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Chapter 2

Some Basic Large Sample Theory

1 Modes of Convergence

Consider a probability space (2, A, P). For our first three definitions we suppose that X, X,,, n > 1
are all random variables defined on this one probability space.

Definition 1.1 We say that X,, converges a.s. to X, denoted by X,, —,, X, if
(1) Xp(w) = X(w) for all w e A where P(A°) =0,
or, equivalently, if, for every € > 0

(2) P(sup | X, — X|>€) —0 as n— o00.

m>n

Definition 1.2 We say that X, converges in probability to X and write X,, —, X if for every
e>0

(3) P(|X,—X|>¢€)—0 as n — 0.

Definition 1.3 Let 0 < r < co. We say that X,, converges in r—th mean to X, denoted by
X, —r X, if
4) E\X,—-X|"—0 as n — oo for functions X,, X € L,(P).

Definition 1.4 We say that X,, converges in distribution to X, denoted by X,, —4 X, or F,, — F,
or L(X,,) — L(X) with L referring to the the “law” or “distribution”, if the distribution functions
F,, and F of X,, and X satisfy

(5) F,(x) — F(x) as n — oo for each continuity point x of F'.

Note that Fy, = 1[1/5,00) —d ljo,0c) = F' even though F,(0) = 0 does not converge to 1 = F'(0).
The statement —4 will carry with it the implication that F' corresponds to a (proper) probability
measure P.

Definition 1.5 A sequence of random variables {X,,} is uniformly integrable if

(6) lim limsup £ {|Xn|1[|Xn\2/\}} =0.

A—00 n—oo
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Theorem 1.1 (Convergence implications).

A If X, =4, X, then X, —), X.
B. If X,, —, X, then X,y —, X for some subsequence {n'}.
C. If X;, —, X, then X,, —, X.
D. If X;,, —, X and |X,|" is uniformly integrable, then X,, —, X.
If X,, =, X and limsup,_, E|X,|" < E|X]|", then X,, —, X.
E. If X,, —», X then X,, —»,» X forall 0 <7’ <r.
F.If X, —, X, then X,, —4 X.
G. X,, —p X if and only if every subsequence {n'} contains a further subsequence {n”} for which

Xpr —as X

Theorem 1.2 (Vitali’s theorem). Suppose that X,, € L,(P) where 0 < r < oo and X,, —, X.
Then the following are equivalent:

A. {|X,|"} are uniformly integrable.

B. X, —, X.

C. E|\X,|" — E|X]|".

D. limsup,, E|X.|" < E|X|".

Before proving the theorems we need a short review of some facts about convex functions and
some inequalities. We first briefly review convexity. A real valued function f is convex if

(M) flax+ (1 —a)y) <af(x)+(1-a)f(y)
for all z,y and all 0 < o < 1. This holds if and only if

[f(x) + f(y)]

DN =

®  1(50n) <

for all z,y provided f is continuous and bounded. Note that (8) holds if and only if

[f(s—=r)+ f(s+7)] for all r,s.

N —

9  fls) <
Also
(10)  f"(z) >0  forall x implies f is convex.

We call f strictly convex if strict inequality holds in any of the above. If f is convex, then there
exists a linear function [ such that f(z) > [(x) with equality at a prespecified z¢ in the interior of
the domain of f; this is called the supporting hyperplane theorem.

Definition 1.6 Assuming the following expectations (integrals) exist,

(11) u=E(X)= the mean of X.

(12) 0? =Var[X] = E(X — u)? = the variance of X .

(13) E(X*) = k-th moment of X for k> 1 an integer .

(14) E|X|" = r-th absolute moment of X for r > 0.

(15) E(X — u)* = k- th central moment of X .

(16) Cov[X,Y] = E[(X — ux)(Y — py)] = the covariance of X and Y .
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Proposition 1.1 If E|X|" < oo, then E|X|" and E(X*) are finite for all ¥ < r and integers
k<r.

Proof. Now |x|”/ < 1+ |z|"; and integrability is equivalent to absolute integrability. O

Proposition 1.2 Var(X) = 0? < oo if and only if E(X?) < co. In this case 02 = F(X?) — u?.

Proof.  Suppose that 0% < co. Then o2 + p? = E(X — u)? + E(2uX — p?) = E(X?). Suppose
that E(X?) < co. Then E(X?) — u? = E(X?) - E2uX — pi?) = B(X —p)? = Var[X]. O

Proposition 1.3 (¢,—inequality). E|X +Y|" < ¢, E|X|" + ¢, E|Y|" where ¢, =1 for 0 < r <1
and ¢, = 271 for r > 1.

Proof. Case 1: © > 1. Then |z|" is a convex function of z; take second derivatives. Thus
l(z +y)/2]" < [lz|" + |y|"]/2; and now take expectations.
Case 2: 0 <r <1: Now |z|" is concave and T for x > 0; examine derivatives. Thus

oty y
|z +y|" —|z|" = / rt" Lt —/ r(z+s) " 'ds
T 0

Yy
< / e
0

and now take expectations. O

Proposition 1.4 (Holder inequality). E|XY| < EV7|X["EYs|Y|* = || X|,|Y]|s for 7 > 1 where
1/r +1/s = 1 defines s. When the expectations are finite we have equality if and only if there
exists A and B not both 0 such that A|X|" = B|Y|*® a.e.

Proof.  The result is trivial if E|X|" = 0 or co. Likewise for E|Y|*. So suppose that F|X|" > 0.
Now
laf”  [bI® :
lab| < — + —, as in the figure.
T s

Now let a = |X|/|| X, and b = |Y|/||Y||s; and take expectations. Equality holds if and only if
Y1/1IY |ls = (1 X|/|1X]l,)0=%) a.e.; if and only if

YP (XN X
eyl ~\Ixl,) ~EXF T

if and only if there exist A, B # 0 such that A|X|" = B|Y|°. This also gives the next inequality as
an immediate consequence. O

Proposition 1.5 (Cauchy-Schwarz inequality). (E|XY|)? < E(X?)E(Y?) with equality if and
only if there exists A, B not both 0 such that A|X| = B|Y| a.e.
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Remark 1.1 Thus for non-degenerate random variables (i.e. non-zero variance) with finite vari-
ance we have

(17) —-1<p<1
where

Cov[X,Y]

(18) p=Corr[X,Y] = VarX|Var[]

is called the correlation of X and Y. Note that p =1 if and only if X — ux = A(Y — uy) for some
A>0and p=—1if and only if X — ux = A(Y — uy) for some A < 0. Thus p measures linear
dependence, not dependence.

Proposition 1.6 log E|X|" is convex in r for > 0. It is linear if and only if | X| = c a.e. for some
c.

Proof. Let 0 < r < 5. Apply the Cauchy-Schwarz inequality to | X|®=")/2 and | X|(+7)/2 and
take logs to get

log E|X|* < = {log E|X|*"" + log E|X|*T"} .

N —

Proposition 1.7 (Liapunov inequality). Let X be a random variable. Then EY/ "|X|"is T in r for
r > 0.

Proof. The slope of the chord of y = log E|X|" is T in r by proposition 1.6. That is,
(1/r)log E|X|" is 1 in 7. We used P(2) = 1 < oo to show that E|X|" < oo if E|X|" < oo for
r’ < r in proposition 1.1. O

Exercise 1.1 Let pu, = E|X|". For r > s >t >0 we have p3 tu; =% > pl =t
Proposition 1.8 (Minkowski’s inequality). For r > 1 we have EV/"|X+Y|" < EV"|X["+EY"|Y]".

