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Chapter 3

Lower Bounds for Estimation

1 Introduction and Examples

One of the goals of statistical theory is to describe how well we can estimate parameters of interest
in principle for any given model. Since we cannot estimate parameters perfectly, what is the best
we can do?

A model P is simply a collection of probability distributions for the data we observe. Consider
a parameter of interest v = v(P) we want to estimate. Here are some frequent goals or questions:

Question 1. Given a model P and a parameter of interest v, how well can we estimate v = v(P)?
What is our “gold standard”?

Question 2. Can we compare absolute “in principle” standards for estimation of v in a model P
with estimation of v in a submodel Py C P? What is the effect of not knowing n on estimation
of v when 0 = (v,n)?

Question 3. For a fixed model P compare one or more estimators of v to each other and to the
best “in principle” bound.

The bounds we will discuss in this chapter provide some partial answers to these questions.

To indicate the scope of the questions we want to address, we begin with some examples of the
models we would like to be able to handle. In all of the following examples we will suppose that
we observe Xq,..., X, i.i.d. as X ~ P € P where P is the given model. Within each example the
models increase in complexity: from parametric, to semiparametric, to nonparametric. For further
examples see Bickel, Klaassen, Ritov, and Wellner (1993)

Example 1.1 (Survival time). Suppose that X is a non-negative random variable; think of X as
a survival time.

Case A. Suppose that X ~ Exponential(f), 6 > 0; thus pyg(z) = 0exp(—0x)lj (7). This is a
simple parametric model P = {FPy: 6 € © = R"}.

Case B. Suppose that X ~ Weibull(a, 8), a > 0, 5 > 0; thus

po(w) = (B/a)(w/c)’ ! exp(—(2/)?) 10 00) ()

with @ = (o, ). This is also a simple parametric model P = {Py: 6 € © = R*2}.
Case C. Suppose that X ~ Pg on R* with density pg(z) = [;° Aexp(—Az)dG(A). This can be
viewed as a semiparametric model, the family of all scale mixtures of exponential distributions,
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P ={Ps: G € G} where G is the collection of all distribution functions on [0, c0).

Case D. Suppose that X ~ P on RT with density function p = dP/d\ assumed to be nonincreasing.
This model P is defined only by a shape restriction on the density, and is essentially a nonparametric
model.

Case E. Suppose that X ~ P on RT with completely arbitrary distribution function F. This is
simply the maximal nonparametric model on the space X = R™: no structure is imposed at all.

Example 1.2 (Measurement model) Suppose that X is a real-valued random variable; think of X
as a measurement.
Case A. Suppose that X ~ N(p,0?) where 6 = (p,0%) € © = R x R*. Thus

P ={Py: Py has density pg = %(ﬁ (;,u) 0= (u,0°%) € O}.

This is the most classical parametric model, the normal location - scale model. If we replace the
standard normal density by some other density go which is fixed and known (e.g. logistic, or Cauchy,
or double exponential, or ...), the resulting model

1 :
P ={Py: Py has density pg = ~90 (,u) 10 = (u,0%) € 0}

o

is the gg—location - scale family.

Case B. Suppose that X ~ Py ¢ on R with density pp ¢ () = g(z—60) with G symmetric about 0 and
absolutely continuous (with respect to Lebesgue measure) with density g which is itself absolutely
continuous with derivative ¢’ satisfying

"2
Ig:/(g) d\ < 00.
g

Then
P ={Pyc:0€ R, G adistribution function with symmetric density g, I, < oo} .

This is a semiparametric model, the “one-sample symmetry model”.

Example 1.3 (Survival time with covariates). Suppose that X = (Y, Z) is a random vector on
Rt x R think of Y as a survival time and Z as a vector of covariates.

Case A. Suppose that X = (Y, Z) ~ Py with (Y|Z = z) ~ exponential(\e??); i.e. A\(y|Z = 2) =
Xe?# for y > 0. This is a parametric model with parameter space © = RT x R

Case B. Suppose that X = (Y, Z) ~ Py with A(y|Z = 2) = A(y)e?* for y > 0 where § € R? and
A = A(y) is an arbitrary “baseline” hazard function on R*. This is a “semiparametric model”, the
Cox proportional hazards model for survival analysis.

Case C. Suppose that X = (Y, Z) ~ Py, with A(y|Z = z) = A(y)e"®"?) for y > 0 where § € R%,
A = A(y) is an arbitrary “baseline” hazard function on R™, and r is some unknown function from
R to R. This is a more complicated variant of the Cox model.

Case D. Suppose that X = (Y,Z) ~ P on Rt x R? where P is completely arbitrary. This is a
nonparametric model. How do we define “effects” of the covariates Z on the survival time Y here?
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Example 1.4 (Measurement with covariates). Suppose that X = (Y, Z) is a random vector with
values in R x R%: think of Y as a measurement or response and Z as a vector of covariates.

Case A. Suppose that X = (Y, Z) ~ Py with Y = #'Z + o€ where § € R?, 0 > 0, and € ~ G with
density go is independent of Z. Here gg is a known density (such as the standard normal density
®), and Z ~ H (supposed known for simplicity). This is a parametric model, the classical linear
regression model (with Go—errors).

Case B. Suppose that X = (Y,Z) ~ Ppg with Y = ¢'Z + ¢ where § € R? and ¢ ~ G with
density ¢ is independent of Z, but now G (or equivalently ¢) is an unknown distribution. This is a
semiparametric model, the linear regression model with “arbitrary” or “general” error distribution.
Case C. Suppose that X = (Y, Z) ~ Py o,

Y =7(0'Z) + oe

where # € R?, o > 0, € ~ G with density go is independent of Z, and r is an unknown function
from R to R. This is again a semiparametric model, a model for “projection pursuit” regression
with Gg—errors; econometricians would call this a “single-index model”.

