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Chapter 3

Lower Bounds for Estimation

1 Introduction and Examples

One of the goals of statistical theory is to describe how well we can estimate parameters of interest
in principle for any given model. Since we cannot estimate parameters perfectly, what is the best
we can do?

A model P is simply a collection of probability distributions for the data we observe. Consider
a parameter of interest ν = ν(P ) we want to estimate. Here are some frequent goals or questions:

Question 1. Given a model P and a parameter of interest ν, how well can we estimate ν = ν(P )?
What is our “gold standard”?
Question 2. Can we compare absolute “in principle” standards for estimation of ν in a model P
with estimation of ν in a submodel P0 ⊂ P? What is the effect of not knowing η on estimation
of ν when θ = (ν, η)?
Question 3. For a fixed model P compare one or more estimators of ν to each other and to the
best “in principle” bound.

The bounds we will discuss in this chapter provide some partial answers to these questions.

To indicate the scope of the questions we want to address, we begin with some examples of the
models we would like to be able to handle. In all of the following examples we will suppose that
we observe X1, . . . , Xn i.i.d. as X ∼ P ∈ P where P is the given model. Within each example the
models increase in complexity: from parametric, to semiparametric, to nonparametric. For further
examples see Bickel, Klaassen, Ritov, and Wellner (1993)

Example 1.1 (Survival time). Suppose that X is a non-negative random variable; think of X as
a survival time.
Case A. Suppose that X ∼ Exponential(θ), θ > 0; thus pθ(x) = θ exp(−θx)1[0,∞)(x). This is a
simple parametric model P = {Pθ : θ ∈ Θ = R+}.
Case B. Suppose that X ∼ Weibull(α, β), α > 0, β > 0; thus

pθ(x) = (β/α)(x/α)β−1 exp(−(x/α)β)1[0,∞)(x)

with θ = (α, β). This is also a simple parametric model P = {Pθ : θ ∈ Θ = R+2}.
Case C. Suppose that X ∼ PG on R+ with density pG(x) =

∫∞
0 λ exp(−λx)dG(λ). This can be

viewed as a semiparametric model, the family of all scale mixtures of exponential distributions,
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P = {PG : G ∈ G} where G is the collection of all distribution functions on [0,∞).
Case D. Suppose that X ∼ P on R+ with density function p = dP/dλ assumed to be nonincreasing.
This model P is defined only by a shape restriction on the density, and is essentially a nonparametric
model.
Case E. Suppose that X ∼ P on R+ with completely arbitrary distribution function F . This is
simply the maximal nonparametric model on the space X = R+: no structure is imposed at all.

Example 1.2 (Measurement model) Suppose that X is a real-valued random variable; think of X
as a measurement.
Case A. Suppose that X ∼ N(µ, σ2) where θ = (µ, σ2) ∈ Θ ≡ R×R+. Thus

P = {Pθ : Pθ has density pθ =
1

σ
φ

(
· − µ
σ

)
: θ = (µ, σ2) ∈ Θ} .

This is the most classical parametric model, the normal location - scale model. If we replace the
standard normal density by some other density g0 which is fixed and known (e.g. logistic, or Cauchy,
or double exponential, or ...), the resulting model

P = {Pθ : Pθ has density pθ =
1

σ
g0

(
· − µ
σ

)
: θ = (µ, σ2) ∈ Θ}

is the g0−location - scale family.
Case B. Suppose that X ∼ Pθ,G on R with density pθ,G(x) = g(x−θ) with G symmetric about 0 and
absolutely continuous (with respect to Lebesgue measure) with density g which is itself absolutely
continuous with derivative g′ satisfying

Ig ≡
∫

(g′)2

g
dλ <∞ .

Then

P = {Pθ,G : θ ∈ R, G a distribution function with symmetric density g, Ig <∞} .

This is a semiparametric model, the “one-sample symmetry model”.

Example 1.3 (Survival time with covariates). Suppose that X = (Y, Z) is a random vector on
R+ ×Rd: think of Y as a survival time and Z as a vector of covariates.
Case A. Suppose that X = (Y,Z) ∼ Pθ with (Y |Z = z) ∼ exponential(λeθ

′z); i.e. λ(y|Z = z) =
λeθ

′z for y ≥ 0. This is a parametric model with parameter space Θ = R+ ×Rd.
Case B. Suppose that X = (Y,Z) ∼ Pθ,λ with λ(y|Z = z) = λ(y)eθ

′z for y ≥ 0 where θ ∈ Rd and
λ = λ(y) is an arbitrary “baseline” hazard function on R+. This is a “semiparametric model”, the
Cox proportional hazards model for survival analysis.
Case C. Suppose that X = (Y, Z) ∼ Pθ,λ,r with λ(y|Z = z) = λ(y)er(θ

′z) for y ≥ 0 where θ ∈ Rd,
λ = λ(y) is an arbitrary “baseline” hazard function on R+, and r is some unknown function from
R to R. This is a more complicated variant of the Cox model.
Case D. Suppose that X = (Y,Z) ∼ P on R+ × Rd where P is completely arbitrary. This is a
nonparametric model. How do we define “effects” of the covariates Z on the survival time Y here?
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Example 1.4 (Measurement with covariates). Suppose that X = (Y,Z) is a random vector with
values in R×Rd; think of Y as a measurement or response and Z as a vector of covariates.
Case A. Suppose that X = (Y, Z) ∼ Pθ with Y = θ′Z + σε where θ ∈ Rd, σ > 0, and ε ∼ G0 with
density g0 is independent of Z. Here g0 is a known density (such as the standard normal density
φ), and Z ∼ H (supposed known for simplicity). This is a parametric model, the classical linear
regression model (with G0−errors).
Case B. Suppose that X = (Y, Z) ∼ Pθ,G with Y = θ′Z + ε where θ ∈ Rd and ε ∼ G with
density g is independent of Z, but now G (or equivalently g) is an unknown distribution. This is a
semiparametric model, the linear regression model with “arbitrary” or “general” error distribution.
Case C. Suppose that X = (Y,Z) ∼ Pθ,σ,r,

Y = r(θ′Z) + σε

where θ ∈ Rd, σ > 0, ε ∼ G0 with density g0 is independent of Z, and r is an unknown function
from R to R. This is again a semiparametric model, a model for “projection pursuit” regression
with G0−errors; econometricians would call this a “single-index model”.
Case D. Suppose that X = (Y, Z) ∼ Pσ,r,

Y = r1(Z1) + · · ·+ rd(Zd) + σε

where σ > 0, ε ∼ G0 with density g0 is independent of Z, and r = (r1, . . . , rd) is a vector of
unknown functions from R to R. This is again a semiparametric model, a model for “additive”
regression with G0−errors.
Case E. Suppose that X = (Y, Z) ∼ Pσ,r,

Y = r(Z) + σε

where σ > 0, ε ∼ G0 is independent of Z, and r is an unknown function from Rd to R. This is
still a semiparametric model, but estimation becomes increasingly problematic as the dimension d
becomes even moderately large: rates of convergence of any estimator sequence can be no better
than n−p/(2p+d) when r is assumed to belong to a class of functions Rp with bounded p−th order
derivatives; see e.g. Stone (1982). This gives n−2/16 = n−1/8 when p = 2 and d = 12, and it gives
n−1/22 when p = 1 and d = 20.
Case F. Suppose that X = (Y,Z) ∼ P where P is an arbitrary probability distribution on
R × Rd = Rd+1. This is a completely nonparametric version of the model. Here we need to think
carefully about how to define the “effects” of the covariates Z on the response variable Y .

Of course not all problems involve independent and identically distributed data (even though
it is frequently useful to put them an i.i.d. framework for theoretical analysis if possible). Here is
one simple model which involves “pooling information” from three independent samples. There are
many other related models, and well as models in which the independence assumption is relaxed.

Example 1.5 (Bivariate three-sample model). Suppose that we observe data as follows:
(i) The first sample is a sample of i.i.d. pairs of size n1 from a distribution P with cumulative
distribution function H(x, y) = P (X ≤ x, Y ≤ y) on R2.
(ii) The second sample of size n2 is a sample of i.i.d. X’s from the marginal distribution PX of P
(with distribution function F (x) = P (X ≤ x) = H(x,∞).
(iii) The third sample of size n3 is a sample of i.i.d. Y ’s from the marginal distribution PY of P
with distribution function G(y) = P (Y ≤ y) = H(∞, y).
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How well can we estimate P (e.g. ν(P ) = P (X ≤ x0, Y ≤ y0) = H(x0, y0) for a fixed point
(x0, y0) ∈ R2) based on all the available data?
Case A. Suppose that P is bivariate normal with mean vector µ and covariance matrix Σ. This is
a parametric version of the model.
Case B. Suppose that Pθ,F,G where Pθ,F,G has distribution function given by Fθ,F,G(x, y) =
Cθ(F (x), G(y)) for some parametric family of distribution functions Cθ on the unit square [0, 1]2

with uniform marginals (such as the Morgenstern family Cθ(u, v) = uv(1 + θ(1− u)(1− v)). This
is a semiparametric model.
Case C. Suppose that P ∈ M, the collection of all distributions on R2; this is the nonparametric
version of the problem.
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2 Cramér-Rao bounds for parametric models

We first discuss the elementary Cramér - Rao bound in the case of a one - dimensional parametric
model P = {Pθ : θ ∈ Θ} with Θ ⊂ R; the reader may also wish to consult Lehmann, TPE, page
115.

Here are the assumptions we will need:

Assumptions:

A. X ∼ Pθ on (X,A) with θ ∈ Θ ⊂ R.

B. pθ ≡ dPθ/dµ exists where µ is σ−finite.

C. T (X) ≡ T estimates q(θ) has Eθ|T (X)| <∞; set b(θ) ≡ EθT − q(θ) ≡ bias of T .

D. q′(θ) ≡ q̇(θ) exists.

Theorem 2.1 (Information bound or Cramér - Rao inequality, dimension one). Suppose that:
(C1) Θ is an open subset of the real line.
(C2) A. There exists a set B with µ(B) = 0 such that: for x ∈ Bc

∂

∂θ
pθ(x) exists for all θ .

B. A ≡ {x : pθ(x) = 0} does not depend on θ.
(C3) I(θ) ≡ Eθ(l̇θ(X)2) > 0 where

l̇θ(x) ≡ ∂

∂θ
log pθ(x) ;

here I(θ) is called the Fisher information for θ and l̇θ is called the score function for θ.
(C4)

∫
pθ(x)dµ(x) and

∫
T (x)pθ(x)dµ(x) can both be differentiated with respect to θ under the

integral sign.
(C5)

∫
pθ(x)dµ(x) can be differentiated twice under the integral sign.

If (C1)-(C4) hold, then

V arθ[T (X)] ≥ [q̇(θ) + ḃ(θ)]2

I(θ)
for all θ ∈ Θ

=
[q̇(θ)]2

I(θ)
if T is unbiased .

Equality holds for all θ if and only if for some function A(θ) we have

l̇θ(x) = A(θ){T (x)− Eθ(T (X))} a.e. µ .

If, in addition, (C5) holds, then

I(θ) = −Eθ
{
∂2

∂θ2
log pθ(X)

}
= −Eθ l̈θ(X) .
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Proof. Now

q(θ) + b(θ) =

∫
X
T (x)pθ(x)dµ(x) =

∫
X∩Ac∩Bc

T (x)pθ(x)dµ(x) ;

hence it follows from (C2) and (C4) that

q̇(θ) + ḃ(θ) =

∫
X∩Ac∩Bc

T (x)
∂

∂θ
pθ(x)dµ(x) =

∫
X∩Ac∩Bc

T (x)l̇θ(x)pθ(x)dµ(x)

= Eθ{T (X)l̇θ(X)} = Covθ[T (X), l̇θ(X)]

since
∫
pθ(x)dµ(x) = 1 implies, by arguing as above, that

0 =

∫
∂

∂θ
pθdµ = Eθ[l̇θ] .

Thus, by the Cauchy -Schwarz inequality

[q̇(θ) + ḃ(θ)]2 = |Covθ[T (X), l̇θ(X)]|2 ≤ V arθ[T (X)]I(θ) .