Proof. It is trivial for » = 1. Suppose that r > 1. Then for any measure

()  EX+Y|" < EX|X+Y|" '+ EY|X +Y|!

X+ 1Y I3 X + YY) by Holder’s inequality
= (Xl + Y]l } BV X +Y|7D°

= (Xl + 1Y)} EVEX + Y

VAN

If E|X +Y|" =0, it is trivial. If not, we divide to get the result. O

Proposition 1.9 (Basic inequality). Let g > 0 be an even function which is T on [0,00). Then for
all random variables X and for all € > 0

FEg(X)
gle)

(19)  P(X]=¢) <
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Proof. Now

(a)  Eg(X) = E{g(X)x>q}+ E{g(X)]x)<q}
E{g(X)1x2q} = 9(6)E{1x>q}
= g(e)P(|X] >¢)

\Y

as claimed. 0O
The next two inequalities are immediate corollaries of the basic inequality.

Proposition 1.10 (Markov’s inequality).

X1

E\X
(20) P(X|>e) < —— for all € >0.

Proposition 1.11 (Chebychev’s inequality).
Var[X]
<

< 3 for all € >0.
€

21 P(X —p[ =€)
Proposition 1.12 (Jensen’s inequality). If g is convex on (a,b) where —oco < a < b < oo and if
P(X € (a,b)) =1 and E(X) is finite (and hence a < E(X) < b), then

(22)  g(EX) < Bg(X).

If g is strictly convex, then equality holds in (22) if and only if X = E(X) with probability 1.

Proof. Let [ be a supporting hyperplane to g at £X. Then

Eg(X) = EI(X)
= [(EX) since [ is linear and P(Q) =1
= g(EX).

Now ¢(X) —I(X) > 0. Thus Eg(X) = El(X) if and only if g(X) = I(X) almost surely, if and only
if X = FX almost surely. O

Exercise 1.2 For any function h € L2(0,1), define a new function Th on (0,1) by Th(u) =
ul fou h(s)ds for 0 < uw < 1. Note that T' is an averaging operator. use the Cauchy-Schwarz
inequality to show that

1 1
2 2
[ tratopans s [ #

Thus T : Ly(0,1) — L9(0,1) is a bounded linear operator with ||T'|| < 2. [Hint: write Th(u) =
u™t i h(s)s*s™*ds for some o]

Exercise 1.3 Suppose that X ~ Binomial(n,p). Use the basic inequality proposition 1.9 with
g(x) = exp(rz), r > 0, to show that for e > 1

X/n S

@) (T2 <o)
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where h(e) = e(log(e) — 1) + 1. From this, show that for A > 0 we have

o () 2) con (e ()

where 1(z) = 2h(1 + z)/x? is monotone decreasing on [0, 00) with ¥(0) = 0 and ¥(x) ~ 2log(z)/x
as & — 00.

Proof. (Proof of theorem 1.1). A follows easily since, for any fixed € > 0
P(| X, — X| > €) < P(Upn>n[|Xm — X| >¢€) —0.

To prove B, first note that X,, —, X implies that for every k > 1 there exists an interger n; such
that P(|X,, — X| > 1/2%) < 27%; we can assume n; T in k; if not, take ny, =ng+ k. Let Ap, =
Uksm[| Xn, — X| > 27%] so that P(4,,) < >0, 278 =27m+ On A% = Mo [| X, — X| < 27F]),
| X, — X| <27% for all k> m;ie on A5, Xp, (w) — X(w). Thus X, — X on A = UP_,AS,,
and P(A°) = P(N%_, Ay,) = lim,, P(Ay,) < lim,, 27+ = 0.

Markov’s inequality gives C via P(|X,, — X| > €¢) < E|X,, — X|"/e" — 0. Holder’s inequality
with 1/(r/r") +1/q = 1 gives E via

E|X,— X" < {B|X,— X[/ Ir(g19y/a
(a) = {E|X, - X["}"/" = 0;

or, alternatively, use Liapunov’s inequality.
Vitali’s theorem 1.2 gives D.
Consider F. Let X,, ~ F;,, and X ~ F. Now

F,(t) = P(X,<t)<P(X<t+e)+P(X,—X|>e¢)

< F(t+e€) +e for all n > some N, .
Also
Fot) = P(Xn<t)>P(X <t—ecand|X, - X|<e) = P(AB)
> P(A)—P(B)=F(t—¢)—P(X,—X|>e€)
> F(t—e€)—€¢  forn> some N!.
Thus

(b) F(t —e€) — e <liminf F,,(t) < limsup F,,(t) < F(t +¢€) +e€.

If ¢ is a continuity point of F, then letting € — 0 in (b) gives F),(t) — F(t). Thus X,, —4 X.

Half of G follows from B since any X,,; —, X. We turn to the other half. Assume that X,, —, X
fails. Then there exists ¢g > 0 for which §yp = limsup P(|X,, — X| > €y) > 0. Thus there exists
a subsequence {n’} for which P(|X,, — X| > ¢y) — do > 0. Thus neither X,  nor any further
subsequence X,,» can —, s X. This is a contradiction. Thus X,, —, X. O

Proof of Vitali’s theorem, theorem 1.2: Suppose that A holds: thus {|X,,|" }»>1 is uniformly inte-
grable. Now X, —, s X for some subsequence by Theorem 1.1. Thus E|X|" = E(liminf | X,/|") <
liminf F|X,/|" < oo by (??7). Thus X € L,(P). Now the C,—inequality gives | X, — X|" <
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C{|Xn|" + | X[}, so that the random variables |X,, — X|" are uniformly integrable. Thus we can
write, for each fixed € > 0,
E’Xn — X‘r E{‘Xn - X’T1[|XR7X|’“26] + E{‘Xn - X’T1[|XR7X|’“§6]
E{‘Xn — X’T1[|XR7X|’“26] +é"
€+ €

ININ A

by the equivalence theorem for uniform integrability by choosing € so small that limsup P(|X,, —
X| > €) <. Thus B holds. B implies C by Theorem 1.1 part E. C implies D trivially. Suppose
that D holds. Define fy to be the bounded continuous function on [0, c0) given by

x”, lz|" < A
Iaz) =40, z|" > A+ 1
AT=A(x =), A<|z|" <A+ 1.
Then
limsup E{| X, 1x, roay} = lmsup {E1X,|" — E{ X 1jx,r<x1)}
n n
< E’X‘r _liminfE{‘Xn‘r1[|Xn|’l‘§A+1}}
<  E|X|" —liminf Ef)\(X,)

E|\X|" — Efy(X) by the Helly-Bray theorem 2.3.5
E{IX| 1 x>}
0 as A — oo since X € L,(P),

IN

l

thus A holds. O

Some Metrics on Probability Distributions

Suppose that P and @ are two probability measures on some measurable space (or sample
space) (X, .A). Let P denote the collection of all probability distributions on (X, .A).

Definition 1.7 The total variation metric dry on P is defined by
(25)  drv(P,Q) = sup [P(A) — Q(A)].

AeA
Definition 1.8 The Hellinger metric H on P is defined by

o) Q) =5 [ IV - Vit

where p, q are densities with respect to any common dominating measure p of P and @ (the choice
w= P+ @ always works).