Case D. Suppose that X = (Y, Z) ~ P,,,

Y =ri(Z1)+ - +ri(Zg) + oe

where ¢ > 0, € ~ Gy with density g is independent of Z, and r = (ry,...,7rq) is a vector of
unknown functions from R to R. This is again a semiparametric model, a model for “additive”
regression with Go—errors.

Case E. Suppose that X = (Y, Z) ~ Py,

Y =r(Z)+oe

where o > 0, € ~ Gy is independent of Z, and r is an unknown function from R¢ to R. This is
still a semiparametric model, but estimation becomes increasingly problematic as the dimension d
becomes even moderately large: rates of convergence of any estimator sequence can be no better
than n~?/(2P+d) when r is assumed to belong to a class of functions R, with bounded p—th order
derivatives; see e.g. Stone (1982). This gives n~2/16 — n=1/8 when p = 2 and d = 12, and it gives
n~1/22 when p =1 and d = 20.

Case F. Suppose that X = (Y,Z) ~ P where P is an arbitrary probability distribution on
R x R* = R¥1. This is a completely nonparametric version of the model. Here we need to think
carefully about how to define the “effects” of the covariates Z on the response variable Y.

Of course not all problems involve independent and identically distributed data (even though
it is frequently useful to put them an i.i.d. framework for theoretical analysis if possible). Here is
one simple model which involves “pooling information” from three independent samples. There are
many other related models, and well as models in which the independence assumption is relaxed.

Example 1.5 (Bivariate three-sample model). Suppose that we observe data as follows:

(i) The first sample is a sample of i.i.d. pairs of size ny from a distribution P with cumulative
distribution function H(z,y) = P(X < ,Y <y) on R%

(ii) The second sample of size ng is a sample of i.i.d. X’s from the marginal distribution Py of P
(with distribution function F(z) = P(X < z) = H(z,c0).

(iii) The third sample of size ng is a sample of i.i.d. Y’s from the marginal distribution Py of P
with distribution function G(y) = P(Y <y) = H(c0,y).
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How well can we estimate P (e.g. v(P) = P(X < z0,Y < yo) = H(zo,y0) for a fixed point
(70,%0) € R?) based on all the available data?

Case A. Suppose that P is bivariate normal with mean vector u and covariance matrix Y. This is
a parametric version of the model.

Case B. Suppose that Py pg where Py p¢ has distribution function given by Fypa(x,y) =
Cyo(F(x),G(y)) for some parametric family of distribution functions Cy on the unit square [0,1]?
with uniform marginals (such as the Morgenstern family Cy(u,v) = uv(1 + (1 — u)(1 —v)). This
is a semiparametric model.

Case C. Suppose that P € M, the collection of all distributions on R?; this is the nonparametric
version of the problem.
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2 Cramér-Rao bounds for parametric models

We first discuss the elementary Cramér - Rao bound in the case of a one - dimensional parametric
model P = {Fy:0 € ©} with © C R; the reader may also wish to consult Lehmann, TPE, page
115.

Here are the assumptions we will need:

Assumptions:

A. X ~Pyon (X, A) with § € © C R.

B. py = dPy/dp exists where u is o—finite.

C. T(X) =T estimates ¢(0) has Ey|T(X)| < oo; set b(0) = EpT — q(0) = bias of T.

D. ¢ (0) = ¢(0) exists.

Theorem 2.1 (Information bound or Cramér - Rao inequality, dimension one). Suppose that:
(C1) © is an open subset of the real line.
(C2) A. There exists a set B with p(B) = 0 such that: for z € B¢

%pa () exists for all 6.

B. A={z: pp(r) = 0} does not depend on 6.
(C3) I(A) = Ep(lg(X)?) > 0 where

lo(r) = o logp(a)
here () is called the Fisher information for 6 and 1 is called the score function for 6.

(C4) [ po(z)du(z) and [ T(x)pg(x)du(z) can both be differentiated with respect to § under the
integral sign.

(C5) [ po(z)dp(z) can be differentiated twice under the integral sign.

If (C1)-(C4) hold, then

[4(6) + b(6))?

Varg[T(X)] > for all 8 € ©

= if T 1is unbiased .

Equality holds for all 6 if and only if for some function A(#) we have
Iy(2) = AO){T() - Bo(T(X))}  ae. p.

If, in addition, (C5) holds, then

2
110) = =B { 53 Yogpn () | = ~ i),
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Proof. Now

4(0) + b(68) = /X T(a)pp () dp() = /X T () () ()

NAcNB¢
hence it follows from (C2) and (C4) that

i+ = [ T@gm@de = [ T@hemn e

= Ep{T(X)ly(X)} = Covg[T(X),19(X)]

since [ pg(z)du(x) = 1 implies, by arguing as above, that

0= / 9 i~ E, (1]

= 89209 n = Lollg| -

Thus, by the Cauchy -Schwarz inequality

[4(8) + b(0)]? = |Covg [T (X),1g(X)][* < Varg[T(X)I1(0) .
The inequality holds with equality for a fixed 6 if and only if

lg(z) = AO){T(x) — ET(X)}  as. Pp

for some constant A(#). By (2.B) this implies that this holds a.e. p. Under further regularity
conditions this holds if and only if P is an exponential family; see e.g. Lehmann and Casella page
121.