The inequality holds with equality for a fixed θ if and only if

l̇θ(x) = A(θ){T (x)− EθT (X)} a.s. Pθ

for some constant A(θ). By (2.B) this implies that this holds a.e. µ. Under further regularity
conditions this holds if and only if Pθ is an exponential family; see e.g. Lehmann and Casella page
121.

Finally, if (C5) holds, since

0 =

∫
l̇θ(x)pθ(x)dµ(x) ,

differentiation once more (which is possible by (C5)) yields

0 =

∫
l̈θ(x)pθ(x)dµ(x) +

∫
l̇2θ(x)pθ(x)dµ(x)

=

∫
l̈θpθdµ+ I(θ) .

2

Example 2.1 (Poisson(θ); an exponential family). Suppose that X1, . . . , Xn are i.i.d. Poisson(θ)
with Θ = (0,∞); i.e. pθ(x) = e−nθθ

∑n
1 xi/

∏n
i=1 xi! with respect to counting measure µn on Z+n.

Then

log pθ(X) = −nθ +

(
n∑
i=1

Xi

)
log θ −

n∑
i=1

log(Xi!)

and

l̇θ(X) = −n+

(
n∑
i=1

Xi

)
1

θ
=
n

θ
(Xn − θ) .

Note that (1), (2), and (3) are trivial; and (4), (4’) hold if Eθ|T (X)| <∞ for all θ since an absolutely
convergent powerseries can be differentiated term by term. Thus the Cramér-Rao inequality hold
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for all T having Eθ|T (X)| < ∞ for all θ. However only q(θ) = θ (or a linear function of this) has
a Minimum Variance Bound Unbiased (MVBU) estimator, and the MVBU estimator of θ is Xn

which has variance |q̇(θ)/A(θ)| = θ/n. Thus In(θ) = n/θ. The bound for estimating q(θ) = θ2 is
q̇(θ)2/I(θ) = (2θ)2/(n/θ) = 4θ3/n; but this bound cannot be achieved for n <∞. In fact we know

that
∑n

1 Xi is a complete sufficient statistic. It is easy to check that T ∗ = X
2
n−n−1Xn is unbiased;

hence it is a UMVUE of θ2. Also, its variance is (4θ3)/n+ (2θ2)/n2 > the Cramér - Rao bound.

Example 2.2 (Location with known “shape” g). Suppose that X1, . . . , Xn are i.i.d. with density
pθ(x) = g(x− θ) where g is a known density (such as N(0, 1) or Cauchy or logistic or double expo-
nential or extreme value). Then, assuming that g′ exists a.e. (Lebesgue) and the other regularity
conditions hold,

l̇θ(x) =
∂

∂θ
log g(x− θ) = −g

′(x− θ)
g(x− θ)

≡ −g
′

g
(x− θ)

so that

I(θ) = Eθ{l̇2θ(X)} =

∫ {
g′

g
(x− θ)

}2

g(x− θ)dx

=

∫ {
g′

g
(y)

}2

g(y)dy =

∫
[g′(y)]2

g(y)
dy ≡ Ig

and In(θ) = nI(θ) = nIg. Thus for any unbiased estimator θ̂n of θ we have

V arθ(θ̂n) ≥ 1

nIg
, or V arθ(

√
n(θ̂n − θ)) ≥

1

Ig
.

Example 2.3 (Scale with known shape g). Suppose that X1, . . . , Xn are i.i.d. with density

pθ(x) =
1

θ
g
(x
θ

)
where g is a known density (such as Exponential(1) or Cauchy, or logistic, or Gamma(5, 1)). Then,
assuming that g′ exists a.e. (Lebesgue) and the other regularity conditions hold,

l̇θ(x) =
∂

∂θ
log

{
1

θ
g
(x
θ

)}
= −1

θ
+
g′(x/θ)

g(x/θ)

(
−x
θ2

)
=

1

θ

{
−1− x

θ

g′

g
(x/θ)

}
so that

I(θ) = Eθ{l̇2θ(X)} =
1

θ2

∫ (
−1− x

θ

g′

g
(x/θ)

)2 1

θ
g(x/θ)dx

=
1

θ2

∫ (
−1− y g

′

g
(y)

)2

g(y)dy ≡ 1

θ2
Ig(scale) .

and In(θ) = nI(θ) = nIg(scale). Thus for any unbiased estimator θ̂n of θ we have

V arθ(θ̂n) ≥ θ2

nIg(scale)
, or V arθ(

√
n(θ̂n − θ)) ≥

θ2

Ig(scale)
.
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Example 2.4 (Elementrary mixture model). Suppose that f0 and f1 are two known µ− densities,
and that

pθ(x) = θf0(x) + (1− θ)f1(x), for θ ∈ [0, 1] = Θ .(1)

Then log pθ(x) = log{θf0(x) + (1− θ)f1(x)} and hence

l̇θ(x) =
f0(x)− f1(x)

θf0(x) + (1− θ)f1(x)
.

Hence we calculate

I(θ) =

∫
(f0(x)− f1(x))2

θf0(x) + (1− θ)f1(x)
dµ(x) .

Note that if f0 6= f1 on a set of positive µ−measure, then the information I(θ) is finite and positive
for all θ ∈ (0, 1), while I(θ) converges to∫

(f0 − f1)2

f1
dµ as θ → 0 ;

similarly I(θ) converges to ∫
(f0 − f1)2

f0
dµ as θ → 1 .

These limiting values may be infinite. This can be viewed as an example of missing data: Suppose
that the complete data is Y = (X,∆) where ∆ takes values in {0, 1}, (X|∆) ∼ F∆

0 F
1−∆
1 , and

P (∆ = 1) = θ = 1− P (∆ = 0). Then the joint density of Y = (X,∆) is given by

qθ(x, δ) = f0(x)δf1(x)1−δθδ(1− θ)1−δ

If we just observe Y1 = X, then this has the marginal density given by (1). Note that the score for
θ based on observation of Y is

l̇θ(x, δ;Q) =
δ

θ
− 1− δ

1− θ
=

δ − θ
θ(1− θ)

,

so that the information for θ in the complete data is

I(θ,Q) =
1

θ(1− θ)
.

Also note that

l̇θ(x,P) =
f0(x)− f1(x)

θf0(x) + (1− θ)f1(x)
= E{l̇θ(X,∆;Q)|X = x} .

It follows by the Cauchy-Schwarz or Jensen inequalities applied conditionally that

I(θ,P) = E{l̇2θ(X,P)}
= E{[E{l̇θ(X,∆;Q)|X}]2}
≤ E{E{l̇2θ(X,∆;Q)|X}} = E{l̇2θ(X,∆;Q)}
= I(θ,Q) .

These relations are in fact true in considerable generality for missing data, as we will see later.
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The Multiparameter Cramér - Rao inequality

Now we extend theorem 2.1 to the case in which the model is a k−dimensional parametric
family: P = {Pθ : θ ∈ Θ} with Θ ⊂ Rk.

Assumptions:

A. X ∼ Pθ on (X,A) with θ ∈ Θ ⊂ Rk.

B. pθ ≡ dPθ/dµ exists where µ is σ−finite.

C. T (X) ≡ T estimates q(θ) where q : Θ → R, and Eθ|T (X)| < ∞; set b(θ) ≡ EθT − q(θ) ≡ bias
of T .

D. q̇(θ) ≡ ∇q(θ) (k × 1) exists.

Theorem 2.2 (Information inequality, Θ ⊂ Rk). Suppose that:
(M1) Θ is an open subset of Rk.
(M2) A. There exists a set B with µ(B) = 0 such that: for x ∈ Bc

∂

∂θi
pθ(x) exists for all θ and i = 1, . . . , k .

B. A ≡ {x : pθ(x) = 0} does not depend on θ.
(M3) The k × k matrix I(θ) ≡ (Iij(θ)) = Eθ(l̇θ(X)l̇Tθ (X)) is positive definite where

l̇θi(x) ≡ ∂

∂θi
log pθ(x) ;

here I(θ) is called the Fisher information matrix for θ, l̇θi is called the score function for θi, and l̇θ
is called the score for θ.
(M4)

∫
pθ(x)dµ(x) and

∫
T (x)pθ(x)dµ(x) can both be differentiated with respect to θ under the

integral sign.
(M5)

∫
pθ(x)dµ(x) can be differentiated twice under the integral sign.

If (M1)-(M4) hold, then

V arθ[T (X)] ≥ αT I−1(θ)α for all θ ∈ Θ

= q̇T (θ)I−1(θ)q̇(θ) if T is unbiased

where

α ≡ (α1, . . . , αk)
′ ≡ ∇(q(θ) + b(θ)) = ∇Eθ(T (X)) .

If, in addition, (M5) holds, then

I(θ) = −Eθ l̈θθ(X) = −
(
Eθ

{
∂2

∂θi∂θj
log pθ(X)

})
.(2)
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Proof. The following proof is for the case of an unbiased estimator. Since

q(θ) = EθT (X) =

∫
T (x)pθ(x)dµ(x) ,

differentiating with respect to each θj gives

q̇(θ) =

∫
X∩Bc∩Ac

T (x)
∇pθ(x)

pθ(x)
pθ(x)dµ(x)

= EθT (X)l̇θ(X)

= Eθ{(T (X)− EθT (X))l̇θ(X)}
= Covθ(T (X), l̇θ(X))

where the third equality holds since Eθ l̇θ = 0 by the preceding lines with T (X) = 1. Multiplying
by q̇T (θ)I−1(θ) we find that

q̇T (θ)I−1(θ)q̇(θ) = Covθ(T (X), q̇T (θ)I−1(θ)l̇θ(X)) .

Hence by the Cauchy-Schwarz inequality

|q̇T (θ)I−1(θ)q̇(θ)| = |Covθ(T (X), q̇T (θ)I−1(θ)l̇θ(X))|
≤ {V arθ(T (X))q̇T (θ)I−1(θ)I(θ)I−1(θ)q̇(θ)}1/2

= {V arθ(T (X))q̇T (θ)I−1(θ)q̇(θ)}1/2

and it follows that

V arθ(T (X)) ≥ q̇T (θ)I−1(θ)q̇(θ)

with equality if and only if

T (X)− EθT (X) = q̇T (θ)I−1(θ)l̇θ(X). 2

Corollary 1 (I.i.d. special case). When X = (X1, . . . , Xn) with the Xi’s i.i.d. Pθ ∈ P satisfying
M1-M4, then

In(θ) = nI1(θ) ≡ nI(θ),

l̇θ(X) =

n∑
i=1

l̇θ(Xi),

and the conclusion can be written, for an unbiased estimator Tn ≡ T (X1, . . . , Xn), as

V arθ(
√
n(Tn − q(θ))) ≥ q̇(θ)T I−1(θ)q̇(θ)

Note that the function (for sample size n = 1) involved here is

l̃ν(X1) = q̇T (θ)I−1(θ)l̇θ(X1) ;
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we will call l̃ν the efficient influence function for estimation of ν(Pθ) = q(θ): that is, if Tn is an
asyptotically efficient estimator of ν(Pθ) = q(θ), then Tn is asymptotically linear with influence
function exactly l̃ν :

√
n(Tn − q(θ)) =

1√
n

n∑
i=1

l̃ν(Xi) + op(1)→d N(0, q̇T (θ)I−1(θ)q̇(θ)) .

This proof should be compared with the proof given of Theorem 6.6, Lehmann and Casella (1998),
pages 127 - 128.

Our goal will be to interpret Theorem 2.2 geometrically. But first, here is an easy example.

Example 2.5 (Weibull). If (X,A) = (R+,B+), the non-negative real numbers with its usual Borel
σ−field, then the Weibull family P is the parametric model with densities

pθ(x) =
β

α

(x
α

)β−1
exp

(
−
(x
α

)β)
1[0,∞)(x)

with respect to Lebesgue measure where θ = (α, β) ∈ (0,∞)× (0,∞) ⊂ R2. For the Weibull family
P, log pθ(x) is differentiable at every θ ∈ Θ and the scores are:

l̇α(x) =
β

α

{(x
α

)β
− 1

}
l̇β(x) =

1

β
− 1

β
log

{(x
α

)β}{(x
α

)β
− 1

}
.