Proposition 1.13 For P,Q € P, let p and ¢ denote densities with respect to any common domi-
nating measure p (u = P 4 @ always works). Then

@0 sup |PL) - Q)| = 5 [ I~ dldu.

AeA
In other words,

(28)  drv(P,Q) = /\p— qldp .
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Proof.  Letr=p—q. Note that 0= [rdu = [rTdu— [r~dp, so that [rTdu = [r~du, and

/!p—cﬂdu—/r+du+/r_du—2/r+du.

Let B=[p—q > 0] =[r > 0]. Then for any set A,

\/Apdu—/Aqdu!—!/A(p—q)du\
=1 w-ad+ [ 0o
(2

1
/7“+du§ /7"+du— —/!p—q!du-
A 2
On the other hand

) 1P - Q) =1 [ - adil = [rtdu=3 [ o= aldn.

|P(A) — Q(A)]

IN

The claimed equality follows immediately from (a) and (b). O

Proposition 1.14 (Scheffé’s theorem). Suppose that {P,},>1, and P are probability distribu-
tions on a measurable space (X,.A) with corresponding densities {p, }n>1, and p with respect to a
dominating measure u, and suppose that p,, — p almost everywhere with respect to p. Then

(29)  drv(P,,P)— 0.

Proof. From the proof of proposition 1.13 it follows that

(@) drv (P, P) = dpy (P, Py) / v dp

where rt = (p—py) 7 satisfies rf —,. 0and r;7 <pfor all n with [ pdu =1 < co. The conclusion
follows from (a) and the dominated convergence theorem. O

Exercise 1.4 Show that the Hellinger distance H(P, Q) does not depend on the choice of a dom-
inating measure pu.

Exercise 1.5 Show that

(B0 HAPQ)=1- [ VRidu=1-p(P.Q)

where the Hellinger affinity p(P, Q) satisfies p(P, Q) < 1 with equality if and only if P = Q.
Exercise 1.6 Show that

(31) drv(P,Q)=1- /p Aqdp=1-n(P,Q)

where the total variation affinity n(P, Q) satisfies n(P, Q) < 1 with equality if and only if P = Q.
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The Hellinger and total variation metrics are different, but they metrize the same topoplgy on
P, as follows from the inequalities in the following proposition.

Proposition 1.15 (Inequalities relating Hellinger and total variation metrics).
(32)  H*(P.Q) <drv(P,Q) < H(P.Q){1+p(P.Q)}'"/* < V2H(P,Q).

Exercise 1.7 Show that (32) holds.
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2 Classical Limit Theorems

We now state some of the classical limit theorems of probability theory which are of frequent use
in statistics.

Proposition 2.1 (WLLN). If X, Xy,..., Xp,... are i.i.d. with mean p (so E|X| < oo and p =
E(X), then X,, —, p.

Proposition 2.2 (SLLN). If X, Xy,...,X,,... are i.i.d with mean p (so E|X| < oo and p =
E(X)), then X, —4.4. p.

Proposition 2.3 (CLT). If X, Xy,..., X, are i.i.d. with mean y and variance o2 (so BE|X|? < ),
then /n(X, — u) —4 N(0,02).

Proposition 2.4 (Multivariate CLT). If X, X1,..., X,, are i.i.d. random vectors in R? with mean
p = E(X) and covariance matrix ¥ = E(X — p)(X — )’ (so E(X'X) = E||X||* < o0), then
V(X — p) —a Na(0,%).

Proposition 2.5 (Liapunov CLT). Let X,1,...,X,, be row independent random variables with
pni = E(Xpi), 02, = Var(Xp:), and v, = E|Xni — pinil® < 00. Let pn, = 327 iy 02 = S0 02,
Yo = D1 Yni- If 'yn/of’l — 0, then Z?:l(Xm‘ — pni)/on —a N(0,1).

Proposition 2.6 (Lindeberg-Feller CLT). Let X,,; be row independent with 0 means and finite
variances 02, = Var(Xy;). Let S, = > | X,,; and 02 = > 1 | 02,. Then both S,,/o,, —4 N(0,1)
and max{c2,/02 : 1 <i <n} — 0 if and only if the Lindeberg condition

1 n
(1) EZE{]XM]QlHXm‘an}} —0 forall €>0

noi=1

holds.

Proposition 2.7 (The Cramér-Wold device). Random vectors X,, in R? satisfy X,, —4 X if and
only if a/X,, —4a'X in R for all a € R%.

Proposition 2.8 (Continuous mapping or Mann - Wald theorem). Suppose that g : RY — R is
continuous a.s. Px. Then:

A, If X,, —4s X then g(X,,) —as 9(X).

B. If X,, —, X then ¢g(X,) —p g(X).

C. If X,, —4 X then g(X,,) —q4 g(X).

Proposition 2.9 (Slutsky’s theorem). Suppose that A,, —, a, B, — b, where a,b are constants,
and X,, 4 X. Then A, X, + B, —qaX +b.

Proposition 2.10 (¢’-theorem or the delta-method). Suppose that Z,, = a,,(X,, —b) —4 Z in R™
where a,, — 0o, and suppose that g : R™ — R has a derivative ¢’ at b; here ¢ is a k x m matrix.
Then

(2)  an(9(Xn) —g(b)) —ag'(b)Z.
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Definition 2.1 A sequence of random variable is said to be bounded in probability, and we write
Xn =0,(1), if

(3) im limsup P(|X,| > M) =0.

|
M—oo p—oo

If Y;, —, 0, then we write Y, = 0,(1). For any sequence of non-negative real numbers a,, we write
Xy = Oplan) if Xy /an, = Op(1), and we write Y, = op(ay) if Yy, /an = 0,(1).

Proposition 2.11 If X,, —; X, then X,, = O,(1).
Exercise 2.1 Prove proposition 2.11.

Exercise 2.2 (a) Show that if X;, = O,(1) and Y;, = 0,(1), then X,,Y,, = 0,(1).
(b) Show that if X,, = Op(ay) and Y;, = Op(by,) then X, +Y;, = O,(cy,) where ¢, = max{an, by}
(c) Show that if X,, = Oy(ay) and Y, = Op(by,), then X,,Y,, = Op(anby,).

Proposition 2.12 (Polya - Cantelli lemma). If F,, —4 F' and F is continuous, then ||F), — F||cc =
SUP_ o< z<oo [Fn(2) — F(z)| — 0.

Exercise 2.3 Suppose that £;,...,&, are i.i.d. Uniform(0,1).

(a) Show that n&,.1 = n&) —q Exponential(1).

(b) What is the joint limiting distribution of (n&,.1,n&,.2)?

(c) Can you extend the result of (b) to (§u:1,...,&nk) for a fixed k > 17
(d) How would you extend (c) to the situation with k, — oo as n — oco?

Exercise 2.4 Suppose that Xi,..., X, are independent Exponential(\) random variables with
distribution function F)(x) =1 — exp(—Az) for > 0.

(a) We expect Xp., to be on the order of b, = F (1 — 1/n). Compute this explicitly.

(b) Find a sequence of constants a,, so that a,(X,., —b,) —4 “something” and find “something”.
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3 Skorokhod’s Theorem: Replacing —, by —, ..

Our goal in this section is to show how we can convert convergence in distribution into the stronger
mode of almost sure convergence. This often simplifies proofs and makes them more intuitive.

Definition 3.1 For any distribution function F define F~! by F~1(¢) = inf{x : F(x) > t} for
0<t<l.