Finally, if (C5) holds, since

0= / iy (2)po (2)dpu(z)

differentiation once more (which is possible by (C5)) yields
0 = [l@m@du + [ Bepl@du)

= /Igpgdu + I(G) .

Example 2.1 (Poisson(f); an exponential family). Suppose that Xi,...,X,, are i.i.d. Poisson(6)
with © = (0,00); i.e. pg(x) = e ™21 2 /[, ;! with respect to counting measure p™ on Z+7.

Then
log py(X) = —nf + (Z XZ) log — ) " log(X;!)

i=1 =1

and
iy :—n—i—(ZX) = Z(X0-0).

Note that (1), (2), and (3) are trivial; and (4), (4’) hold if Ey|T(X)| < oo for all 8 since an absolutely
convergent powerseries can be differentiated term by term. Thus the Cramér-Rao inequality hold
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for all T" having Fy|T'(X)| < oo for all §. However only ¢(f) = 0 (or a linear function of this) has
a Minimum Variance Bound Unbiased (MVBU) estimator, and the MVBU estimator of 6 is X,
which has variance |§(#)/A(0)| = 6/n. Thus I,,(6) = n/6. The bound for estimating ¢(6) = 62 is

q(0)2/1(0) = (20)/(n/0) = 403 /n; but this bound cannot be achieved for n < co. In fact we know
that >} X; is a complete sufficient statistic. It is easy to check that T = Yi —n~1X, is unbiased;

hence it is a UMVUE of §2. Also, its variance is (40%)/n + (20%)/n? > the Cramér - Rao bound.

Example 2.2 (Location with known “shape” g). Suppose that Xi,..., X, are i.i.d. with density
po(z) = g(x — 0) where g is a known density (such as N (0, 1) or Cauchy or logistic or double expo-
nential or extreme value). Then, assuming that ¢’ exists a.e. (Lebesgue) and the other regularity
conditions hold,

(@) = L log gl — 0) = —gg;;;g; __9

so that

. g/ 2
10) = EfB(X)} = {g(x—&)} g(z — O)da

- [ oo [

and I,,(#) = nI(9) = nI,. Thus for any unbiased estimator 6, of # we have

A 1 R 1
Varg(0n) > —, or  Varg(v/n(0, —0)) > —.
nlg I,

Example 2.3 (Scale with known shape ¢). Suppose that Xi,...,X,, are i.i.d. with density

1 T

pe(2) = 59 <5>

where g is a known density (such as Exponential(1) or Cauchy, or logistic, or Gamma(5,1)). Then,
assuming that ¢’ exists a.e. (Lebesgue) and the other regularity conditions hold,

o) = ys{30(5)} =5 500 ()

so that
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and I,,(0) = nl(0) = nly(scale). Thus for any unbiased estimator 0,, of 6 we have

62 A 62
_ Op—0) > ———.
nly(scale)’ o Varg(vn( )=z I,(scale)
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Example 2.4 (Elementrary mixture model). Suppose that fy and f; are two known u— densities,
and that

(1) pe(z) =0fo(x) + (1 —0)fi(x), for 6 €[0,1] =0.
Then log pg(z) = log{ffo(x) + (1 — 0) f1(x)} and hence
) fola) — (@)
0fo(x) + (1 -0)fr(x)
Hence we calculate

() - @)
10)= [ 520 T i )

Note that if fy # f1 on a set of positive u—measure, then the information 7(#) is finite and positive
for all 6 € (0,1), while I(#) converges to

/(fo_fl)Qdu as 6 —0;
fi

similarly 7(6) converges to

/(fo_fl)Qd,u as 60— 1.
Jfo

These limiting values may be infinite. This can be viewed as an example of missing data: Suppose
that the complete data is Y = (X,A) where A takes values in {0,1}, (X|A) ~ FAF™2, and
P(A=1)=60=1- P(A =0). Then the joint density of Y = (X, A) is given by

qo(x,0) = fo(x)6f1(x)1_595(1 _ 9)1—6

If we just observe Y7 = X, then this has the marginal density given by (1). Note that the score for
# based on observation of Y is
b 1-6 60

b(2,0:Q) =5 = 7=4 = ga—g)’

so that the information for 6 in the complete data is

16.9) = 9(11—9) ‘
Also note that
g, p) = I g A Q)X = a)

0fo(z) + (1 —0)f1(x)
It follows by the Cauchy-Schwarz or Jensen inequalities applied conditionally that
E{I3(X,P)}
E{[E{ls(X, 4; Q)X )}
E{E{Ij(X,A; Q)| X}} = B{I}(X,A; Q)}
1(0,9).

These relations are in fact true in considerable generality for missing data, as we will see later.

1(6,P)

IA I
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The Multiparameter Cramér - Rao inequality

Now we extend theorem 2.1 to the case in which the model is a k—dimensional parametric
family: P = {Pp: § € ©} with © C RF.

Assumptions:
A. X ~ Pyon (X, A) with § € © C R
B. py = dPy/du exists where p is o—finite.

C. T(X) =T estimates q(0) where ¢ : © — R, and Ey|T(X)| < oo; set b(0) = E¢T — q(0) = bias
of T

D. ¢(0) =Vq(0) (k x 1) exists.

Theorem 2.2 (Information inequality, ® C R¥). Suppose that:
(M1) © is an open subset of RF.
(M2) A. There exists a set B with p(B) = 0 such that: for z € B¢

869']99(:1:) exists forall 6 and i=1,...,k.