Thus Ṗ ≡ [l̇θ] is the two-dimensional subspace of L2(Pθ) spanned by l̇α and l̇β, and the Fisher
information matrix is

I(θ) = E{l̇θ(X)l̇Tθ (X)} =

(
β2/α2 a/α
a/α b2/β2

)
where, with Y ∼ Exponential(1), and γ ≡ .577216 . . . = Euler’s constant,

a = −E{(Y − 1)2 log(Y )} = −(1− γ)

b2 = E{[(Y − 1) log(Y )− 1]2} =
π2

6
+ (1− γ)2 .

The computation of I(θ) is simplified by noting that Y ≡ (X/α)β ∼ Exponential(1). Now
det(I(θ)) = (b2−a2)/α2 = (π2/6)α−2 > 0, so I(θ) is nonsingular. Note that with c2 ≡ b2/(b2−a2) =
1 + (6/π2)(1− γ)2

I−1(θ) =
1

b2 − a2

(
(α2/β2)b2 −αa
−αa β2

)
.

Thus by Theorem 2.2, if q(θ) = ν(Pθ) is a real-valued function of θ (e.g. q(θ) = ν(Pθ) =∫∞
0 xdPθ(x) = αΓ(1 + 1/β), and T = Tn is any estimator of q(θ) based on X = (X1, . . . , Xn)

(with Xi’s i.i.d. Pθ) satisfying Assumption C and hypothesis (4), then

V arθ[T (X)] ≥ αT I−1(θ)α

n

=
q̇(θ)T I−1(θ)q̇(θ)

n
if T is unbiased .
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Equivalently,

V arθ[
√
n(Tn − q(θ))] ≥ q̇(θ)T I−1(θ)q̇(θ)

if T is unbiased. Our goal will be to compare the information bounds for several functions q(θ) =
ν(Pθ) when the model is P, or P0 = {P(α,β0) : α > 0} with β0 fixed (and known), or M2 =
{P on R+ : EPX

2 <∞}.
For the function q(θ) = Eθ(X) = αΓ(1 + 1/β),

q̇(θ) = (Γ(1 + 1/β),−αΓ′(1 + 1/β)/β2)T = Γ(1 + 1/β)(1,−αψ(1 + 1/β)/β2)T ,

where ψ ≡ Γ′/Γ is the digamma function, and hence the information inequality yields, for any
unbiased estimator T = Tn of q(θ) = Eθ(X),

V arθ[
√
n(Tn − q(θ))] ≥ q̇(θ)T I−1(θ)q̇(θ)

=
6Γ2(1 + 1/β)

π2

α2

β2

{
b2 + 2aψ(1 + 1/β) + ψ2(1 + 1/β)

}
.

Note that when β = β0 is known, then I11 = β2
0/α

2, I−1
11 = α2/β2

0 , and the information for
(unbiased) estimates of q(θ) = Eθ0X is given by (α2/β2

0)Γ(1 + 1/β0)2; this is always less than or
equal to the bound obtained in the last display when β is unknown, with equality when β0 = 1. In
fact there is very little difference between the information bounds I−1(Pθ|ν,P0), I−1(Pθ|ν,P), and
I−1(Pθ|ν,M2), for this particular parameter ν(Pθ). See Figures 3.1 and 3.2 for some comparisons.
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Figure 3.1: Information bounds, α = 3, 1.2 ≤ β ≤ 2.5; green = I−1(P |ν,P0), purple
= I−1(P |ν,P), blue = V arθ(X); (purple coincides with blue so not visible!)

For the function

ν(Pθ) = q(θ) = Pθ(X ≥ x0) = exp(−(x0/α)β)

where x0 ∈ (0,∞) is fixed, we have

q̇(θ) = (x0/α)β exp(−(x0/α)β)(β/α,− log(x0/α))′ ,

and hence the information bound for estimation of q(θ) is given by

q̇(θ)T I−1(θ)q̇(θ) =
6

π2

(x0

α

)2β
exp(−2(x0/α)β)

{
b2 + 2aβ log(x0/α) +

β2

α2
(log(x0/α))2

}
.

When β = β0 is known, then the information bound for estimation of q(θ) = q(α, β0) = exp(−(x0/α)β0)
is given by{

β

α

(x0

α

)β
exp(−(x0/α)β)

}2 α2

β2
=
(x0

α

)2β
exp(−2(x0/α)β)
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Figure 3.2: Information bounds, .5 ≤ α ≤ 10, β = .5; green = I−1(P |ν,P0), purple = I−1(P |ν,P),
blue = V arθ(X)

In this case there is quite a considerable difference between the information bounds I−1(Pθ|ν,P0),
I−1(Pθ|ν,P), and I−1(Pθ|ν,M2), for the parameter ν(Pθ); see Figures 3.3 - 3.6 for some compar-
isons.

Some Geometry

The bounds given in theorems 2.1 and 2.2 lead us to the following definitions. Suppose that ν is
a Euclidean parameter defined on a regular parametric model P = {Pθ : θ ∈ Θ}. We can identify
ν with the parametric function q : Θ→ Rm defined by

q(θ) = ν(Pθ) for Pθ ∈ P .

Fix P = Pθ and suppose that q has a total differential matrix q̇k×m at θ. Define

I−1(P |ν,P) = q̇T (θ)I−1(θ)q̇(θ), the information bound for ν(b)
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Figure 3.3: Information bounds for ν(Pθ) = Pθ(X ≥ x0), α = 1, x0 = .5, .1 ≤ β ≤ 3: green
= I−1(P |ν,P0), purple = I−1(P |ν,P), blue = nV ar(Fn(x0) = Pθ(X ≥ x0)(1− Pθ(X ≥ x0))

and

l̃(·, P |ν,P) = q̇T (θ)I−1(θ)l̇θ, the efficient influence function for ν .(c)

As defined in (b) and (c), the information bound and influence function appear to depend on the
parametrization θ 7→ Pθ of P. However, as our notation indicates, they actually depend only on ν
and P. This is proved in the following proposition.

Proposition 2.1 The information bound I−1(P |ν,P) and the efficient influence function l̃(·, P |ν,P)
are invariant under smooth changes of parametrization.

Proof. We do this by formal calculation. Suppose that γ 7→ θ(γ) is a one-to-one continuously
differentiable mapping of an open subset Γ of Rk onto Θ with nonsingular differential θ̇. We
represent P = {Qγ : γ ∈ Γ} where Qγ ≡ Pθ(γ). Identify ν by

ν(γ) ≡ ν(Qγ) ≡ q(θ(γ)) .



18 CHAPTER 3. LOWER BOUNDS FOR ESTIMATION

0.5 1 1.5 2 2.5 3

0.05

0.1

0.15

0.2

0.25

Figure 3.4: Information bounds for ν(Pθ) = Pθ(X ≥ x0), α = 3, x0 = 1, .1 ≤ β ≤ 3.0; green
= I−1(P |ν,P0), purple = I−1(P |ν,P), blue = nV ar(Fn(x0)) = Pθ(X ≥ x0)(1− Pθ(X ≥ x0))

Then, by the chain rule, the Fisher information matrix for γ is

θ̇T (γ)I(θ(γ))θ̇(γ)

while

ν̇(γ) = q̇T (θ(γ))θ̇(γ) .

Substituting back into (b) gives the same answer for γ 7→ Qγ as for θ 7→ Pθ. A similar calculation

works for l̃. 2

Now we specialize slightly: suppose that θ′ = (ν ′, η′) where ν ∈ N ⊂ Rm, η ∈ H ⊂ Rk−m; here ν
is the parameter of interest and η is a nuisance parameter. We can think of this as q(θ) = q(ν, η) = ν
so that q̇(θ) = (I, 0)′ is a k ×m matrix; here I is the k × k identity matrix.

If θ0 = (ν0, η0) ∈ Θ, let P1(η0) ≡ {Pθ : η = η0, ν ∈ N}. This is the model when η = η0 is
known. We want to assess the cost of not knowing η by comparing the information bounds and
efficient influence functions for ν at Pθ0 in P1(η0) and P.
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Figure 3.5: Information bounds for ν(Pθ) = Pθ(X ≥ x0), α = 1, β = 1.5, .1 ≤ x0 ≤ 3.0; green
= I−1(P |ν,P0), purple = I−1(P |ν,P), blue = nV ar(Fn(x0)) = Pθ(X ≥ x0)(1− Pθ(X ≥ x0))

We let 〈·, ·〉0 be the inner product in L2(Pθ0), ‖ · ‖0 the norm, and write E0 for expectation
under Pθ0 .

Suppose the model is regular and write l̇ for the score function at θ0 and l̃ = I−1(θ0)l̇ for the
efficient influence function of the parameter θ at Pθ0 in P. Decompose

l̇ =

(
l̇1
l̇2

)
, l̃ =

(
l̃1
l̃2

)
,

with l̃1 and l̇1 m−vectors, l̃2 and l̇2 (k−m)−vectors. Write I(θ0) in block matrix form, suppressing
dependence on θ0, as

I = [Iij ]i,j=1,2 =

(
I11 I12

I21 I22

)
with I11 m ×m, I12 m × (k −m), I21 (k −m) ×m, I22 (k −m) × (k −m), and similarly
decompose I−1(θ0) into Iij , i, j = 1, 2. By well-known block matrix forms of matrix inverses we
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Figure 3.6: Information bounds for ν(Pθ) = Pθ(X ≥ x0), α = 3, β = .75, .1 ≤ x0 ≤ 3.0; green
= I−1(P |ν,P0), purple = I−1(P |ν,P), blue = nV ar(Fn(x0)) = Pθ(X ≥ x0)(1− Pθ(X ≥ x0))

have

I−1(θ) = [Iij ]i,j=1,2 =

(
I−1

11·2 −I−1
11·2I12I

−1
22

−I−1
22·1I21I

−1
11 I−1

22·1

)
(4)

where

I11·2 ≡ I11 − I12I
−1
22 I21 , I22·1 ≡ I22 − I21I

−1
11 I12 .(5)

By (b) and (c), the information bound for estimating ν in P is I11 = I−1
11·2 and the efficient influence

for ν in P is

l̃1 = I11l̇1 + I12l̇2(6)

= I−1
11·2(l̇1 − I12I

−1
22 l̇2) by (b)

≡ I−1
11·2l̇

∗
1 .

Since

I11·2 = E0(l̇1 − I12I
−1
22 l̇2)(l̇1 − I12I

−1
22 l̇2)′

= E0(l∗1l
∗′
1 ) ,
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we see that (6) has the same form as l̃ = I−1(θ0)l̇ with l̃ replaced by l̃1, I(θ0) = E0(l̇l̇′) replaced by
I11·2 = E0(l∗1l

∗T
1 ), and l̇ replaced by

l∗1 ≡ l̇1 − I12I
−1
22 l̇2 .(7)

We therefore call l∗1 the efficient score function for ν in P, and call I11·2 the information for ν in
P.

If on the other hand η = η0 is treated as known, the information bound for ν in P1(η0) is I−1
11

and the corresponding efficient influence function for ν in P1(η0) is just

I−1
11 l̇1 .(8)

From the block matrix formulas relating [Iij ] and [Iij ], we can derive some important relations
between these quantities. First note from (4) and (5) that

(I11)−1 = I11·2 = I11 − I12I
−1
22 I21 ,(9)

so not knowing η decreases the information for ν by I12I
−1
22 I21. Similarly,

I−1
11 = I11 − I12(I22)−1I21

or

I11 = I−1
11·2 = I−1

11 + I12(I22)−1I21 ,(10)

so not knowing η increases the information bound (inverse information) by I12(I22)−1I21. Moreover,
from (9),

I11·2 = I11 and I−1
11·2 = I−1

11(11)

if and only if

I12 = 0 .(12)

In this case it also follows from (6), (7), and (11) that

l̃1 = I−1
11 l̇1 and l∗1 = l̇1 .(13)

Definition 2.1 {ν̂n} is an adaptive estimator of ν in the presence of η if ν̂n is regular on P and
efficient for each of the models P1(η) for η ∈ H.