Proposition 3.1 F~! is left - continuous.

Proof.  To show that F~! is left - continuous, let 0 < ¢ < 1, and set z = F~1(¢). Then F(z) >t
by the right continuity of F. If F' is discontinuous at z, F~(t —€) = z for all small € > 0, and
hence left continuity holds. If F' is continuous at z, then assume F~! is discontinuous from the left
at t. Then for all € > 0, F~1(t —¢) < z— § for some § > 0, and hence F(z —§) >t — ¢ for all € > 0.
hence F(z — §) > t, which implies F~1(t) < z — §, a contradiction. O

Proposition 3.2 If X has continuous distribution function F', then F(X) ~ Uniform(0,1). For
any distribution function F' and any t € (0, 1),

P(F(X)<t) <t

with equality if and only if ¢ is in the range of F. Equivalently, F(F~1(t)) = Fo F~1(t) > t
for all 0 < ¢t < 1 with equality if and only if ¢ is in the range of F. Also, F~!o F(z) < x for
all —oo < x < oo with strict inequality if and only if F(z —¢) = F(x) for some ¢ > 0. Thus
P(F71oF(X)# X) =0 where X ~ F.

Exercise 3.1 Prove proposition 3.2.

Theorem 3.1 (The inverse transformation). Let & ~ Uniform(0,1) and let X = F~1(¢). Then for
all real x,

(1) [X<a]=[f<F(2)].

Thus X has distribution function F'.

Proof. Now ¢ < F(z) implies X = F~1(¢) < x by the definition 3.1 of F~1. If X = F~1(¢) < =,
then F'(z +€) > £ for all € > 0, so that right continuity of F' implies F'(x) > £. Thus the claimed
event identity holds. O

Proposition 3.3 (Elementary Skorokhod theorem). Suppose that X,, —4 Xy. Then there exist
random variables X5, n > 0, all defined on the common probability space ([0, 1], B[0, 1], A) for which

X» < Xy, for every n > 0 and X, —,, X{.
Proof. Let F}, denote the distribution function of X,, and let

(a)  X:=FE ¢  forall n>0

- n
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where £ ~ Uniform(0,1). Then X7 4 X, for all n > 0 by theorem 3.1. It remains only to show
that X' —,s XJ.

Let ¢t € (0,1) be such that there is at most one value z having F'(z) = t. (Thus ¢ corresponds to
a continuity point of F~1.) Let z = F~1(¢). Then F(x) <t for 2 < z. Thus F,(z) < t for n > N,
provided x < z is a continuity point of F. Thus F;!(¢t) > z provided z < z is a continuity point
of F. Thus liminf F;!(¢) > x provided = < z is a continuity point of F. Thus liminf F;1(t) > 2
since there are continuity points x that T z.

We also have F(z) > t for 2 < 2. Thus F,(z) > t, and hence F,(t) < z for n > some N,
provided x > z is a continuity point of F. Thus limsup,, F,, }(t) < x provided x > z is a continuity
point of F. Thus limsup,, F,, }(t) < z since there are continuity points z that | z.

Thus F;1(t) — F~1(t) for all but a countable number of #’s. Since any such set has Lebesgue
measure zero, it follows that X = F,;1(¢) —.s F71(¢) =X;. O

n

Proposition 3.4 (Continuous mapping or Mann-Wald theorem). Suppose that g : R — R is
continuous a.s. Px. Then:

A If X, —4s Xo, then g(X,,) —as 9(Xo).

B. If X,, —, Xo, then ¢g(X,,) — 9(Xo).

C. If X,, —4 Xo, then g(X,,) —q4 9(Xo).

Proof. A. Let N; be the null set such that X, (w) — Xo(w) for all w € NY, and let Ny be
the null set such that g is continuous at Xo(w) for all w € N§. Then for w € N{ N N§ we have
9(Xn(w)) — 9(Xo(w)). But P(N; U Ng) < P(Ny) + P(N2) = 0+ 0 = 0, and the convergence
asserted in A holds.

B. By theorem 1.1 part G, X,, —, Xy if and only if for every subsequence {X,,} there is a further
subsequence {X,»} C {X,} such that X,» —,s Xo. We will apply this to Y, = g(X,,). Let Y,y =
g(X,) be an arbitrary subsequence of {Y,,}. By part G of theorem 1.1 there exists a subsequence
{Xy} of {X,} such that X,,» —,5 Xo. By A we conclude that Y,,» = g(X,v) —4.s. 9(Xo) = Yo.
But by part G of theorem 1.1 (in the converse direction) it follows that Y, = ¢(X,,) — 9(Xo) = Yo.

C. Replace X,,, Xo by X, Xj of the Skorokhod theorem, proposition 3.3. Thus

(@) 9(Xn) £ g(X5) —as 9(X3) L g(Xo).

Since —g .. implies —, which in turn implies —4, (a) implies that g(X,) —4 g(Xo). O

Remark 3.1 Proposition 3.4 remains true for random vectors in RF and, still more generally,
for convergence in law (weak convergence) of random elements in a separable metric space. See
Billingsley (1986), Probability and Measure, page 399, for the first, and Billingsley (1971), Weak
Convergence of Measures: Applications in Probability, theorem 3.3, page 7, for the second. The
original paper is Skorokhod (1956) where the separable metric space case was treated immediately.

Proposition 3.5 (Helly Bray theorem). If X,, —; X and g is bounded and continuous (a.s. Px),
then Fg(X,) — Eg(Xo).

Proof. For the random variables X' of proposition 3.3, it follows from A of proposition 3.4
that g(X}}) —a.s. 9(X§). Thus by equality in distribution guaranteed by the construction of propo-
sition 3.3 and the dominated convergence theorem,

Eg(X,) = Eg(X;,) — Eg(Xj) = Eg(Xo) -
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Remark 3.2 If Fg(X,) — FEg(X) for all bounded continuous functions g, then X, —; Xo.
(Proof: box in the indicator function 1(_, ;) by the bounded continuous functions g, g— defined
by connecting (x,1) to (z + €,0) linearly and (x —¢,1) to (z,0) linearly, respectively.) This gives a
way of defining —; more generally:

Definition 3.2 Suppose that X,,, n > 0 take values in the complete separable metric space (M, d).
Then we say that X,, converges in law or distribution to Xy, and we write X,, —4 X or X,, = X,
if

Eg(X,) — Eg(Xo) for all g € Cy(M);

here C(B) denotes the collection of all bounded continuous functions from M to R.
Proposition 3.6 If X,, —; Xy, then F|Xy| < liminf, o E|X,]|.

Proof. For the random variables X of proposition 3.3, X, —, s Xj. It follows from the the
equality in distribution of proposition 3.3 and Fatou’s lemma

E|Xy| = E|X;| = E(liminf | X]) < liminf F|X}| = liminf F|X,,|.
n n n

Corollary 1 If X,, —; Xy, then Var(Xy) < liminf, Var(X,).

Exercise 3.2 Prove corollary 1. Hint: Note that with X, 4 X, for all n > 0 with X/ independent
of X,,, we have Var(X,) = (1/2)E(X,, — X})%.

Proposition 3.7 (Slutsky’s theorem). If A,, —, a, B, —, b, and Z,, —¢ Z, then A, Z,, + B,, —q
aZ +b.