B. A= {z: pp(x) = 0} does not depend on 6. _
(M3) The k x k matrix I(0) = (1;;(0)) = Ep(lo(X)1} (X)) is positive definite where

: B
lp,(x) = 20 log pg(z);

here () is called the Fisher information matrix for 6, igi is called the score function for 6;, and I
is called the score for 6.

(M4) [ po(x)du(x) and [ T(x)pg(z)dp(z) can both be differentiated with respect to 6 under the
integral sign.

(M5) [ pg(z)du(z) can be differentiated twice under the integral sign.

If (M1)-(M4) hold, then

VargT(X)] > ol I71(0)a for all 6 €O
= ¢1(O)I7)q(0) if T is unbiased

where
a=(ag,...,ar) =V (q(0) +b(0)) = VEH(T(X)).

If, in addition, (M5) holds, then

®  10) = ~Eala(X) = - (E {af; ogm(X)} )
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Proof. The following proof is for the case of an unbiased estimator. Since

a(6) = BST(X) = [ T@pa(o)dn(z).
differentiating with respect to each 6; gives

: _ A Vpe(@) oo
= EyT(X)ip(X)

= Ep{(T(X) — EgT(X))ip(X)}
= Covg(T(X),1y(X))

where the third equality holds since Fgly = 0 by the preceding lines with 7'(X) = 1. Multiplying
by ¢7(6)1~1(0) we find that

" ()71 (0)d(6) = Covg(T(X), 4" ()1 (0)l(X)).
Hence by the Cauchy-Schwarz inequality

" ()1 (0)d()] = |Covg(T(X), 4" ()1 (6)]

IN
—
<
e
3
Ry
SN—
—
Ry
—~
>
-

Il
—
<
=)
3
)

and it follows that
Varg(T(X)) > ¢"(0)I"(0)d(0)

with equality if and only if

T(X) — EgT(X) = 4" (0)I"(8)i(X).

Corollary 1 (I.i.d. special case). When X = (Xy,...,X,,) with the X;’s i.i.d. Py € P satisfying
M1-M4, then

and the conclusion can be written, for an unbiased estimator T,, = T'(X1, ..., X,), as
Varg(vn(T, — q(0))) > 4(0)" T (0)d(0)

Note that the function (for sample size n = 1) involved here is

L,(X1) = ¢7(O) I 1 (0)lg(X1);
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we will call I, the efficient influence function for estimation of v(Py) = q(0): that is, if T, is an
asyptotically efficient estimator of v(Py) = ¢(0), then T;, is asymptotically linear with influence
function exactly [,:

V(T - q(6) fzz )+ 0p(1) = N(0,d7 ()1 (9)(0)).

This proof should be compared with the proof given of Theorem 6.6, Lehmann and Casella (1998),
pages 127 - 128.

Our goal will be to interpret Theorem 2.2 geometrically. But first, here is an easy example.

Example 2.5 (Weibull). If (X, A) = (R, B"), the non-negative real numbers with its usual Borel
o—field, then the Weibull family P is the parametric model with densities

)= (2)" e (=(5)) 100t

with respect to Lebesgue measure where 6 = (o, 3) € (0,00) x (0,00) C R2. For the Weibull family
P, log pp(x) is differentiable at every 6 € © and the scores are:

o = 2{( )
o = b HE )

Thus P = [ig] is the two-dimensional subspace of La(Pp) spanned by 1, and Ig, and the Fisher
information matrix is

110) = BlaCoi oy = (00 206, )

aa
where, with Y ~ Exponential(1), and v = .577216... = Euler’s constant,
a = —B{(Y -1)*log(Y)} = —(1 )
o= B~ Dlog(V) 12} = =+ (1)

The computation of I(f) is simplified by noting that ¥ = (X/a)? ~ Exponential(1). Now
det(I1(0)) = (b*—a?)/a? = (72/6)a~2 > 0, so I(f) is nonsingular. Note that with ¢? = b?/(b*>—a?) =
1+ (6/7%)(1—7)
2/32\p2
o) = 1 ((a/ﬁ)b aa)i

b? — a? —aa o

Thus by Theorem 2.2, if ¢(6) = v(Fp) is a real-valued function of 0 (e.g. ¢(0) = v(P) =
JoS ®dPy(z) = ol (1 +1/8), and T = T, is any estimator of ¢(f) based on X = (Xi,...,X,)
(with X;’s i.i.d. Pp) satisfying Assumption C and hypothesis (4), then

aTI71(0)a

Varg[T(X)]
g(0)"17'(0)4(0)

= if T is unbiased .
n
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Equivalently,
Varg[y/n(T, — q(6))] > 4(0)" T~ (8)4(6)

if T is unbiased. Our goal will be to compare the information bounds for several functions ¢(f) =
v(Py) when the model is P, or Py = {P(o3,) : « > 0} with 3y fixed (and known), or My =
{Pon R':EpX? < oo}

For the function ¢(0) = Ep(X) = al'(1 + 1/5),

q() = (C(L+1/8), —al'(1+1/8)/6%)" = T(1 + 1/8)(1, —ay (L + 1/8) /84",

where ¢ = I"/T is the digamma function, and hence the information inequality yields, for any
unbiased estimator 7" = T,, of ¢(0) = Ey(X),

Varglv/n(Tn —q(0)] > 4(0)"17"(6)4(0)
6I2(1+ 1 2
M% {0 +2a0(1+1/8) + (1 +1/8)} .
™ B

Note that when 8 = By is known, then I;; = f33/a?, 1'1_11 = o?/B, and the information for
(unbiased) estimates of ¢(#) = Ep, X is given by (a?/82)['(1 + 1/8p)?; this is always less than or
equal to the bound obtained in the last display when § is unknown, with equality when 5y = 1. In
fact there is very little difference between the information bounds I~1(Py|v, Py), I~1(Py|v, P), and
I71(Pylv, My), for this particular parameter v(Py). See Figures 3.1 and 3.2 for some comparisons.
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Figure 3.1: Information bounds, o = 3, 1.2 < 3 < 2.5; green = I"!(P|v,P,), purple
= I"Y(P|v,P), blue = Varyg(X); (purple coincides with blue so not visible!)