If an adaptive estimate exists we can do as well not knowing η as knowing it. By (4) and (13),
a necessary condition for the existence of adaptive estimates in regular parametric models is

I12(θ) = 0 for all θ .(14)

Adaptation is very much a feature of the parametrization, as the following examples show.

Example 2.6 (Gaussian location - scale). Suppose that

P = {Pθ : pθ = φ((· − ν)/η)/η, ν ∈ R, η > 0} ,

the usual normal location - scale model. Note that

l̇ν(x) =
x− ν
η2

, l̇η(x) =
1

η

{
(x− ν)2

η2
− 1

}
,
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and the information matrix I(θ) is given by

I(θ) =

(
1/η2 0

0 2/η2

)
=

1

η2

(
1 0
0 2

)
.

Thus we can estimate the mean equally well whether we know or do not know the variance.

Example 2.7 (Reparametrization of Gaussian location-scale). Now suppose that P is the same
as in the preceding example, but we reparametrize as follows:

Pθ = N(ν, η2 − ν2), η2 > ν2 .

Then easy calculation using (2 shows that

I12(θ) = − νη

(η2 − ν2)2
,

Thus lack of knowledge of η in this parameterization does change the information bound for esti-
mation of ν.

We can think of l∗1 as the l̇1 corresponding to the reparametrization (ν, η) 7→ (ν, η +
I−1

22 (θ0)I21(θ0)(ν − ν0)). With this reparametrization, adaptation at θ0 becomes possible since l̇2 is
unchanged and condition (4) is satisfied. If we can paste together these local reparametrizations
and find (ν, η) 7→ (ν, γ(ν, η)) such that

γ(ν, η)− γ(ν0, η0) = η − η0 + I−1
22 I21(θ0)(ν − ν0) + o(|θ − θ0|)

for every θ0 = (ν0, η0), then under this reparametrization the necessary condition for adaptation
holds. For instance in example 2.7 we can take γ(ν, η) = η2−ν2. These remarks have little practical
significance since the initial parametrization is usually natural and the reparametrization is not.

The efficient influence function l̃1 and efficient score function l∗1 can be interpreted geometrically
in the Hilbert space L2(Pθ); see BKRW sections A.1 and A.2. for elementary Hilbert space theory.
First suppose that m = 1. Let [l̇2] be the linear span of the components of l̇2 in L2(Pθ0). Then by
BKRW Example A.2.1, I12I

−1
22 l̇2 is the projection of l̇1 of [l̇2], and by (7) the efficient score function

l∗1 is the projection of l̇1 on the orthocomplement of [l̇2].

We can also relate the efficient influence functions l̃1 and I−1
11 l̇1 for ν in P and P1(η0). In

particular, I−1
11 l̇1 is the projection of l̃1 on [l̇1]. We need only check that l̃1−I−1

11 l̇1 = (I11−I−1
11 )l̇1 +

I12l̇2 is orthogonal to l̇1, and this follows easily from I11I11 + I12I21 = 1.

If m > 1 these relationships continue to hold if projection is interpreted componentwise. The
following basic proposition can be viewed as providing the rationale for two different approaches
to computing information bounds in semiparametric models which are presented in Chapter 3 of
BKRW (1993).

Proposition 2.2 (Efficient Score and Efficient Influence Functions)
A. The efficient score function l∗1(·, Pθ0 |ν,P) is the projection of the score function l̇1 on the
orthocomplement of [l̇2] in L2(Pθ0).

B. The efficient influence function l̃(·, Pθ0 |ν,P1(η0)) is the projection of the efficient influence

function l̃1 on [l̇1] in L2(Pθ0).
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Table 3.1: Efficient Scores and Influence Functions

name notation P P1(η0)

efficient l∗1(·, P |ν, ·) l∗1 = l̇1 − I12I
−1
22 l̇2 l̇1

score

information I(P |ν, ·) El∗1l
∗T
1 = I11 − I12I

−1
22 I21 ≡ I11·2 I11

efficient l̃1(·, P |ν, ·) l̃1 = I11l̇1 + I12l̇2
influence = I−1

11·2l
∗
1 I−1

11 l̇1
function = I−1

11 l̇1 − I−1
11 I12̃l2

information I−1(P |ν, ·) I11 = I−1
11·2 I−1

11

bound = I−1
11 + I−1

11 I12I
−1
22·1I21I

−1
11

See Figures 1 and 2.

Here is another relationship between the influence and score functions of P1(η0) and its com-
panion P2(ν0) ≡ {Pν0,η : η ∈ H} We use the subscript 2 for score and influence functions in the

companion model. The efficient influence function l̃1 can be written as

l̃1 = I−1
11 l̇1 − I−1

11 I12̃l2 .(15)

This relationship was implicit in section 4 of Begun, Hall, Huang, and Wellner (1983). It appears
in the context of semiparametric models (with ν infinite-dimensional and η finite-dimensional in
section 5.4 of BKRW (1993). Note that (15) provides an immediate proof, by orthogonality of l̃2
to [l̇1], of the formula

I−1
11·2 = I−1

11 + I−1
11 I12I

−1
22·1I21I

−1
11 ,(16)

which is another way of writing (10).

Proof of (15): From (6),

l̃1 + I−1
11 I12̃l2 = I11l̇1 + I12l̇2 + I−1

11 I12(I21l̇1 + I22l̇2)

= I−1
11

{
(I11I

11 + I12I21)l̇1 + (I11I
12 + I12I

22)l̇2

}
= I−1

11 l̇1 ,

and rearranging yields (15). 2

The following table summarizes the efficient score functions, efficient influence functions, infor-
mation, and inverse information for the two models P and P1(η0).

Proposition 2.2 can be put in a broader context.
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Proposition 2.3 Suppose that m = 1 and that Tn is an asymptotically linear estimator of ν with
influence function ψ. Then:
A. Tn is Gaussian regular if and only if

ψ − l̃1 ⊥ Ṗ = [l̇1, l̇2] ,(4)

or, equivalently, if and only if both

〈ψ, l̇1〉0 = 1(5)

and

ψ ⊥ [l̇2] .(6)

B. If Tn is regular, then ψ ∈ Ṗ = [l̇1, l̇2] if and only if ψ = l̃1.

Note that (5) and (6) are asymptotic versions of the equations leading to the Cramér-Rao
information bound. Consider the problem of minimizing Σ(Pθ0 , T ) = E0ψ

2 subject to (5) and (6).
For simplicity take k = 2. If we write

ψ = cl̇1 + dl̇2 + ∆

where ∆ ⊥ [l̇1, l̇2], then (6) holds if and only if

ψ = c(l̇1 − I12I
−1
22 l̇2) + ∆ = cl∗ + ∆ ,

while (5) forces

c = ‖l̇1 − I12I
−1
22 l̇2‖−2

0 .

Finally,

‖ψ‖20 = ‖l∗1‖−2
0 + ‖∆‖20 .

Therefore the minimizing ∆ = 0 and as expected the minimizing ψ is the efficient influence function.
This argument makes clear the characterizing features of the efficient influence function implied in
proposition 2.2, part B:

(i) l̃1 and all other influence functions are orthogonal to [l̇2].
(ii) l̃1 is the unique influence function belonging to [l̇1, l̇2].
(iii) l̃1 can be obtained by projecting any influence function ψ corresponding to a regular estimator

for ν on [l̇1, l̇2].

Here is a slight generalization of proposition 2.3 to a general function ν(Pθ) = q(θ).

Proposition 2.4 (Characterization of Gaussian regular estimators). Suppose that Tn is an
asymptotically linear estimator at θ0 of ν(Pθ) = q(θ) with influence function ψ where q : Θ→ Rm.
Then:
A. Tn is Gaussian regular estimator at θ0 if and only if q(θ) is differentiable at θ0 with derivative
q̇(θ) and, with l̃ν ≡ l̃(·, Pθ0 |ν,P),

ψ − l̃ν ⊥ Ṗ = [l̇1, l̇2] ,(7)

where (7) is equivalent to

E0(ψl̇) = 〈ψ, l̇〉0 = q̇(θ0) .(8)

B. If Tn is regular, then ψ ∈ Ṗm if and only if

ψ = l̃ν = q̇T (θ0)I−1(θ0)l̇θ .(9)
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Proof. By asymptotic linearity of Tn and corollary 3 of Le Cam’s second lemma, it follows that( √
n(Tn − q(θ0))

Ln(θ0 + tn/
√
n)− Ln(θ0)

)
→d N

((
0
−Σ22

)
,Σ

)
under Pθ0(a)

where tn → t and

Σ = [Σij ], Σ11 = E0(ψψT ), Σ12 = E0(ψl̇T )t , Σ22 = tT I(θ0)t .(b)

Consequently, by Le Cam’ third lemma, (Lemma 3.4)

√
n(Tn − q(θ0))→d N(Σ12,Σ11) under Pθ0+n−1/2tn

(c)

Now assume that Tn is regular. Then

√
n(Tn − q(θ0 + tn/

√
n))→ N(0,Σ11) under Pθ0+n−1/2tn

(d)

and from (c) and (d) we conclude that

√
n(q(θ0 + n−1/2tn)− q(θ0))→ Σ12 = E0(ψl̇T )t .(e)

But this implies that q is differentiable at θ0 with derivative q̇(θ0) satisfying (8) and hence (7).
On the other hand, if q is differentiable and (8) holds, then (e) is valid, which together with (c)

implies (d) and hence Gaussian regularity. The proof of A is complete.
To prove B, note that A implies that q̇ and hence l̃ν are well-defined and that (7) holds. Since

l̃ν ∈ Ṗm, (7) yields ψ ∈ Ṗm if and only if ψ − l̃ν = 0. 2

Choosing q(θ) = q(ν, η) = ν in proposition 2.4 immediately yields a generalization of proposi-
tion 2.3 to m > 1. Now (8) becomes

E0(ψl̇T1 ) = Jm×m ,(10)

E0(ψl̇T2 ) = 0(11)

where J is the identity. In particular if m = k we obtain that the influence function of any linear
and Gaussian regular estimate of θ has

E0(ψl̇T ) = Jk×k .(12)
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3 Regular Estimates and Superefficiency

If X1, . . . , Xn are i.i.d. Pθ, an estimator Tn is unbiased for estimating q(θ), and the conditions of
the information inequality (theorem 2.1) hold, then

V arθ[Tn] ≥ [q̇(θ)]2

nI(θ)
.(1)

If
√
n(Tn − q(θ))→d N(0, V 2(θ)) ,(2)

then it follows (from Fatou and Skorokhod, recall corollary 2.3.1) that

V 2(θ) ≤ lim inf
n→∞

{nV arθ[Tn]} .(3)

If Tn is unbiased and

V 2(θ) = lim
n→∞

{nV arθ[Tn]} ,(4)

then (1) implies

V 2(θ) ≥ [q̇(θ)]2

I(θ)
.(5)

Does the inequality in (5) hold under restrictions on pθ alone? The answer to this question is no,
as is shown by the following example due to Hodges.

Example 3.1 (Hodges superefficient estimator). Let X1, . . . , Xn be i.i.d. N(θ, 1) so that I(θ) = 1.
Let |a| < 1, and define

Tn =

{
Xn if |Xn| > n−1/4

aXn if |Xn| ≤ n−1/4 .
(6)

Then
√
n(Tn − θ)→d N(0, V 2(θ))(7)

where

V 2(θ) =

{
1 if θ 6= 0
a2 if θ = 0 .

(8)

Thus V 2(θ) ≥ 1/I(θ) fails at θ = 0 if |a| < 1, and Tn is a superefficient estimator of θ at θ = 0.