Proof. Now A, —, a, B, —p b, and Z,, —4 Z where a,b are constants, implies that
(Zn, An, Bn) —a (Z,a,b) in R3. Hence by the R?® version of Skorokhod’s theorem, there exists a

sequence (Z7, A¥ . B}) g (Zn, Ay, By,) such that (2, A%, BY) — (Z*,a,b) 4 (Z,a,b). Hence
(a)  ApZn+ By LAY ZF 4 B —as aZ" +bLaZ +b.

Since —g.s. implies —,, which in turn implies —4, (a) yields the desired conclusion. O
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4 Empirical Measures and Empirical Processes

We first introduce the empirical distribution function G,, and empirical process U,, of i.i.d. Uniform(0, 1)
random variables. Suppose that £1,...,&,,... are i.i.d. Uniform(0, 1). Their empirical distribution
function is

1 n
(1) Galt) = Egl[o,t](&-) for 0<t<1

#{& <t i=1,...,n}

n

= for gn:k§t<§n:k+1a k=0,...,n

where 0 = &0 < &1 < -+ < & < Ennt1 = 1 are the order statistics. The uniform empirical
process is defined by

(2)  Un(t) =vn(Gu(t) —t) for 0<t<1.

The inverse function G,;! of G,, is the uniform quantile function. Thus
(3) G lt) = &ny for (i—1)/n<t<i/n, i=1,...,n.

The uniform quantile process V,, is defined by

(4) Vo) =vn(Grt)—t) for 0<t<1.

Note that

(5) nGy(t) ~ Binomial(n,t) for 0<t<1,

so that

(6) U,(t) has mean 0 and variance t(1 —t) for 0<t<1.
In fact

(7) Cov[ljg4(&i), 1oy (&)] = s At — st for 0 <s,t<1.

Moreover, applying the multivariate CLT to (1o 4(&:), 1j0,q(&i)), it is clear that

®  meno-((§) (20 W) e e

for 0 <s,t<1.
We define {U(¢) : 0 <t < 1} to be a Brownian bridge process if it is a Gaussian process indexed
by ¢ € [0, 1] having

9) EU(t)=0 and Cov[U(s),U(t)] = s At — st

for all 0 < s,¢ < 1. The process U exists and has sample functions U(-,w) which are continuous
for a.e. w as we will show below. Of course the bivariate result (8) immediately extends to all the
finite-dimensional marginal distributions of U,,: for any k¥ > 1 and any ¢1,...,t; € [0,1],

(10)  (Un(t1), -+, Un(tr)) —a (U(t), ..., Uts)) ~ Ni(0, (85 Aty —tity)) -
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Thus we have convergence of all the finite-dimensional distributions of U,, to those of a Brownian
bridge process U, and we write

(11) U, —5q U as n — 00.

We would like to be able to conclude from (11) that g(U,,) —4 g(U) as n — oo for various continuous
functionals such as g(x) = supy<;<; |2(t)| for x € D[0, 1], the space of all right-continuous functions
on [0,1] with left-limits. The conclusion (11) is not strong enough to imply this, but (10) can be
strengthened to a result that does. The Mann-Wald theorem suggests g(U,) —4 ¢g(U) should be
true for “continuous” functionals g, and this raises the question of what metric should be used to
define continuous.

The Empirical Process on R

Let X1,...,X,,... beiid. F with order statistics X,,.1 < --+ < X,,.,. Their empirical distri-
bution function F,, is defined by

(12)  Fo(z) = %21(_00@](&) for — o0 << o0

The empirical process is defined to be /n(F, — F'). It will be very useful to suppose that random
variables X, i = 1,...,n, are defined by

(13) X;=F7Y4¢&) i=1,....,n  forthe &'s of (1).

Theorem 3.1 shows that these X’s are indeed i.i.d. F. Recall from Theorem 3.1 that also
(14)  lixr<a = Lig<P(a)] on (—o0,00) a.s.

for these particular X’s. Thus for these X’s we have

(15)  F; =G,(F) on (—oo,00) a.s.

and

(16) /n(F: — F)=U,(F) on (—o0,00) a.s..

Note from (10) and (16) that

(17)  Vn(F, — F) =4 U(F) as n — 00.

Theorem 4.1 (Glivenko - Cantelli). Let I denote the identity function on [0,1], I(¢) = ¢, for
0 <t<1. Then

(18)  [Gn = Illoc = sup [Gn(t) —t[ —a.s. 0
0<t<1

and

(19)  ||IF), — Flloo= sup |Fu(z) — F(z)| —4.5 0

—oo<r<oo

as n — OoQ.
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Proof. Since
d *
(@)  |Fn—F[ = [F;, = Flloc = |Gn(F) = Flloo < [|Gn — oo,

where the equality in distribution holds jointly in n and with equality if F' is continuous, it suffices
to prove the first part.
Fix a large integer M. Then
Gn —1 = max sup Gn(t) —t
[Gn =1l KT S
= max { sup (Gup(t) —t) Vv sup (t—Gn(t))}

1<GSM " (1) /M <t<j /M (G=1)/M<t<j/M
< oax {Gn(G/M) = (G = 1)/M) v (G/M = Cn((G = 1)/M))}
< max {Gu(G/M) —3/M) vV (G = D)/M = Gn((j = 1)/M))} +1/M
—as. 0+ 1/M

since G, (j/M) —qs. /M, j=1,...,M. But M was arbitrary; hence ||G,, — I||oc —a.5. 0. O

The next natural step is to show that
(200 U,=0U as n— o0 in (D[0,1], | - [loo)
and

(21)  Vn(F, - F) 4 Vn(F: — F) =U,(F) = U(F) as n — oo in (D(—00,00), ] - |leo) -

n

This is essentially what was proved by Donsker (1952). However, it turned out later that
there are measurability difficulties here: (D[0,1],|| - ||oc) is an inseparable Banach space, and even
though U takes values in the separable Banach space (C[0,1],] - ||x), in this case the unfortunate
consequence is that U,, is not a measurable element of (D[0, 1], ||| ); see Billingsley (1968), Chapter
18. Roughly, the Borel sigma-field is too big. Hence an attractive alternative formulation is one
that works around this difficulty essentially by carrying out an explicit Skorokhod construction

of uniform empirical processes U, 4 U,, defined on a common probability space with a Brownian
bridge process U* and satisfying

(22) U} = Uloe = sup |Up(t) —U*(t)| —a.s. 0.
0<t<1
This is the content of the following theorem:

Theorem 4.2 There exists a (sequence of) Brownian bridge processes U} corresponding to a
triangular array of row independent Uniform(0,1) random variables &,1,...,&wm, n > 1, and a
Brownian bridge process U* all defined on a common probability space (2, .4, P), such (22) holds.
Thus it follows that

(23)  |WVn(F: —F) —=U"(F)|lco —as.0 as n— oo.

The convergence in (22) was strengthened in the papers of Komlés, Major, and Tusnddy (1975),
(1978) as follows: the construction can be carried out so that the convergence in (22) holds with
the rate n~'/2logn: there is a construction of U¥ and U* so that

logn

24 F Ul <
(24) s~ Ulleo = €2

a.s. ,
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for some absolute constant C'. Moreover, there is a construction of the sequence(s) {U} },>1 and
U* = U*" on a common probability space so that the joint in n distributions are correct and

(log n)?
ND

In any case, these results have the following corollary:

(25)  |IU, ~ Ul <C

a.s. .

Corollary 1 (Donsker’s theorem). If g : D[0,1] — R is || - ||oo—continuous, then g(U,) — ¢(U).