For the function
v(Py) = q(0) = Py(X > m9) = exp(—(z0/a)”)

where zg € (0, 00) is fixed, we have

4(8) = (x0/a)? exp(—(wo/)")(B/at, —log(xo/a))',

and hence the information bound for estimation of ¢(#) is given by

T 2
0O T 0)0(6) = 55 (22) exp(-2(z0/0)") {7 + 208 10g(an/a) + 2 ogan/e))?}

T2 \a
When 8 = f3y is known, then the information bound for estimation of ¢(6) = q(a, By) = exp(—(xo/a)?)
is given by
2 2

1 () et | 5= (3) " ew(-2ar)

a\a @
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Figure 3.2: Information bounds, .5 < a < 10, 8 = .5; green = I~ (P|v, Py), purple = I~ (P|v,P),
blue = Varyg(X)

In this case there is quite a considerable difference between the information bounds I~ (Py|v, Py),
I7Y(Py|v,P), and I~(Pylv, M3), for the parameter v(Py); see Figures 3.3 - 3.6 for some compar-
isons.

Some Geometry

The bounds given in theorems 2.1 and 2.2 lead us to the following definitions. Suppose that v is
a Euclidean parameter defined on a regular parametric model P = {Py : 6 € ©}. We can identify
v with the parametric function ¢ : © — R™ defined by

q(0) = v(Py) for PpecP.
Fix P = Py and suppose that ¢ has a total differential matrix gy, at 6. Define
b)  IYP,P)=¢" (O T(0)q(9), the information bound for v
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Figure 3.3: Information bounds for v(Fy) = Pp(X > xp), a =1, 29 = .5, .1 < f < 3: green
= I"1(P|v,Po), purple = I"'(P|v,P), blue = nVar(Fn(zo) = Py(X > 20)(1 — Py(X > o))

and
() 1(-, Ply,P) = ¢" () (0)l, the efficient influence function for v.

As defined in (b) and (c), the information bound and influence function appear to depend on the
parametrization 6 — Py of P. However, as our notation indicates, they actually depend only on v
and P. This is proved in the following proposition.

Proposition 2.1 The information bound I~ (P|v, P) and the efficient influence function I(-, P|v, P)
are invariant under smooth changes of parametrization.

Proof. We do this by formal calculation. Suppose that v+ 6(7) is a one-to-one continuously
differentiable mapping of an open subset I' of R¥ onto © with nonsingular differential §. We
represent P = {Q, : v € I'} where Q = Fy(,). Identify v by

v(y) = v(@y) = q(0(7)).
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o0.2F
0.15F}
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Figure 3.4: Information bounds for v(FPy) = Pp(X > zo), o = 3, xo =1,.1 < B < 3.0; green
= I 1(P|v,Py), purple = I~Y(PJv,P), blue = nVar(F,(xg)) = Py(X > x0)(1 — Py(X > z0))

Then, by the chain rule, the Fisher information matrix for v is

60" (1) 1(0(7))6(~)

while

v(y) =d"(0(3)0().
Substitutigg back into (b) gives the same answer for v — @ as for § — FPy. A similar calculation
works for . O

Now we specialize slightly: suppose that ' = (v/,1) where v € N' C R™, n € H C RF=™:; here v
is the parameter of interest and 7 is a nuisance parameter. We can think of this as ¢(0) = ¢(v,n) = v
so that ¢(#) = (1,0) is a k x m matrix; here I is the k x k identity matrix.

If 6 = (vo,m0) € O, let Pi(no) = {FPy : n =mno, v € N}. This is the model when n = nq is
known. We want to assess the cost of not knowing n by comparing the information bounds and
efficient influence functions for v at Py, in Py (o) and P.
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Figure 3.5: Information bounds for v(Py) = Pyp(X > zp), a =1, f = 1.5, .1 < ¢ < 3.0; green
= I"Y(Plv,Py), purple = I"1(P|y,P), blue =nVar(F,(zg)) = Pp(X > x0)(1 — Py(X > z0))

We let (-,-)o be the inner product in La(FPy,), || - ||o the norm, and write Ey for expectation
under Py, .

Suppose the model is regular and write I for the score function at 6y and 1=1 _1(90)1 for the
efficient influence function of the parameter 6 at Fp, in P. Decompose

i— (WY, 9o (b)),
12 12
with 1} and Iy m—vectors, Iy and 1 (k—m)—vectors. Write () in block matrix form, suppressing
dependence on 6y, as

In Io
I =[Lijlij=12 = < Iy Iy )

with I17 m xm, s mx (k—m), Isy (k—m) xm, Isa (k—m) x (k—m), and similarly
decompose I~1(6p) into I, i,j = 1,2. By well-known block matrix forms of matrix inverses we
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Figure 3.6: Information bounds for v(FPy) = Pyp(X > x9), a« = 3, f = .75, .1 < zyp < 3.0; green
= I"YPlv,Py), purple = I"Y(P|y,P), blue = nVar(F,(xg)) = Pp(X > x0)(1 — Pyp(X > z0))

have
.. I—l _I—l 112]-—1
O R e
" —Iyq Il Iy
where
(5) Nio =Ty — L' Doy, Ing1 = Iop — In1 I} T .