Proof of (7). Since
√
n(Xn − θ)

d
= Z ∼ N(0, 1) for all n ≥ 1 and all θ,

√
n(Tn − θ) =

√
n(X − θ)1[|Xn|>n−1/4] +

√
n(aXn − θ)1[|Xn|≤n−1/4]

=
√
n(X − θ)1[

√
n|Xn−θ+θ|>n1/4]

+ {a
√
n(Xn − θ) +

√
nθ(a− 1)1[

√
n|Xn−θ+θ|≤n1/4]

d
= Z1[|Z+

√
nθ|≥n1/4] + {aZ +

√
nθ(a− 1)}1[|Z+

√
nθ|≤n1/4](9)

→a.s.

{
Z if θ 6= 0
aZ if θ = 0

}
∼ N(0, V 2(θ)) .
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Note that V 2(θ) is a discontinuous function of θ. If θ ≡ θn = cn−1/2, then from (9), under Pθn we
have

√
n(Tn − θn)

d
= Z1|Z+c|>n1/4] + {aZ + c(a− 1)}1[|Z+c|≤n1/4]

→ aZ + c(a− 1) ∼ N(c(a− 1), a2) .

Note that this limiting distribution depends on c, and hence Hodges’ superefficient estimator is not
locally regular in the following sense.

Definition 3.1 (Locally regular estimator). T = {Tn} is a locally regular estimator of θ at θ = θ0

if, for every sequence {θn} ⊂ Θ with
√
n(θn − θ0)→ t ∈ Rk, under Pθn

√
n(Tn − θn)→d Z as n→∞(10)

where the distribution of Z depends on θ0 but not on t. Thus the limit distribution of
√
n(Tn− θn)

(under sampling from Pθn) does not depend on the direction of approach t of θn to θ0.

This will turn out to be a key hypothesis in the formulation of Hájek’s convolution theorem in
the next section.

Contiguity Theory: Le Cam’s four lemmas and LAN

Consider a sequence of statistical problems (with only two sequences of probability measures)
with

measure spaces: (Xn,An, µn)

probability measures: Pn << µn, Qn << µn

densities: pn = dPn
dµn

, qn = dQn

dµn

likelihood ratios: Ln ≡


qn/pn if pn > 0
1 if qn = pn = 0
n if qn > 0 = pn .

Definition 3.2 (Contiguity). The sequence {Qn} is contiguous to {Pn} if for every sequence
Bn ∈ An for which Pn(Bn)→ 0 it follows that Qn(Bn)→ 0.

Thus contiguity of {Qn} to {Pn} means that Qn is “asymptotically absolutely continuous” with
respect to Pn in the sense of domination of measures. We therefore denote contiguity of {Qn} to
{Pn} by {Qn}� {Pn}, a notation due to Witting and Nölle (1970). Two sequences are contiguous
to each other if both {Qn}� {Pn} and {Pn}� {Qn}, and we then write {Pn}�� {Qn}.

Definition 3.3 (Asymptotic orthogonality). The sequence {Qn} is asymptotically orthogonal to
{Pn} if there exists a sequence Bn ∈ An such that Qn(Bn)→ 1 and Pn(Bn)→ 0.

Lemma 3.1 (Le Cam’s first lemma). Suppose that L(Ln|Pn) → L(L) and E(L) = 1. Then
{Qn}� {Pn}.
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Corollary 1 (Normal log - likelihood). If L(logLn|Pn)→ L(logL) = N(−σ2/2, σ2), then
{Qn}�� {Pn}.

Proof. Note that L(L) = L(eσZ−σ
2/2) where L(Z) = N(0, 1) and hence E(L) = 1. 2

Definition 3.4 A sequence of random variables {Xn} ( with Xn defined on (Xn,An, Pn) is uni-
formly integrable if

lim
λ→∞

lim sup
n→∞

En(|Xn|1[|Xn|≥λ]) = 0 .

Proposition 3.1 (Condition for Uniform integrability). {Xn} is uniformly integrable if and only
if both of the following hold

sup
n≥1

En|Xn| <∞ .(11)

Bn ∈ An with Pn(Bn)→ 0 implies En(|Xn|1Bn)→ 0 .(12)

Proof. See e.g. Billingsley (1968) page 34 or Chow and Teicher (1978) pages 92 - 93. 2

Lemma 3.2 (Le Cam’s fourth lemma, Hall and Loynes (1977)). {Qn}� {Pn} if and only if {Ln}
is uniformly integrable with respect to {Pn} and Qn([pn = 0])→ 0.

Now suppose that Xn = (X1, . . . , Xn) ∈ Xn and that

pn(xn) =
n∏
i=1

fni(xi), Pn ≡
n∏
i=1

Pni ,

qn(xn) =
n∏
i=1

gni(xi), Qn ≡
n∏
i=1

Qni ,

so that

logLn =

n∑
i=1

log

(
gni
fni

(Xi)

) {
<∞ a.s. Pn
> −∞ a.s. Qn .

(13)

Suppose that the summands in (13) satisfy the uniform asymptotic negligibility (UAN) condition

max
1≤i≤n

Pn

(∣∣∣gni
fni

(Xi)− 1
∣∣∣ > ε

)
→ 0 for all ε > 0 .(14)

To get random variables with finite variance (to which classical central limit theorems may be
applied), let

Wn ≡ 2

n∑
i=1

{
g

1/2
ni

f
1/2
ni

(Xi)− 1

}
≡

n∑
i=1

Tni ,(15)

and note that

V ar

(
g

1/2
ni

f
1/2
ni

(Xi)

)
≤ E

(
gni
fni

(Xi)

)
=

∫
1[fni=0]gnidµn ≤ 1 .

The following lemma reduces the proof of asymptotic normality of logLn to the problem of estab-
lishing asymptotic normality of Wn.
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Lemma 3.3 (Le Cam’s second lemma). Suppose that the UAN condition (10) holds and L(Wn|Pn)→
N(−σ2/4, σ2). Then

logLn − (Wn − σ2/4) = oPn(1)(16)

and hence

L(logLn|Pn)→ N(−σ2/2, σ2) .(17)

The proof of lemma 3.3 involves a long truncation argument, and is therefore deferred to the
end of the section.

Corollary 2 (LAN under differentiability). If fn is a sequence of densities such that

‖
√
n(f1/2

n − f1/2)− δ‖2 → 0 as n→∞

where ‖ · ‖2 is the L2(µ)−metric and δ ∈ L2(µ), then with pn(x) ≡
∏n
i=1 f(xi) and qn(x) ≡∏n

i=1 fn(xi), it follows that

logLn −

(
1√
n

n∑
i=1

2δ

f1/2
(Xi)−

1

2
‖2δ‖22

)
= oPn(1)(18)

and hence

L(logLn|Pn)→ N(−σ2/2, σ2)(19)

with

σ2 = ‖2δ‖22 = 4

∫
δ2dµ .(20)

Corollary 3 (Hellinger-differentiable parametric model). Suppose that P = {Pθ : θ ∈ Θ ⊂ Rk}
is a regular parametric model dominated by a sigma-finite measure µ in the sense that

‖√pθ+h −
√
pθ −

1

2
hT l̇θ
√
pθ‖µ = o(|h|) .

Then, with θn ≡ θ+n−1/2h ∈ Θ, h ∈ Rk, pn(x) ≡
∏n
i=1 pθ(xi), and qn(x) ≡

∏n
i=1 pθn(xi), it follows

that

logLn −

(
hT√
n

n∑
i=1

l̇θ(Xi)−
1

2
hT I(θ)h

)
= oPn(1) ,

and hence

L(logLn|Pn)→ N(−σ2/2, σ2)

with σ2 = hT I(θ)h.
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Proof. This follows immediately from corollary 2 with the identification δ = l̇. 2

Now suppose that under

Pn : Xn1, . . . , Xnn are i.i.d. f ,(21)

and under

Qn : Xn1, . . . , Xnn are independent with densities fn1, . . . , fnn(22)

with respect to µ. Assume that an1, . . . , ann, n ≥ 1, are constants which satisfy

max
1≤i≤n

a2
ni

aTnan
=

max1≤i≤n a
2
ni∑n

i=1 a
2
ni

→ 0 as n→∞ ,(23)

and suppose there exists δ ∈ L2(F ) such that

n∑
i=1

‖(f1/2
ni − f

1/2)− ani√
aTnan

δ‖22 → 0 as n→∞ .(24)

Corollary 4 (LAN, regression setting) Suppose that (21) - (24) hold. Then

logLn −
(
Zn −

1

2
‖2δ‖22

)
= oPn(1)(25)

where

Zn ≡ 2
n∑
i=1

ani√
aTnan

δ

f1/2
(Xni)(26)

and

L(Zn)→ N(0, ‖2δ‖22) as n→∞ .(27)

Proof. See Shorack and Wellner (1986), page 154 and 163 - 165. Note that corollary 2 is the
special case of corollary 4 with all ani = 1 and fni = fn for all i = 1, . . . , n. 2

Lemma 3.4 (Le Cam’s third lemma). Suppose that a statistic Tn satisfies

L
(
(Tn, logLn)T |Pn

)
→ L((T, logL)T )(28)

∼ N2

((
µ

−σ2/2

)
,

(
τ2 c
c σ2

))
.

Then

L
(
(Tn, logLn)T |Qn

)
→ L((T + c, logL+ σ2)T )(29)

∼ N2

((
µ+ c

+σ2/2

)
,

(
τ2 c
c σ2

))
.

Remark 3.1 If Tn is asymptotically linear and logLn is asymptotically linear (which is often a
consequence of the second lemma), then verification of (28) is straightforward via the multivariate
central limit theorem.
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Proofs

Proof. (lemma 3.1, Le Cam’s first lemma). Let Bn ∈ An with Pn(Bn) → 0. By the

Neyman-Pearson lemma there is a critical function φn ≡ 1{Ln > kn} + γn1{Ln = kn} such that
EPn(φn) = αn ≡ Pn(Bn)→ 0 and

Qn(Bn) ≤ Qn(φn) .

But for any fixed 0 < y <∞,

Qn(Bn) ≤ Qn(φn) = Qn(φn1{Ln ≤ y}) +Qn(φn1{Ln > y}
≤ yPn(φn) +Qn(1{Ln > y})
= yPn(φn) + 1−Qn(Ln ≤ y)

= yPn(φn) + 1− Pn(Ln1{Ln ≤ y}) .(a)

Let ε > 0 and choose y to be a continuity point of L(L) such that 1 − E(L1{L ≤ y}) < ε/2;
this is possible since E(L) = 1 by hypothesis. Then L(Ln|Pn) → L(L) implies that Pn(Ln1{Ln ≤
y}) → E(L1{L ≤ y}) and hence 1 − Pn(Ln1{Ln ≤ y}) < ε for n ≥ N1. Since Pn(Bn) → 0 we
also have yPn(Bn) < ε for n ≥ some N2, and hence it follows from (a) that Qn(Bn) < 2ε for
n ≥ max{N1, N2}. 2

Proof. (lemma 3.2, Le Cam’s fourth lemma). First note that for Bn ∈ An we have

Qn(Bn) =

∫
1BndQn

=

∫
1Bn∩[pn=0]dQn +

∫
1Bn∩[pn>0]LndPn

=

∫
1Bn∩[pn=0]dQn +

∫
1BnLndPn

≤ Qn(pn = 0) +

∫
1BnLndPn(a)

≥
∫

1BnLndPn .(b)

Thus if Pn(Bn)→ 0, Ln is uniformly integrable and Qn(pn = 0)→ 0, then Qn(Bn)→ 0 by (a) and
proposition 3.1, so {Qn}� {Pn}.

Conversely, if {Qn}�{Pn} so that Qn(Bn)→ 0, then (b) implies that
∫

1BnLndPn → 0, so (ii) of
proposition 3.1 holds. Part (i) of proposition 3.1 holds trivially since Pn(Ln) =

∫
LndPn =

∫
1{pn >

0}dQn ≤ 1, and therefore {Ln} is uniformly integrable with respect to {Pn} by proposition 3.1.
Since Pn(pn = 0) = 0, contiguity implies that Qn(pn = 0)→ 0. 2

Proof. (lemma 3.3, Le Cam’s second lemma). The following proof is from Hájek and

Sidák (1967). For any function h with second derivative h′′ we have

h(x) = h(x0) + (x− x0)h′(x0) +
1

2
(x− x0)2

∫ 1

0
2(1− λ)h′′(x0 + λ(x− x0))dλ
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by integration by parts. thus for h(x) = log(1 + x)

log(1 + x) = x− 1

2
x2

∫ 1

0

2(1− λ)

(1 + λx)2
dλ .