Here are some examples of this:
Example 4.1 (Kolmogorov’s (two-sided) statistic). If F' is continuous, then

(26)  [VA(Fa = F)lloo = [Un(F)lloo = [[Unllo = [Ulloo -

It is known, via reflection methods (see Shorack and Wellner (1986), pages 33-42) that

27)  P(|Ufloo > X) =2 (=1 lexp(—2k*A%)  for XA >0.
k=1

Example 4.2 (Kolmogorov’s one-sided statistic). If F' is continuous, then

(28)  [VA(Fn = F) o= sup  Vi(Fu(z) = F(2)) £ UL (F) oo = (U oo —a [U* [l

—oo<xr<oo

It is known (see Shorack and Wellner (1986), pages 37 and 142) that

(29)  P(|[UT]|oo > A) = exp(=2)2)  for XA >0.

Example 4.3 (Birnbaum’s statistic). If F' is continuous,

0 [e%s) 1 1
(30) /_ JAlF, (z) — F(z))dF(z) £ / U, (F)dF = /0 U (1) dt — /0 U(t)dt

—00

Now fol U(t)dt is a linear combination of normal random variables, and hence it has a normal distri-
bution. It has expectation 0 by Fubini’s theorem since E(U(t)) = 0 for each fixed ¢t. Furthermore,
again by Fubini’s theorem,

E </01U(t)dt>2 _ E</01U(s)ds/01U(t)dt>

_ /0 1 /0 | B{U() () )dsdt

11 1
= t—st)dsdt = —.
/0/0(5/\ st)ds D

Hence [, U(t)dt ~ N(0,1/12).
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Example 4.4 (Cramér - von Mises statistic). If F' is continuous,

%) ) 1 1
/ (Vi(Fo(z) — F(2))*dF(z) 2 / (U, (F)}2dF = / (U (8)}2dt —g / (U(t)}2dt

In this case it is known that

1 )
o) [ woraty oz
j=1

where the Z;’s are i.i.d. N(0,1), and this distribution has been tabled; see Shorack and Wellner
(1986), page 148.

Example 4.5 (Anderson - Darling statistic). If F' is continuous,

/ {fl_ W ap 2 / {Ul_}de R} . /{U dt.

o t1—1)

It is known in this case that

HUWY a1
S A R % Ea

where the Z;’s are i.i.d. N(0,1). This distribution has also been tabled; see Shorack and Wellner
(1986), page 148.

General Empirical Measures and Processes

Now suppose that X1, Xs,...,X,,... are i.i.d. P on the measurable space (S,S). We let P,
denote the empirical measure of the first n of the X;’s:

1
33) P,==3 Oy :
(33) nz X,
here ¢, denotes the measure with mass 1 at z € S: §,(B) = 1g(x) for B € S. Thus for aset B € S,
(34) P (B)—lil (X)) = #{i<n: X, c B}
n T £ B\Aq) = n t="n: i .

Note that when S = R so that the X;’s are real-valued, and B = (—o0, z] for € R, then
(35)  Pn(B) =Pn((—00,2]) =Fn(z),

the empirical distribution function of the X;’s at x.
The empirical process G, is defined by

(36) Gn= (P, —P).

The question is how to “index” P, and G,, as stochastic processes.
Some history: For the case S = RY, the empirical distribution function {F, (), z € R%}, is the
case obtained by choosing the class of sets to be the lower-left orthants

C=04={(—00,2]: z€RY,
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and this direction was pursued in some detail through the 1950’s and early 1960’s. However, with a
little thought it becomes clear that many other classes of sets will be of interest in R%. For example
why not consider the empirical process indexed by the class of all rectangles

Ra={A=la1,b1] x --- X [ag,bq] : aj,b;j €R, j=1,...,d}
or the class of all closed balls
By={B(z,r): € R r>0}
where B(x,r) = {y € R?: |y — x| < r}; or the class of all half-spaces
Hy={H(u,t): ue S tecR}

where H(u,t) = {y € R : (y,u) <t} and S%' = {u € R?: |u| = 1} denotes the unit sphere in
R%: or the class of all convex sets in R¢

Cy={C c R*: C is convex}?
All of these cases correspond to the empirical process indexed by some class of indicator functions
{10 : C e C}

for the appropriate choice of C. Thus we can consider the empirical measure and the empirical
process as functions on a class of sets C which map sets C' € C to the real-valued random variables

Po(C)  and  Gn(C) = Vn(Py(C) - P(C)).
Note that for any class of sets C we have

supP,(C) <1< 0 and sup |[vn(P,(C) — P(C))| < vn < o,
ceC ceC

so we can regard both P,, and G,, as elements of the space [*°(C) = {z : C — R|supcec |2(C)| < o0}.

More generally still, we can think of indexing the empirical process by a class F of functions
f:S — R. For example, when S = R? a natural class which might easily arise in applications is
the class of functions

F={fi(z): te RY

where f;(z) = |z — t|. This is already an interesting class of functions when d = 1.
For any fixed measureable function f : S — we will use the notation

P(f) = [far Ba(r) = [ Fde, =Y 5.
=1

From the strong law of large numbers it follows that for any fixed function f with E|f(X)| < oo
(37)  Pu(f) —as P(f) = Ef(X1).
By the central limit theorem (CLT) it follows that for any fixed function f with E|f(X)|? < oo

(38)  Gn(f) = Vn(®nu(f) = P(f)) =a G(f);~ N(0,Var(f(X1))
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here G denotes a P—Brownian bridge process: i.e. a mean zero Gaussian process with covariance
function

(39)  Cov[G(f),G(g)] = P(fg) — P(f)P(g)-

The question of interest is: for what classes C of subsets of S, C C A or classes of functions F, can
we make these convergences hold uniformly in C' € C, or uniformly in f € F?7 These are the kinds
of questions with which modern empirical process theory is concerned and can answer.

To state some typical results from this theory, we first need several definitions. If d is a metric
on a set F, then we define the covering numbers of F with respect to d as follows:

(40)  N(e,F,d) = inf{k : there exist fi,...,fr € F such that F C US_ B(fj,€)};

here B(f,e) = {g € F : d(g, f) < €}. Another useful notion is that of a bracket: if | < u are two
real-valued functions defined on S, then the bracket [u,l] is defined by

(41)  [u, ] ={f: U(s) < f(s) <u(s) for all s € S}.

We say that a bracket [u,l] is an e—bracket for the metric d if d(u,l) < e. Then the bracketing
covering number Ny (e, F, d) for a set of functions F is

(42)  Nyj(e, F,d) = inf{k : there exist e—brackets [l1,u1],...,[l, ux] such that F C Uﬁzl[lj,uj]}.

One more bit of notation is needed before stating our theorems: an envelope function F' for a
class of functions F is any function satisfying

(43)  |f(x)| < F(x) forallz € S, and all f e F.
Usually we will take F' to be the minimal measurable majorant
(44)  F(r) = (Sup If(fv)|> ,

fer

where here the % stands for “smallest measurable function above” the quantity in parentheses
(which need not be measurable since it is, in general, a supremum over an uncountable collection).
[Note that this F' is not a distribution function!]

Now we can state two generalizations of the Glivenko-Cantelli theorems.