By (b) and (c), the information bound for estimating v in P is I'! = I, and the efficient influence
for v in P is

(6) il = Illil + 11212
= I — I Ints) by ()
I505

Since
Lie = Eo(ly — Laly'ly)(1y — Lialyp'ls)
Eo(131),
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we see that (6) has the same form as 1= I"1(69)1 with 1 replaced by 1y, I(6y) = Eo(il') replaced by
Ii10 = Eo(lfl’{T), and 1 replaced by

(7) IT = 11 — 112[2_2112 .
We therefore call 17 the efficient score function for v in P, and call I1.2 the information for v in
P.

If on the other hand 1 = 7y is treated as known, the information bound for v in Py (ng) is Ij;'
and the corresponding efficient influence function for v in Py (np) is just

(8) Ity

From the block matrix formulas relating [I;;] and [I¥/], we can derive some important relations
between these quantities. First note from (4) and (5) that

9) (I = Lo = Iy — N2l Do

so not knowing 71 decreases the information for v by I 1212_21I21. Similarly,
1—1—11 = 11— 2(p22)-ip2

or

10) 1= 11?2 _ Iﬁl 22y

so not knowing 7 increases the information bound (inverse information) by 1'2(122)~172!

from (9),

. Moreover,

(11)  Iijo=1Ip and IL=r

if and only if

(12) I;3=0.

In this case it also follows from (6), (7), and (11) that

(13) L =1I;5'%L and I=1.

Definition 2.1 {7,} is an adaptive estimator of v in the presence of 7 if 7, is regular on P and
efficient for each of the models P;(n) for n € H.

If an adaptive estimate exists we can do as well not knowing 7 as knowing it. By (4) and (13),
a necessary condition for the existence of adaptive estimates in regular parametric models is

(14) 112(9) =0 for all 6.

Adaptation is very much a feature of the parametrization, as the following examples show.

Example 2.6 (Gaussian location - scale). Suppose that

P=AFs: py=o((-—v)/n)/n, v €R, n>0},

the usual normal location - scale model. Note that

) = 22 o) = 1 {2 -l
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and the information matrix () is given by

(1m0 1 /10
1(9)_( 0 2/772>_?72<0 2>'
Thus we can estimate the mean equally well whether we know or do not know the variance.

Example 2.7 (Reparametrization of Gaussian location-scale). Now suppose that P is the same
as in the preceding example, but we reparametrize as follows:

Py = N(v,n* — 1), n? > 2.
Then easy calculation using (2 shows that

vn
I2(0) = —————=
12(0) (2 —v2)2’
Thus lack of knowledge of 7 in this parameterization does change the information bound for esti-
mation of v.

We can think of 17 as the 1, corresponding to the reparametrization (v,m) — (v,n +
1551 (00) 21 (60) (v — 1p)). With this reparametrization, adaptation at 6y becomes possible since Iy is
unchanged and condition (4) is satisfied. If we can paste together these local reparametrizations
and find (v,n) — (v,v(v,n)) such that

Y(v,m) — (v, m0) =1 —no + 155 121 (60) (v — o) + 0(|0 — o))

for every 6y = (v9,m0), then under this reparametrization the necessary condition for adaptation
holds. For instance in example 2.7 we can take v(v, ) = n?> —v2. These remarks have little practical
significance since the initial parametrization is usually natural and the reparametrization is not.

The efficient influence function 1; and efficient score function 17 can be interpreted geometrically
in the Hilbert space La(Fy); see BKRW sections A.1 and A.2. for elementary Hilbert space theory.
First suppose that m = 1. Let [12] be the linear span of the components of I in Ly(Py,). Then by
BKRW Example A.2.1, I 12122 I is the projection of 1; of [12], and by (7) the efficient score function
I is the projection of 1; on the orthocomplement of [ly].

We can also relate the efficient influence functions 11 and I11 1; for v in P and P; (no) In
particular, I11 1; is the projection of 1 on [11] We need only check that 11 — 1'1_1 1, = (It — 111 )11 +
11212 is orthogonal to 11, and this follows easily from I, + 215 = 1.

If m > 1 these relationships continue to hold if projection is interpreted componentwise. The
following basic proposition can be viewed as providing the rationale for two different approaches
to computing information bounds in semiparametric models which are presented in Chapter 3 of
BKRW (1993).

Proposition 2.2 (Efficient Score and Efficient Influence Functions) _

A. The efficient score function 1i(-, Py,|v,P) is the projection of the score function 1; on the
orthocomplement of [l] in La(Py,).

B. The efficient influence function T(-,P,go\u, P1(no)) is the projection of the efficient influence
function Tl on [11] in Lo(Py,).
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Table 3.1: Efficient Scores and Influence Functions

name | notation | P | Pi(mo) |
efficient IT(, P’V, ) IT = 11 — I12[2_2112 11
score
information I(P‘l/, ) EF{ITT = Ill — I12[2_21[21 = [11.2 IH
efficient Tl(', Plv,-) Tl = ', + 121,
influence =I5 'y
function = Iy — I el
information | I=%(Pv,-) | I' = I}, I
bound = 11_11 + 11_11112[2_2%1121[1_11

See Figures 1 and 2.
Here is another relationship between the influence and score functions of Pi(ng) and its com-
panion Pa(vg) = {Pyy, : 1 € H} We use the subscript 2 for score and influence functions in the

companion model. The efficient influence function 1; can be written as
(15) 1y = Iy — I Toly