Thus, with Tni as in (15)

log

(
gni
fni

(Xi)

)
= 2 log(1 + Tni/2) = Tni −

1

4
T 2
ni

∫ 1

0

2(1− λ)

1 + λTni/2)2
dλ

and

log(Ln) = Wn −
1

4

n∑
i=1

T 2
ni

∫ 1

0

2(1− λ)

(1 + λTni/2)2
dλ .(a)

Now we truncate: set T δni ≡ Tni1[|Tni|≤δ] for δ > 0. From the normal convergence criteria (see e.g.
Loéve (1963), page 316), L(Wn|Pn)→ N(−σ2/4, σ2) and the UAN condition (14) holds if and only
if

n∑
i=1

Pn(|Tni| > δ)→ 0 ,(b)

n∑
i=1

E(T δni)→ −
1

4
σ2 ,(c)

and

n∑
i=1

V ar(T δni)→ σ2(d)

where all expectations and variances are under Pn. Note that
∫ 1

0 2(1− λ)dλ = 1 and

Pn{max
1≤i≤n

|Tni| > δ} ≤
n∑
i=1

Pn(|Tni| > δ)→ 0 by (c) .

Let Sn ≡ {max1≤i≤n |Tni| ≤ η}. Thus for any 0 < η < 1 there is an N = N(η) such that, for
n ≥ N , Pn(Sn) > 1− η. It follows that, on Sn

sup
λ

max
1≤i≤n

∣∣∣(1 + λTni/2)−1 − 1
∣∣∣ ≤ 8η

and hence

max
1≤i≤n

∣∣∣ ∫ 1

0

2(1 + λ)

(1 + λTni/2)2
dλ− 1

∣∣∣ ≤ 8η .

Also, since Tni = T ηni for i = 1, . . . , n on the event Sn,

∣∣∣ n∑
i=1

T 2
ni

∫ 1

0

2(1 + λ)

(1 + λTni/2)2
dλ−

n∑
i=1

T 2
ni

∣∣∣ ≤ 8η

n∑
i=1

T 2
ni = 8η

n∑
i=1

(T ηni)
2
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so that ∣∣∣∑n
i=1 T

2
ni

∫ 1
0

2(1+λ)
(1+λTni/2)2

dλ∑n
i=1(T ηni)

2
− 1
∣∣∣ ≤ 8η on Sn .

Thus in order to prove the lemma it suffices to show that

n∑
i=1

(T ηni)
2 →Pn σ

2 .(e)

To prove (e) it suffices, by Chebychev’s inequality, to show that

n∑
i=1

E[(T ηni)
2]→ σ2(f)

and

lim
η→0

lim sup
n→∞

n∑
i=1

V ar[(T ηni)
2] = 0 .(g)

But by virtue of (d), (f) is equivalent to

n∑
i=1

[E(T ηni)]
2 → 0 .(h)

We first prove (h) and hence (f): if η > 2, then T ηni ≤ Tni since Tni ≥ −2 a.s. by definition of Tni.
Therefore

E(T ηni ≤ ETni = 2E

{
g

1/2
ni

f
1/2
ni

(Xi)

}
− 2 ≤ 0

by Jensen’s inequality. Thus for η > 2

n∑
i=1

(−ET ηni)
2 ≤ max

1≤i≤n
(−ET ηni)

n∑
i=1

(−ET ηni)→ 0

since
n∑
i=1

(−ET ηni)→
1

4
σ2 by (c)

and

max
1≤i≤n

(−ET ηni)→ 0 by the UAN condition (14) .

Now note that if (h) holds for any η > 2, it holds for all η > 0: since

n∑
i=1

E[(T ηni)
2] ≤

n∑
i=1

E[(T γni)
2] for all η < γ
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and, by (d) both
∑n

i=1 V ar[T
η
ni]→ σ2 and

∑n
i=1 V ar[T

γ
ni]→ σ2, it follows that

n∑
i=1

[E(T ηni)]
2 =

n∑
i=1

{E[(T ηni)
2]− V ar(T ηni)}

≤
n∑
i=1

{E[(T γni)
2]− V ar(T γni) + V ar(T γni)− V ar(T

η
ni)}

=
n∑
i=1

[E[(T γni)]
2 +

n∑
i=1

V ar(T γni)−
n∑
i=1

V ar(T ηni)

→ 0 + σ2 − σ2 = 0 ,

completing the proof of (h) and hence (f).
To prove (g), note that

n∑
i=1

V ar[(T ηni)
2] ≤

n∑
i=1

E[(T ηni)
4] ≤ η2

n∑
i=1

E[(T ηni)
2] .

Then, by (f)

lim sup
n→∞

n∑
i=1

V ar[(T ηni)
2] ≤ η2σ2 ,

and hence (g) holds. 2

Proof. (corollary 2). Let

Tni ≡ 2

{
f

1/2
n (Xi)

f1/2(Xi)
− 1

}
, i = 1, . . . , n , and n ≥ 1 .

Note that (all expectations and variances being calculated under P with density f)

E(Tni) = 2

{∫
f1/2
n f1/2dµ− 1

}
= −2H2(fn, f), for i = 1, . . . , n

where

H2(fn, f) ≡ 1

2

∫
(f1/2
n − f1/2)2dµ =

1

2
‖f1/2
n − f1/2‖22

and

V ar(Tni) = 4

∫
(f1/2
n − f1/2)2dµ− [E(Tni)]

2

= 8H2(fn, f)− 4H4(fn, f) .

Therefore, since the hypothesis ‖
√
n(f

1/2
n − f1/2) − δ‖2 → 0 implies n‖f1/2

n − f1/2‖22 → ‖δ‖22 and

‖f1/2
n − f1/2‖ → 0, the random variable Wn of lemma 2 has

E(Wn) = −2nH2(fn, f)→ ‖δ‖22(a)

and

V ar(Wn) = 8nH2(fn, f)− 4nH2(fn, f)H2(fn, f)→ 4‖δ‖22 .
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Note that since

εP

(∣∣∣fn
f

(Xi)− 1
∣∣∣ ≥ ε) ≤ E

∣∣∣fn
f

(Xi)− 1
∣∣∣

= E

(∣∣∣f1/2
n

f1/2
(Xi)− 1

∣∣∣∣∣∣f1/2
n

f1/2
(Xi)− 1

∣∣∣)
≤ ‖f1/2

n − 1‖2‖f1/2
n + 1‖2 → 0

uniformly in 1 ≤ i ≤ n as n→, the UAN condition (14) holds. Furthermore,

V ar

{
Wn −

2√
n

n∑
i=1

δ

f1/2
(Xi)

}

= 4nV ar

{
f

1/2
n

f1/2
(Xi)− 1− n−1/2 δ

f1/2
(X1)

}
= 4n‖(f1/2

n − f1/2 − n−1/2δ‖22 − 4nH2(fn, f)H2(fn, f)

= 4‖
√
n(f1/2

n − f1/2)− δ‖22 − 4nH4(fn, f)

→ 0(b)

and hence

E

{
Wn − ‖δ‖22 −

2√
n

n∑
i=1

δ

f1/2
(Xi) + 2‖δ‖22

}2

= V ar

{
Wn −

2√
n

n∑
i=1

δ

f1/2
(Xi)

}

+

{
E

(
Wn −

2√
n

n∑
i=1

δ

f1/2
(Xi) + ‖δ‖22

)}2

= o(1) + (E(Wn) + ‖δ‖22)2 by (b)

→ 0 + 0 = 0 by (a) .

Thus

Wn − ‖δ‖22 −

{
2√
n

n∑
i=1

δ

f1/2
(Xi)− 2‖δ‖22

}
= op(1) .(c)

Since

L

(
2√
n

N∑
i=1

δ

f1/2
(Xi)− 2‖δ‖22

∣∣∣P)→ N(−(1/2)‖2δ‖22, ‖2δ‖22)

it follows that

L(Wn − ‖δ‖22|P )→ N(−(1/2)‖2δ‖2, ‖2δ‖22) ,

and hence, by lemma 2 that

logLn = Wn − ‖δ‖22 + op(1) =
2√
n

n∑
i=1

δ

f1/2
(Xi)− 2‖δ‖22 + op(1) .
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2

Proof. (lemma 3.4, Le Cam’s third lemma). Since L(logLn|Pn) → L(logL) =

N(−σ2/2, σ2) = L(σZ − σ2/2) where Z ∼ N(0, 1), it follows that E(L) = E exp(σZ − σ2/2) = 1,
and thus {Qn} � {Pn} by Le Cam’s first lemma. Hence by lemma 3.2 (Le Cam’s fourth lemma),
Ln is uniformly integrable and Qn(pn = 0)→ 0 as n→∞.

Now let f : R2 → R be bounded and continuous. Then

EQnf(Tn, logLn) = EQnf(Tn, logLn){1[pn>0] + 1[pn=0]}
= EPnf(Tn, logLn)Ln + EQnf(Tn, logLn)1[pn=0](a)

→ E[f(T, logL)L](b)

= Ef(T + c, logL+ σ2)(c)

where (b) holds since f(Tn, logLn)Ln is uniformly integrable by uniform integrability of Ln and
boundedness of f , and since the second term in (a) is bounded by ‖f‖∞Qn(pn = 0)→ 0. It remains
only to establish (c).

To verify (c), note that (28) implies that

L(T | logL) = L(
c

σ2
(logL+

1

2
σ2) + Z̃)(d)

where L(Z̃) = N(µ, σ2(1− ρ2)), ρ = c/(στ), is independent of logL, and hence

L(T + c| logL) = L(c+
c

σ2
(logL+

1

2
σ2) + Z̃)

= L(
c

σ2
(logL+ σ2 +

1

2
σ2) + Z̃) .

Furthermore,

L = exp(logL) =
density of N(σ2/2, σ2)

density of N(−σ2/2, σ2)
at logL .

Therefore

Ef(T, logL)L = E{E(f(T, logL)elogL| logL)}
= E{elogLE(f(T, logL)| logL)}

= E
{
elogLE

(
f(

c

σ2
(logL+ σ2/2) + Z̃, logL)| logL

)}
by (d)

= E{E
(
f(c+

c

σ2
(logL+ σ2/2) + Z̃, logL+ σ2)| logL

)
}

= Ef(T + c, logL+ σ2) by (e) ,

which completes the proof of (c). Hence (29) holds. 2
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4 The Hájek - Le Cam convolution and LAM theorems

Now we give statements of several convolution and local asymptotic minimax theorems. The key
hypotheses involved in virtually all the different formulations of these theorems are as follows:

A. Local Asymptotic Normality (LAN) of the local likelihood ratios of the model. A sufficient
condition for this is differentiability of the model in an appropriate sense; recall corollaries 2
and 3.

B. For the convolution theorems we will also hypothesize regularity of the estimators: the only
estimators considered will be those for which the local limiting distributions do not depend
on the direction or (magnitude) of the approach of the local parameter point to the fixed
point under consideration.

C. Pathwise differentability of the parameter being estimated as a function of the underling P ∈ P
metrized by the Hellinger metric. This amounts to Hadamard differentiability along the model
P.

Our goal in this section will be to explain the basic hypotheses require in different settings, and
to discuss several useful refinements and extensions of the basic theorems. For complete proofs we
refer the reader to the original articles by Hájek (1970), (1972), Le Cam (1972), Ibragimov and
Has’minskii (1981), van der Vaart (1988), Millar (1983), Le Cam (1986), and Bickel, Klaassen,
Ritov and Wellner (1993).