Theorem 4.3 Suppose that F is a class of functions with finite L;(P)—bracketing numbers:
Ny(e, F, L1(P)) < oo for every € > 0. Then

(45)  [[Pp = Pllx = sup [Pu(f) — P(f)] —as. 0.
feF
Theorem 4.4 Suppose that F is a class of functions with:

A. An integrable envelope function F: P(F) < oo.
B. The truncated classes Fyr = {f Lp<ny: fEF } satisfy

(46) n_l log N(G, FMa Ll(Pn)) —a.s. 0
for every € > 0 and 0 < M < oo. Then, if F is also “suitably measurable”,

(47)  |[Pn = PllF = sup [Pn(f) = P(f)] —as. 0.
feF
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Note that the key hypothesis (46) of Theorem 4.4 is clearly satisfied if

(48) sgpN(e,}"M,Ll(Q)) < 00

for every € > 0 and M > 0; here the supremum is over finitely discrete measures Q.
Finally, here are two generalizations of the Donsker theorem.

Theorem 4.5 (Ossiander’s uniform CLT). Suppose that F is a class of functions with Ly(P)
bracketing numbers Njj(e, F, L2 (P)) satisfying

(49) / \/log Ny(e, F, Ly(P)) de < oo.
0
Then
(50) G, =+vnP,—P)=G in [*(F) as m— o0.

Theorem 4.6 (Pollard’s uniform CLT). Suppose that F is a class of functions satisfying:
A. The envelope function F of F is square integrable: P(F?) < oo.
B. The uniform covering numbers supg, log N (¢||F'[|g .2, F, L2(Q)) satisfy

(51) /O \/sgplogN(EHFHQ,Q,f,LQ(Q))de<oo.

Then
(52) G,=+vnP,—P)=GCG in [*°(F) as m— 00.

For proofs of Theorems 45 - 4.6, see van der Vaart and Wellner (1996). Treatments of empirical
process theory are also given by Dudley (1999) and Van de Geer (1999).
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5 The Partial Sum Process and Brownian Motion

We define {S(¢) : 0 <t <1} to be Brownian motion if S is a Gaussian process indexed by ¢ € [0, 1]
having

(1) E(S(t) =0 and Cov[S(s),S(t)] =s At

for all 0 < s,t < 1. These finite-dimensional distributions are “consistent”, and hence a theorem
of Kolmogorov shows that the process S exists. Note that (1) and normality imply that

(2) S has stationary independent increments .

Exercise 5.1 Suppose that U is a Brownian bridge and Z ~ N (0, 1) is is independent of U. Let
(3) S(t)=U(t) +tZ for 0<t<1

is a Brownian motion.

Exercise 5.2 Suppose that S is a Brownian motion. Show that

(4) U(t) = S(t) — tS(1) for 0<t<1

is a Brownian bridge.

Now suppose that X1,...,X,, are i.i.d. random variables with mean 0 and and variance 1, and
set Xop = 0. We define the partial sum process S,, by

k k+1
=S X; for — <
(5)  Sp(t) =Sn(k/n) = \FZ or —<t<——,
for 0 < k < co. Note that
1 &
Cov[Sp(j/n),Sn(k/n)] = E;;cou[xi,xﬂ]
j/\k

JNEk
= —ZVCLT -

— s/\t if j/n—s and k/n—t.

(6)  Su(t) = \/ \/_ZX —4 VIN(0,1) ~ N(0,1).

for 0 <t <1 by the CLT and Slutsky’s theorem. This suggests that
(7) Sp —fd. S as n — 00.

This will be verified in exercise 5.3. Much more is true: S,, = S as processes in D|0, 1], and hence
9(Sp) —q g(S) for continuous functionals g.
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Exercise 5.3 Show that (7) holds: i.e. for any fixed ¢1,...,; € [0,1]%,
(Sn(t1),- -+, Sp(tr)) —a (S(t1), ..., S(tk)) -

Existence of Brownian motion and Brownian bridge as continuous processes on C[0, 1]

The aim of this subsection to convince you that both Brownian motion and Brownian bridge
exist as continuous Gaussian processes on [0,1], and that we can then extend the definition of
Brownian motion to [0, c0).

Definition 5.1 Brownian motion (or standard Brownian motion, or a Wiener process) S is a
Gaussian process with continuous sample functions and:

() S(0)=0;

(ii) E(S(t))=0, 0<t<1;

(iii) E{S(s)S(t)} =sAt, 0<s,t<1.

Definition 5.2 A Brownian bridge process U is a Gaussian process with continuous sample func-
tions and:

(i) U(0)=0(1)=
(i) E(U(t)) =0, 0 < t<1;

(iii) E{U(s)U (t)} =sAt—st, 0<s,t<1.

Theorem 5.1 Brownian motion S and Brownian bridge U exist.

Proof. We first construct a Brownian bridge process U. Let
t 0<t<1/2,

(a) ho(t)=h(t)=¢ 1—-t 1/2<t<1,
0 elsewhere .

For n > 1 let

(b)  haj(t) =222 — ),  j=0,...,2" 1.
For example, hyo(t) = 27 Y2h(2t), hi1(t) = 27/2h(2t — 1), while

hao(t) = 27 h(4t), hop(t) =27 'h(4t — 1),
hao(t) = 27 h(4t — 2), hos(t) = 27 h(4t — 3).
Note that |h,;(t)| < 27/2271,

The functions {h,; : j = 0,...,2" —1, n > 0} are called the Schauder functions; they
are integrals of the orthonormal (with respect to Lebesgue measure on [0, 1]) family of functions
{gnj: 7=0,...,2" =1, n >0} called the Haar functions defined by

goo(t) = g(t) = 21[071/2] (t) - ].,
gni(t) = 2"g(2"t —j),  j=0,....2" =1, n>1.

1 1
(©) /ngju)dt—l, /Ognju)gn/j/(t)dt—o i nAn or jA£7
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and

t
(d) hnj(t) = / gnj(s)ds, 0<t<1.
0

Furthermore, the family {gnj}?ia,lnzo U{g(-/2)} is complete: any f € L2(0,1) has an expansion in
terms of the g’s. In fact the Haar basis is the simplest wavelet basis of L2(0,1), and is the starting
point for further developments in the area of wavelets.

Now let {Z,; ?16,1@0 be independent identically distributed N(0,1) random variables; if we
wanted, we could construct all these random variables on the probability space ([0, 1], Bjg 1], A)-
Define

2n—1
Va(t,w) = Z Z"j(w)h"j(t)v
§=0
Un(t,w) = Vult,w)
n=0
For m > k
(©)  Un(t,w) =Ut,w)l =1 Y Valt,w) < D |Valt,w)]
n=k+1 n=k+1
where
2n_1
< , , < 9—(n/2+1) ,
() Valtw)l < ZO | Zn (@) [ (8)] < 2 oA 1 Zn;(w)]
]:
since the h,j, 7 =0,...,2" —1 are # 0 on disjoint ¢ intervals.
Now P(Zpj > 2z) =1—®(2) < 27 1¢(z) for z > 0 (by “Mill’s ratio”) so that

(®)  PZu] > 20) = 2P(Zy > 2/0) < —=(2v/m) e

Hence

2n
(h) P < max | Z,;| > 2\/ﬁ> < 2"P(|Zgo| > 2+/n) < \/Tn_lﬂe_%;

0<j<2n-1 .

since this is a term of a convergent series, by the Borel-Cantelli lemma maxo<j<on_1|Zpj| > 2y/n
occurs infinitely often with probability zero; i.e. except on a null set, for all w there is an N = N (w)
such that maxo<j<on_1 | Xyj(w)| < 2y/n for all n > N(w). Hence

i) sup [Un(t) = Ur(t)] < > 27?0
Ost<l n=k+1

for all k,m > N’ > N(w). Thus U, (t,w) converges uniformly as m — oo with probability one to
the (necessarily continuous) function

G Utw) =D Valtw).
n=0
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Define U = 0 on the exceptional set. Then U is continuous for all w.