This relationship was implicit in section 4 of Begun, Hall, Huang, and Wellner (1983). It appears
in the context of semiparametric models (with v infinite-dimensional and n finite-dimensional in
section 5.4 of BKRW (1993). Note that (15) provides an immediate proof, by orthogonality of 1
to [11], of the formula

(16) Iy = I3 + I haly I I

which is another way of writing (10).
Proof of (15): From (6),

L+ 15 el = 1Yy + 121y + 15 1o (121 + 172%1y)
= I3 {(111111 2V 4+ (I 12 + 112122)12}
= I3,
and rearranging yields (15). O

The following table summarizes the efficient score functions, efficient influence functions, infor-
mation, and inverse information for the two models P and Py (no).
Proposition 2.2 can be put in a broader context.
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Proposition 2.3 Suppose that m = 1 and that 7T, is an asymptotically linear estimator of v with
influence function . Then:
A. T, is Gaussian regular if and only if

4) oL LP= [,
or, equivalently, if and only if both

(5) <¢7 11>0 =
and
(6) ¢ L[],

B. If T}, is regular, then o) € P = [11,15] if and only if ¢ = 1.

Note that (5) and (6) are asymptotic versions of the equations leading to the Cramér-Rao
information bound. Consider the problem of minimizing %(Py,,T) = Eot? subject to (5) and (6).
For simplicity take k = 2. If we write

Y =cly +dly + A
where A L [I3,15], then (6) holds if and only if
o =c(iy — IoIRty) + A=cl* + A,
while (5) forces
¢ = |l — Lalsy ol
Finally,
1913 = 105152 + 1AL
Therefore the minimizing A = 0 and as expected the minimizing 1 is the efficient influence function.

This argument makes clear the characterizing features of the efficient influence function implied in
proposition 2.2, part B:

(i) 11 and all other influence functions are orthogonal to [1y].

(ii) 11 is the unique influence function belonging to [11, 12]

(iii) 1; can be obtained by projecting any influence function v corresponding to a regular estimator
for v on [Iy,1a).

Here is a slight generalization of proposition 2.3 to a general function v(Py) = ¢(0).

Proposition 2.4 (Characterization of Gaussian regular estimators). Suppose that T, is an
asymptotically linear estimator at 6y of v(FPy) = ¢(#) with influence function ) where ¢ : © — R™.
Then:

A. T, is Gaussian regular estimator at g if and only if q(¢) is differentiable at 6y with derivative
¢(0) and, with 1, = 1(-, Py,|v, P),

(7) w—TI/J—T):[ila]‘-Q]a

where (7) is equivalent to

®)  Eo(pl) = (¢, 1)0 = 4(00) -

B. If T, is regular then ¢ € P™ if and only if

(9) v=1,=q (90) (00)19
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Proof. By asymptotic linearity of T}, and corollary 3 of Le Cam’s second lemma, it follows that

O (vt ) o5 (2, ) ) e r

where t,, — t and
(b) Y= (Sy], S = Eo(yh), Y12 = Eo(lh)t, Yoo =tTI(6o)t.
Consequently, by Le Cam’ third lemma, (Lemma 3.4)

() Vn(Tw—q(0)) —a N(X12,211)  under Py, -1/

Now assume that T, is regular. Then

(d) \/E(Tn — q(90 + tn/\/ﬁ)) — N(O, 211) under P@g—l—n_l/Qtn

and from (c) and (d) we conclude that

() Vn(g(Bo +n72t,) — q(6o)) = S12 = Eo(vlh)t.

But this implies that ¢ is differentiable at 6y with derivative ¢(6p) satisfying (8) and hence (7).
On the other hand, if ¢ is differentiable and (8) holds, then (e) is valid, which together with (c)
implies (d) and hence Gaussian regularity. The proof of A is complete.
To prove B, note that A implies that ¢ and hence 1, are well-defined and that (7) holds. Since
1, € P™, (7) yields ¢ € P™ if and only if  — 1, =0. O

Choosing q(0) = q(v,n) = v in proposition 2.4 immediately yields a generalization of proposi-
tion 2.3 to m > 1. Now (8) becomes

(10) Eo(P1]) = Jmsm »
(11) Eo(¢13) =0

where J is the identity. In particular if m = k£ we obtain that the influence function of any linear
and Gaussian regular estimate of 6 has

(12)  Eo(l") = Jyur -
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3 Regular Estimates and Superefficiency

If Xy,...,X, are i.i.d. Py, an estimator T}, is unbiased for estimating ¢(6), and the conditions of
the information inequality (theorem 2.1) hold, then

1) Varr,] > 4OF

If

(2) V(T —a(6)) —a N(0,V3(6)),

then it follows (from Fatou and Skorokhod, recall corollary 2.3.1) that
(3)  V*H) < lim inf{nV are[T;]} .

If T}, is unbiased and

(1) VA0) = Jim {nVan(T,])

then (1) implies

Does the inequality in (5) hold under restrictions on pg alone? The answer to this question is no,
as is shown by the following example due to Hodges.