Convolution and LAM theorems for finite-dimensional parameter spaces

Suppose that P = {Pθ : θ ∈ Θ}, Θ ⊂ Rk is a Hellinger differentiable parametric model. Set
l(x; θ) ≡ log p(x; θ), and let

ln(θ) =
n∑
i=1

l(Xi; θ)

denote the log-likelihood of X1, . . . , Xn, a sample from Pθ0 ≡ P0 ∈ P. Then by corollary 3 of Le
Cam’s second lemma we know that

ln(θ0 + n−1/2t)− ln(θ0) = tTSn(θ0)− 1

2
tT I(θ0)t+ oP0(1)(1)

where

Sn(θ0) ≡ 1√
n

n∑
i=1

l̇(Xi; θ0)

is the score for θ at θ0 (based on the entire sample X1, . . . , Xn) and I(θ0) is the Fisher information
matrix defined in section 2. It follows that

ln(θ0 + n−1/2t)− ln(θ0)→d N

(
−1

2
tT I(θ0)t, tT I(θ0)t

)
(2)

under P0. This is sometimes called the Local Asymptotic Normality, or LAN condition. It is
one key ingredient of the Hájek convolution theorem. The second key ingredient is the following
definition of regularity of an estimator sequence Tn.
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Definition 4.1 T = {Tn} is a locally regular estimator of θ at θ = θ0 if, for every sequence
{θn} ⊂ Θ with

√
n(θn − θ0)→ t ∈ Rk, under Pθn

√
n(Tn − θn)→d Z as n→∞

where the distribution of Z depends on θ0 but not on t. Thus the limit distribution of
√
n(Tn− θn)

does not depend on the direction of approach t of θn to θ0.

With these two basic ingredients, we can state a simplified version of Hájek’s (1970) convolution
theorem.

Theorem 4.1 Suppose that (2) holds with I(θ0) nonsingular and that {Tn} is a regular estimator
of θ at θ0. Then

Z d
= Z0 + ∆0(3)

where Z0 ∼ N(0, I−1(θ0)) is independent of ∆0.

Hájek (1970) proved a somewhat more general theorem based on just the LAN hypothesis (2)
using a method based on “Bayesian considerations”. This method of proof is developed further in
van der Vaart (1989). A different proof using characteristic functions due to Peter Bickel is given
in Roussas (1972) and also in Bickel, Klaassen, Ritov and Wellner (1993). This latter type of proof
was exploited and developed by R. Beran (1977a, 1977b) in more general settings.

In words, theorem 4.1 says that the limiting distribution of any regular estimator Tn of θ must
be at least as “spread out” as the N(0, I−1(θ0)) distribution of Z0. Thus an efficient estimator is
a regular estimator for which the limiting distribution is exactly equal to Z0. Another way to say
this is in terms of the following asymptotic optimality theorem.

Corollary 1 (Hájek, 1970). Suppose that {Tn} is a locally regular estimator of θ at θ0 and that
l : Rk → R+ is bowl-shaped: i.e.

(i) l(x) = l(−x) ,

(ii) {x : l(x) ≤ c} is convex for every c ≥ 0 .

Then

lim inf
n→∞

Eθ0 l(
√
n(Tn − θ0)) ≥ El(Z0)

where Z0 ∼ N(0, I−1(θ0)).

If a supremum over θ in a local neighborhood of θ0 is added to the left side of (4), then the
same type of statement holds for an arbitrary (not necessarily regular) estimator Tn of θ. This is
the Hájek - Le Cam asymptotic minimax theorem due to Hájek (1971), and, in a more abstract
form to Le Cam (1971).

Theorem 4.2 (Hájek, 1971). Suppose that (2) holds, that Tn is any estimator of θ, and that l is
bowl-shaped. Then

lim
δ→∞

lim inf
n→∞

sup
θ:
√
n|θ−θ0|≤δ

Eθl(
√
n(Tn − θ)) ≥ El(Z0) .(4)
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5 A Basic Inequality

First we need two lemmas.

Lemma 5.1 Let P, Q be two probability measures on a measurable space (X,A) with densities
p, q with respect to a σ−finite dominating measure µ. Then

(1−H2(P,Q))2 ≤ 1−
{

1−
∫

(p ∧ q) dµ
}2

≤ 2

∫
(p ∧ q) dµ .

Proof. The second inequality is trivial. To prove the first inequality, note that by Exercise
2.1.6

(1−H2(P,Q))2 + (1−
∫
p ∧ qdµ)2

=

(∫
√
pqdµ

)2

+

(
1

2

∫
|p− q|dµ

)2

=

(∫
√
pqdµ

)2

+
1

4

(∫
|√p−√q||√p+

√
q|dµ

)2

≤
(∫
√
pqdµ

)2

+
1

4

∫
(
√
p−√q)2dµ

∫
(
√
p+
√
q)2dµ

= 1 .

2

Lemma 5.2 If P and Q are two probability measures on a measurable space (X,A) with densities
p and q with respect to a σ−finite dominating measure µ and Pn and Qn denote the corresponding
product measures on (Xn,An) (of X1, . . . , Xn i.i.d. as P or Q respectively), then

ρ(Pn, Qn) = ρ(P,Q)n .(1)

Proof. Note that

ρ(Pn, Qn) =

∫
· · ·
∫ √√√√ n∏

i=1

p(xi)

n∏
i=1

q(xi) dµ(x1) · · · dµ(xn)

=

∫
· · ·
∫ √

p(x1)q(x1) · · · p(xn)q(xn)dµ(x1) · · · dµ(xn)

=

∫ √
p(x1)q(x1) dµ(x1) · · ·

∫ √
p(xn)q(xn)dµ(xn)

= ρ(P,Q) · · · ρ(P,Q) = ρ(P,Q)n .

2
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Remark 5.1 Note that (1) implies that

H2(Pn, Qn) = 1− ρ(Pn, Qn) = 1− ρ(P,Q)n = 1− (1−H2(P,Q))n

by using exercise 2.1.5 (chapter 2, page 10) twice.

With these two lemmas in hand we can prove our basic inequality.

Proposition 5.1 Let P be a set of probability measures on a measurable space (X,A), and let ν
be a real-valued function defined on P. Moreover, let l : [0,∞) → [0,∞) be an increasing convex
loss function with l(0) = 0. Then, for any P1, P2 ∈ P such that H(P1, P2) < 1 and with

En,if(X1, . . . , Xn) = En,if(X) =

∫
f(x)dPni (x) ≡

∫
f(x1, . . . , xn)dPi(x1) · · · dPi(xn) ,

for i = 1, 2, it follows that

inf
Tn

max {En,1l(|Tn − ν(P1)|), En,2l(|Tn − ν(P2)|)}(2)

≥ l

(
1

4
|ν(P1)− ν(P2)|{1−H2(P1, P2)}2n

)
.

Proof. By Jensen’s inequality

En,il(|Tn − ν(Pi)|) ≥ l(En,i|Tn − ν(Pi)|) , i = 1, 2 ,

and hence the left side of (2) is bounded below by

l

(
inf
Tn

max{En,1|Tn − ν(P1)| , En,2|Tn − ν(P2)|
)
.

Thus it suffices to prove the proposition for l(x) = x. Let p1 ≡ dP1/(d(P1+P2), p2 = dP2/d(P1+P2),
and µ = P1 + P2 (or let pi be the density of Pi with respect to some other convenient dominating
measure µ, i = 1, 2). Now

max {En,1|Tn − ν(P1)|, En,2|Tn − ν(P2)|}

≥ 1

2
{En,1|Tn − ν(P1)|+ En,2|Tn − ν(P2)|}

=
1

2

{∫
|Tn(x)− ν(P1)|

n∏
i=1

p1(xi)dµ(x1) · · · dµ(xn)

+

∫
|Tn(x)− ν(P2)|

n∏
i=1

p2(xi)dµ(x1) · · · dµ(xn)

}

≥ 1

2

{∫
[|Tn(x)− ν(P1)|+ |Tn(x)− ν(P2)|]

n∏
i=1

p1(xi) ∧
n∏
i=1

p2(xi)dµ(x1) · · · dµ(xn)

}

≥ 1

2
|ν(P1)− ν(P2)|

∫ n∏
i=1

p1(xi) ∧
n∏
i=1

p2(xi)dµ(x1) · · · dµ(xn)

≥ 1

4
|ν(P1)− ν(P2)|{1−H2(Pn1 , P

n
2 )}2 by Lemma 5.1

=
1

4
|ν(P1)− ν(P2)|{1−H2(P1, P2)}2n by Lemma 5.2 .

2
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Example 5.1 (Regular parametric model). Suppose that P = {Pθ : θ ∈ Θ ⊂ Rk} with Pθ << µ
for all θ so that pθ = dPθ/dµ exists for all θ ∈ Θ. Suppose that pθ is differentiable at θ0 ∈ Θ in the
following sense: there is a function l̇θ such that∫

{√pθ −
√
pθ0 −

1

2
(θ − θ0)T l̇θ

√
pθ0}2 dµ = o(|θ − θ0|2) .(3)

Let θn = θ0 + n−1/2h so that
√
n(θn − θ0) = h. Note that (3) implies that

nH2(Pθn , Pθ0) =
n

2

∫
[
√
pθn −

√
pθ0 ]2 dµ =

1

2

∫
[
√
n(
√
pθn −

√
pθ0)]2 dµ

→ 1

8

∫
hT l̇θ l̇

T
θ h pθ0dµ

=
1

8
hTEθ0{l̇θ(X)l̇Tθ (X)}h =

1

8
hT I(θ0)h .

This implies that

(
1−H2(Pθn , Pθ0)

)2n
=

(
1− nH2(Pθn , Pθ0)

n

)2n

→ exp(−(1/4)hT I(θ0)h) .

Hence if we take ν(Pθ) = cT θ, we have

|ν(Pθn)− ν(Pθ0)| = n−1/2cTh ,

and it follows from Proposition 5.1 that for any convex increasing function l we have

inf
Tn

max {Eθn l(|Tn − ν(Pθn)|), Eθ0 l(|Tn − ν(Pθ0)|)}(4)

≥ l

(
1

4
|ν(Pθn)− ν(Pθ0)|{1−H2(Pθn , Pθ0)}2n

)
.

= l

(
1

4
n−1/2|cTh|{1− nH2(Pθn , Pθ0)

n
}2n
)
.(5)

For example, with l(x) = x, this yields

n1/2 inf
Tn

max {Eθn |Tn − ν(Pθn)|, Eθ0 |Tn − ν(Pθ0)|}

≥ 1

4
|cTh|

{
1− nH2(Pθn , Pθ0)

n

}2n

→ 1

4
|cTh| exp(−hT I(θ0)h/4) .

By choosing h = aI−1(θ0)c this bound becomes

1

4
a|cT I−1(θ0)c| exp(−a2cT I−1(θ0)c/4) = |cT I−1(θ0)c|1/2

{
e−1/4/4

}
by taking a = {cT I−1(θ0)c}−1/2.

With l(x) = x2 we obtain

inf
Tn

max
{
Eθn{n|Tn − ν(Pθn)|2}, Eθ0{n|Tn − ν(Pθ0)|2}

}
≥ 1

16
|cTh|2

{
1− nH2(Pθn , Pθ0)

n

}4n

→ 1

16
|cTh|2 exp(−hT I(θ0)h/2) .
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By choosing h = aI−1(θ0)c this bound becomes

1

16
a2(cT I−1(θ0)c)2 exp(−a2cT I−1(θ0)c/2) = cT I−1(θ0)c

{
e−1/2/16

}
by taking a2 = {cT I−1(θ0)c}−1. Thus we conclude that for the choice h = I−1(θ0)c/{cT I−1(θ0)c}1/2
we have

lim inf
n→∞

inf
Tn

max
{
Eθn{n|Tn − ν(Pθn)|2}, Eθ0{n|Tn − ν(Pθ0)|2}

}
≥ cT I−1(θ0)c

{
1

16
exp(−1/2)

}
= E[N(0, cT I−1(θ0)c)]2

{
1

16
exp(−1/2)

}
.