Now {U(t) : 0 <t <1} is clearly a Gaussian process since it is the sum of Gaussian processes.
We now show that U is in fact a Brownian bridge: by formal calculation (it remains only to justify
the interchange of summation and expectation),

E{U(s)U(t)} = {Zv Zv }
= ZE{Vn(S)Vn(t)}
n=0

2m—1 2m—1

t
= ZE Z Zn]/ gn]d)\ Z an:/o gnkd)\

k=0
co 2"—1

= ZZ/ gn]d)\/ GnjdA\

n=0 5=0
oo 2"—1

= Z Z/ Osgn]d)\/ 1[07t}gnjd)\+st—5t

n=0 5=0
1
= /O Ljo,s](w) Lo, (u)du — st
= SsAt—st

where the next to last equality follows from Parseval’s identity. Thus U is Brownian bridge.
Now let Z be one additional N(0,1) random variable independent of all the others used in the
construction, and define

k) St =U@lt)+tZ = ZV )+ tZ.

Then S is also Gaussian with 0 mean and

Cov[S(s),S(t)] = Cov[U(s) + sZ,U(t) + tZ]
= Cov|[U(s),U(t)] + stVar(Z)
= SAt—st+st=sAt.

Thus S is Brownian motion. Since U has continuous sample paths, so does S. O

Exercise 5.4 Graph the first few g,;’s and h,,;’s.

Exercise 5.5 Justify the interchange of expectation and summation used in the proof. [Hint: use
the Tonelli part of Fubini’s theorem.]

Exercise 5.6 Let U be a Brownian bridge process. For 0 < ¢ < oo define a process B by

8) BE)=(1+HU (1%75) .

Show that B is a Brownian motion process on [0, 00).
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6 Quantiles and Quantile Processes
Let Xi,..., X, be iid. real-valued random variables with distribution function F, and let X;) <

X(2) < ... < X(y denote the order statistics. For t € (0,1), let

(1)  F,'(t)=inf{z: F,(z) >t}

@ Fl()=X, for L<i<

1 .
— 1=1,...,n.
n n

Let &1,...,&, be iid. Uniform(0,1) random variables, and let 0 < ) < ...

their order statistics. Thus, with G 1(t) = inf{x : G, (z) > t},

T
<t<—, 1=1,...,n.

3)  Gpl(t)=¢q  for Zn -

Now

@) (X X)) = (FHED, - FU &) £ (X0, X,

50

B)  (X(ye o X() = (F 1) F 1 (Emy) 4 (X(1)s- - X))
Hence it follows that

6)  F () EFTNGE(),

and to study F;,! it suffices to study G, !.

Proposition 6.1 The sequence of uniform quantile functions G ! satisfy

(7) HGgl - IHOO = Sup |G;zl(t) - t| = HGTL - IHoo —a.s. 07
0<t<1

and hence, if F'~! is continuous on [a,b] C [0, 1], then

(8)  |F,t = F7Y L = sup [F1(t) — F7H(t)] —as. 0.
a<t<b

< §n) < 1 denote

Proof.  Note that ||G,' — I|jc = |Gy, — I||o by inspection of the graphs. Thus

— — d — — —
()  F = F e = IFHGEY = FH(DIla —a.s. O

since F~1 is uniformly continuous on [a,b] and |G, — I|joc —a.s. O

Definition 6.1 The uniform quantile process V,, is defined by
9) V,=vn(G;t-1).

The general quantile process is defined by

(10)  VaE,' - F YL /a(F UG, — F7Y).
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Theorem 6.1 The uniform quantile process can be written as
(1) Vo =-Un(G,") + Vn(GnoG,' — 1),
and hence for the specially constructed U, of theorem 4.2 it follows that, with V = —U 4 U,

(12) IV, = V]| —as. 0 as  n—oo.

Proof.  First we prove the identity (11):

Vo = Vn(G,'-1)
= VG, = Gu(G ) + Vi(Ga(G, 1Y) — 1)
= —Un(G,") + V(Gn oGyt = 1).

Now ||G,;! — I]joc —a.s. 0 by proposition 6.1, and

1
(@) GnoGy! —Ile = sup [Gn(Gy (1)) —t| = —.
0<t<1 n
Hence
Vo=Vl < [[Un(Gy") = Ulloo + [VR(Gn(GZ") = Dl
1
< UGN = UG D oo + UG, = Ulloo + —=
S UG ) = UG llee + V(G = Ullee + ==
1
< Un = Ulloo + IU(G,") = Ulloo + —=
< | oo +UC,T) = Ulloo + ==
—as. 0+0+0=0.
since U is a continuous (and hence uniformly continuous) function on [0,1]. O

Theorem 6.2 Let Q = F~!, and suppose that Q is differentiable at 0 < ¢; < --- < t;, < 1. Then
V(L (t) — FH () Q'(t1)V(t1)

(13) : —d : ~ Nj(0,%)
V(FL () — F~ 1 (t)) Q' (tr)V(tx)

where

(14) T =(0y) = (Qt)Q'(t)(ti A tj — tity)) -

Moreover, if Q' is nonzero and continuous on [a,b] C [0, 1], then for any [c,d] C [a, b]

(15)  VaF (G, ) —F ) = QV[{ —as 0 as n—oo.

Note that Q'(t) = 1/f(F~1(t)).
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Proof. Suppose that £k = 1 and let t; = t. Then
Vi(F, () — F7H(1) = vr(Q(G, (1) — Q(t))

4 QE;) -0

Vo (t) for the special V,, process

as. Q'B)V() ~ N(O,(Q'(1)*(1 - 1)).

Similarly

Va(E () — F~1(t) Q(G, ' (1)) — Q1) Q'(t)V(t1)
(a) . i n : —a.s.

VR(E () — F7H(t) Q(G, (1)) — Q1) Q' (te)V(tk)
Od

Theorem 6.3 (Bahadur representation of quantile processes). The uniform quantile process can
be written as

(16) V, =-U, +o0p(1)
where the o0p(1) term is uniform in 0 <t < 1; i.e.
17)  ||[Vp, +Uplloc —p 0.
In fact
1/4 1
(18)  limsup PV + Unlloo = — a.s.
where b, = v/2loglogn. Moreover, if Q’(t) exists, then
(19)  VaF () — F7H(1) = — Q' (Va(Fa(FH(t) —t) +op(1).
Corollary 1 (Asymptotic normality of the t—th quantile). Suppose that Q = F~! is differentiable
at t € (0,1). Then

(20)  Va(F, () — FH(1) = Q(ON(0.1(1 ~ 1) = N (0’ %) '

Corollary 2 (Asymptotic normality of a linear combination of order statistics). Suppose that J
is bounded and continuous a.e. F~! and suppose that E(X?) < co. Let

(21) Tnz%ij(nil>X(i), ,u—/olJ(u)F_l(u)du.

=1
Then
1
(22) VT, - ) —a [ JVIF ~ N©.0(F)
0
where

(23)  o*(J,F) = /01 /01 J(8)J(t)(s At — st)dF~(s)dF 1 (t).



