark 7.1 Note that Un has a close relative, the m−th order V−statistic Vn defined by

Vn ≡ 1

nm

n∑

i1=1

· · ·
n∑

im=1

h(Xi1 , . . . ,Xim) =

∫
· · ·

∫

Xm
h(x1, . . . , xm)dPn(x1) · · · dPn(xm)

in which the sum is extended to include all of the diagonal terms.

Remark 7.2 A necessary condition for g(P ) to have an unbiased estimate is that g(αP1+(1−α)P2)
be a polynomial (in α) of degree m ≤ n.
Proof: If g(P ) =

∫
· · ·

∫
h(x)dPm(x), then

g(αP1 + (1− α)P2) =

∫
· · ·

∫
h(x)d{αP1(x1) + (1− α)P2(x1)} · · · {αP1(xm) + (1− α)P2(xm)}

is a polynomial of degree m.

Remark 7.3 There is a lot of theory and probability tools available for U−statistics. See Serfling
(1980), chapter 5, and Lehmann (1975), appendix 5. For some very interesting work on U-processes,
see e.g. Arcones and Giné (1993), a topic which was apparently initiated by Silverman (1983).
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