Example 5.2 (Uniform(0, θ)). Suppose that X1, . . . , Xn are i.i.d. Uniform(0, θ) with densities
pθ(x) = θ−11[0,θ](x) for θ ∈ (0,∞). Fix θ0 > 0 and let θn = θ0 + cn−1. Then

ρ(Pθ0 , Pθn) =

∫ θ0∧θn

0

1√
θ0θn

dx

=
θ0 ∧ θn√
θ0θn

=

{ √
θ0/θn, if θ0 ≤ θn√
θn/θ0, if θ0 ≥ θn

=

{ √
1/(1 + (c/θ0)/n), if θ0 ≤ θn√
1 + (c/θ0)/n, if θ0 ≥ θn.

Thus

(1−H2(Pθ0 , Pθn))2n = ρ(Pθ0 , Pθn)2n

=

{
1/(1 + (c/θ0)/n)n, if c ≥ 0
(1 + (c/θ0)/n)n, if c ≤ 0.

→
{
e−c/θ0 , if c ≥ 0

e−|c|/θ0 , if c ≤ 0

= exp(−|c|/θ0).

Thus if ν(Pθ) = θ and l(x) = x, it follows that

inf
Tn

max {En{n|Tn − ν(Pθn)|}, E0{n|Tn − ν(Pθ0)|}}

≥ 1

4
n
|c|
n
ρ(Pθ0 , Pθn)2n

→ 1

4
|c| exp(−|c|/θ0) =

1

4
θ0(|c|/θ0) exp(−|c|/θ0).

The right side is maximized by the choice |c| = θ0, and for this choice we conclude that

lim inf
n→∞

inf
Tn

max {En{n|Tn − ν(Pθn)|}, E0{n|Tn − ν(Pθ0)|}} ≥ e−1

4
θ0.
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Note that the particular estimator Tn = n+1
n max1≤i≤nXi (which is the unbiased modification of

the MLE) satisfies

Eθ{n|Tn − θ|} = Eθn
∣∣∣n+ 1

n
X(n) − θ

∣∣∣
= (n+ 1)Eθ

∣∣∣X(n) −
n

n+ 1
θ
∣∣∣

= (n+ 1)

∫ θ

0

∣∣∣x− n

n+ 1
θ
∣∣∣n(x/θ)n−1dx/θ

= θn(n+ 1)

∫ 1

0

∣∣∣u− n

n+ 1

∣∣∣un−1du

= θn(n+ 1)

{∫ n/(n+1)

0

(
n

n+ 1
− u
)
un−1du+

∫ 1

n/(n+1)

(
u− n

n+ 1

)
un−1du

}

= θn(n+ 1)
2

(n+ 1)2

(
n

n+ 1

)n
→ 2e−1θ

since Pθ(X(n) ≤ x) = (x/θ)n

Example 5.3 (Monotone densities on R+). Suppose that

P = {P on R+ : dP/dλ = p is monotone nonincreasing} .

Suppose that we want to estimate ν(P ) = p(x0) for a fixed x0 ∈ (0,∞) on the basis of a sample
X1, . . . , Xn from P0 ∈ P. Let p0 be the density corresponding to P0, and suppose that p′0(x0) < 0.
To apply Proposition 5.1 we need to construct some density pn that is “near” p0 in the sense that

nH2(pn, p0)→ A

for some constant A, and
|ν(Pn)− ν(P0)| = b−1

n

where bn →∞. Hence we will try the following choice of pn. For c > 0, define

pn(x) =


p0(x) if x ≤ x0 − cn−1/3 or x > x0 + cn−1/3,

p0(x0 − cn−1/3) if x0 − cn−1/3 < x ≤ x0,

p0(x0 + cn−1/3) if x0 < x ≤ x0 + cn−1/3.

It is easy to see that

n1/3|ν(Pn)− ν(P0)| = |n1/3(p0(x0 − cn−1/3)− p0(x0))| → |p′0(x0)|c(6)

On the other hand we calculate

H2(pn, p0) =
1

2

∫ ∞
0

[
√
pn(x)−

√
p0(x)]2 dx

=
1

2

∫ ∞
0

[
√
pn(x)−

√
p0(x)]2[

√
pn(x) +

√
p0(x)]2

[
√
pn(x) +

√
p0(x)]2

dx

=
1

2

∫ ∞
0

[pn(x)− p0(x)]2

[
√
pn(x) +

√
p0(x)]2

dx
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=
1

2

∫ x0

x0−cn−1/3

[p0(x0 − cn−1/3)− p0(x)]2

[
√
pn(x) +

√
p0(x)]2

dx

+
1

2

∫ x0+cn−1/3

x0

[p0(x0 + cn−1/3)− p0(x)]2

[
√
pn(x) +

√
p0(x)]2

=
1

2

∫ x0

x0−cn−1/3

[p′0(x∗n)(x0 − cn−1/3 − x)]2

[
√
pn(x) +

√
p0(x)]2

dx

+
1

2

∫ x0+cn−1/3

x0

[p′0(x∗∗n )(x0 + cn−1/3 − x)]2

[
√
pn(x) +

√
p0(x)]2

∼ 1

2

p′(x0)2

(2
√
p0(x0))2

∫ x0

x0−cn−1/3

(x0 − cn−1/3 − x)2dx

+
1

2

p′(x0)2

(2
√
p0(x0))2

∫ x0+cn−1/3

x0

(x0 + cn−1/3 − x)2dx

=
p′0(x0)2

4p0(x0)

c3

3n
.

Now we can combine these two pieces with Proposition 5.1 to find that, for any estimator Tn of
ν(P ) = p(x0) and the loss function l(x) = |x| we have

inf
Tn

max
{
Enn

1/3|Tn − ν(Pn)|, E0n
1/3|Tn − ν(P0)|

}
≥ 1

4
|n1/3(ν(Pn)− ν(P0))|

{
1− nH2(Pn, P0)

n

}2n

=
1

4
|n1/3(p0(x0 − cn−1/3)− p0(x0))|

{
1− nH2(Pn, P0)

n

}2n

→ 1

4
|p′0(x0)|c exp

(
−2

p′0(x0)2

12p0(x0)
c3

)
=

1

4
|p′0(x0)|c exp

(
−p
′
0(x0)2

6p0(x0)
c3

)
We can choose c to maximize the quantity on the right side. It is easily seen that the maximum is
achieved when

c = c0 ≡
(

2p0(x0)

p′0(x0)2

)1/3

.

This yields

lim inf
n→∞

inf
Tn

max
{
Enn

1/3|Tn − ν(Pn)|, E0n
1/3|Tn − ν(P0)|

}
≥ e−1/3

4

(
2|p′0(x0)|p0(x0)

)1/3
.

This bound has the appropriate structure in the sense that the (nonparametric) MLE of p, p̂n
converges at rate n−1/3 and the same constant is involved in its limiting distribution:

n1/3(p̂n(x0)− p0(x0))→d (|p′0(x)|p0(x)/2)1/3(2Z)

where Z = argmin{W (t) + t2} and W is a standard Brownian motion process started at 0, as has
been shown by Prakasa Rao (1969) and Groeneboom (1985).
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Example 5.4 (Interval censoring or “current status” data). Suppose that T, T1, . . . , Tn are i.i.d.
F on R+ and Y, Y1, . . . , Yn are i.i.d. G and independent of the X’s. Suppose that we are not able
to observe the Ti’s, but instead we can only observe Xi ≡ (Yi, 1[Ti≤Yi]) ≡ (Yi,∆i), i = 1, . . . , n.
Note that with X = (Y, 1{T ≤ Y }) ≡ (Y,∆) we have

(∆|Y = y) ∼ Bernoulli(F (y)) .

It follows that if G has density g with respect to Lebesgue measure λ on R+, then the observations
X,X1, . . . , Xn have density

pF (y, δ) = F (y)δ(1− F (y))1−δg(y)

for y ∈ R+ and δ ∈ {0, 1} with respect to the product µ of counting measure and Lebesgue on
{0, 1} ×R+.

Suppose that we want to estimate ν(PF ) = F (x0) for some fixed x0 ∈ (0,∞). We would like
to find a lower bound for estimation of this parameter. We will proceed much as in the previous
example: Fix a distribution function F0, and suppose that F0 has a positive derivative at x0:
F ′0(x0) = f0(x0) > 0. For c > 0, define

Fn(x) =


F0(x) if x ≤ x0 − cn−1/3 or x > x0 + cn−1/3,

F0(x0 − cn−1/3) if x0 − cn−1/3 < x ≤ x0,

F0(x0 + cn−1/3) if x0 < x ≤ x0 + cn−1/3.

Then it is easily seen that

n1/3|ν(Pn)− ν(P0)| = |n1/3(F0(x0 − cn−1/3)− F0(x0))| → |F ′0(x0)|c = f(x0)c .(7)

On the other hand we calculate, letting pn ≡ pFn ,

H2(pFn , pF0) =
1

2

∫
[
√
pn(x)−

√
p0(x)]2 dµ(x)

=
1

2

∫
[
√
pn(x)−

√
p0(x)]2[

√
pn(x) +

√
p0(x)]2

[
√
pn(x) +

√
p0(x)]2

dµ(x)

=
1

2

∫
[pn(x)− p0(x)]2

[
√
pn(x) +

√
p0(x)]2

dµ(x)

=
1

2

∫ x0

x0−cn−1/3

[F0(x0 − cn−1/3)− F0(x)]2

[
√
Fn(x) +

√
F0(x)]2

g(x)dx

+
1

2

∫ x0+cn−1/3

x0

[F0(x0 + cn−1/3)− F0(x)]2

[
√
Fn(x) +

√
F0(x)]2

g(x)dx

+
1

2

∫ x0

x0−cn−1/3

[1− F0(x0 − cn−1/3)− (1− F0(x))]2

[
√

1− Fn(x) +
√

1− F0(x)]2
g(x)dx

+
1

2

∫ x0+cn−1/3

x0

[1− F0(x0 + cn−1/3)− (1− F0(x))]2

[
√

1− Fn(x) +
√

1− F0(x)]2
g(x)dx

=
1

8F0(x0)(1− F0(x0))

∫ x0

x0−cn−1/3

[F0(x0 − cn−1/3)− F0(x)]2g(x)dx

+
1

8F0(x0)(1− F0(x0))

∫ x0+cn−1/3

x0

[F0(x0 + cn−1/3)− F0(x)]2 g(x)dx
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+ o(n−1)

∼ g(x0)f0(x0)2

4F0(x0)(1− F0(x0))

c3

3n

much as in the preceding example.
Combining these two pieces with Proposition 5.1 we find that, for any estimator Tn of ν(PF ) =

F (x0) and the loss function l(x) ≡ |x| we have

inf
Tn

max
{
Enn

1/3|Tn − ν(PFn)|, E0n
1/3|Tn − ν(PF0)|

}
≥ 1

4
|n1/3(ν(Pn)− ν(P0))|

{
1− nH2(Pn, P0)

n

}2n

=
1

4
|n1/3(F0(x0 − cn−1/3)− F0(x0))|

{
1− nH2(Pn, P0)

n

}2n

→ 1

4
f0(x0)c exp

(
− g(x0)f0(x0)2

6F0(x0)(1− F0(x0))
c3

)
.

We can choose c to maximize the quantity on the right side. It is easily seen that the maximum is
achieved when

c = c0 ≡
(

6F0(x0)(1− F0(x0)

3g(x0)f0(x0)2

)1/3

.

This yields

lim inf
n→∞

inf
Tn

max
{
Enn

1/3|Tn − ν(Pn)|, E0n
1/3|Tn − ν(P0)|

}
≥ e−1/3

4

(
2F0(x0)(1− F0(x0))f0(x0)

g(x0)

)1/3

.

This bound again has the appropriate structure in the sense that the (nonparametric) MLE of F ,
F̂n converges at rate n−1/3 and the same constant is involved in its limiting distribution:

n1/3(F̂n(x0)− F0(x0))→d

(
F0(x0)(1− F0(x0))f0(x0)

2g(x0)

)1/3

(2Z)

where Z = argmin{W (t) + t2} and W is a standard Brownian motion process started at 0; this was
shown by Groeneboom and Wellner (1992).