Example 3.1 (Hodges superefficient estimator). Let X1,..., X, beii.d. N(6,1) so that I(f) = 1.
Let |a| < 1, and define

(©) X, i X, >nTl4
T aX, if X <nTVA

Then
(7)) Vn(T,—0) =4 N(0,V*(0))

where

o vn={h 10

a
Thus V2(0) > 1/1(0) fails at 6§ = 0 if |a| < 1, and T), is a superefficient estimator of  at § = 0.
Proof of (7). Since \/n(X, —0) L7~ N(0,1) for all n > 1 and all 6,
VT, —0) = V(X =0z, sp-1a T VR(aXn — 0) %, <1/
= V(X =0 mx, orasny
+ {avn(X, — 0) + /nb(a — D)L /mi%,—0-+0|<ni/4]
9) < Z1 4 ymoznrra) +{aZ +Vnb(a — D)} 70 smgi<n/a

Z i 940 )
—a.s. {CLZ if on}NN(O’V (9))
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Note that V2(#) is a discontinuous function of . If § = 6,, = cn~'/2, then from (9), under Py, we
have

VT, —6,) < ZY g4 eisnira) H{aZ +cla = 1)} 74 <pi/a
— aZ +cla—1) ~ N(cla—1),a?).

Note that this limiting distribution depends on ¢, and hence Hodges’ superefficient estimator is not
locally regular in the following sense.

Definition 3.1 (Locally regular estimator). T' = {7}, } is a locally regular estimator of 6 at 6 = 6y
if, for every sequence {6, } C © with /n(0, —6y) —t € R under Py,

(10)  Vn(T, —0,) »4Z  as n— o

where the distribution of Z depends on 6y but not on ¢. Thus the limit distribution of v/n(T,, — 6,,)
(under sampling from Py ) does not depend on the direction of approach t of 6, to 6.

This will turn out to be a key hypothesis in the formulation of Hajek’s convolution theorem in
the next section.

Contiguity Theory: Le Cam’s four lemmas and LAN

Consider a sequence of statistical problems (with only two sequences of probability measures)
with

measure spaces: (X, Any pin)

probability measures: P, << iy, Qn << p

densities: Pn =G Gn =
n

Gn/pn if pp >0
likelihood ratios: L,=<1 if ¢g,=pn=0

Definition 3.2 (Contiguity). The sequence {Q,} is contiguous to {P,} if for every sequence
B, € A, for which P,(B,) — 0 it follows that Q,,(B,) — 0.

Thus contiguity of {Q,} to {P,} means that @, is “asymptotically absolutely continuous” with
respect to P, in the sense of domination of measures. We therefore denote contiguity of {@,} to
{P,} by {Qn.} <{P,}, a notation due to Witting and Nélle (1970). Two sequences are contiguous
to each other if both {Q,} < {P,} and {P,} < {Q,}, and we then write {P,} <> {Qx}.

Definition 3.3 (Asymptotic orthogonality). The sequence {Q,} is asymptotically orthogonal to
{P,} if there exists a sequence B,, € A,, such that Q,(B,) — 1 and P,(B,) — 0.

Lemma 3.1 (Le Cam’s first lemma). Suppose that £(L,|P,) — L£(L) and E(L) = 1. Then
{@n} < {F0}.
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Corollary 1 (Normal log - likelihood). If £(log L,|P,) — L(log L) = N(—02/2,0?), then
{@n} <> {Pn}.

Proof.  Note that £(L) = £(e“Z~7"/2) where £(Z) = N(0,1) and hence E(L)=1. O

Definition 3.4 A sequence of random variables {X,,} ( with X,, defined on (X, Ay, P,) is uni-
formly integrable if
lim lim sup By, (| Xn|1)x,>7) =

A—00 n—oo

Proposition 3.1 (Condition for Uniform integrability). {X,,} is uniformly integrable if and only
if both of the following hold

(11)  sup E,|X,| < o©.
n>1
(12) By €A, with Py(By) — 0 implies En(|Xn|lp,) — 0.

Proof. See e.g. Billingsley (1968) page 34 or Chow and Teicher (1978) pages 92 - 93. O

Lemma 3.2 (Le Cam’s fourth lemma, Hall and Loynes (1977)). {Q,} < {P,} if and only if {L,}
is uniformly integrable with respect to {P,} and Q([p, = 0]) — 0.

Now suppose that X,, = (X1,...,X,) € X,, and that

=1 i=1

Qn(ln) = Hgm'(xi)’ Qn = H Qni s
=1 =1

so that

gm < o0 a.s. P,
(13) logLn—Zlo <fm ) { > —00 a.s. @Qp.

Suppose that the summands in (13) satisfy the uniform asymptotic negligibility (UAN) condition

Yni
i

To get random variables with finite variance (to which classical central limit theorems may be
applied), let

1<i<n

(14) maxP< (Xi)—1’>e>—>0 for all € > 0.

1/2 n
(15) n_zz{% - l}EZTm
i=1

and note that

1/2
Ini 9ni . '

ni

The following lemma reduces the proof of asymptotic normality of log L,, to the problem of estab-
lishing asymptotic normality of W,,.



3. REGULAR ESTIMATES AND SUPEREFFICIENCY 29

Lemma 3.3 (Le Cam’s second lemma). Suppose that the UAN condition (10) holds and £L(W,,|P,)) —
N(—02/4,0?%). Then

(16) logL, — (W, —c®/4) = op, (1)
and hence

(17)  L(log L,|P,) — N(—0%/2,0%).

The proof of lemma 3.3 involves a long truncation argument, and is therefore deferred to the
end of the section.

Corollary 2 (LAN under differentiability). If f,, is a sequence of densities such that

IVn(fL2 — F172) =52 — 0 as n — 0o
where || - ||2 is the Lo(p)—metric and § € Lo(u), then with p,(z) = [[i-, f(xi) and ¢,(z) =
[T, fu(zs), it follows that

- 1
(18)  log Ln — (IZ f1/2 2||25H§> =op,(1)
and hence
(19)  L(log L,|P,) — N(—c%/2,0%)

with
(20) o2 = [26]2 = 4/52@.

Corollary 3 (Hellinger-differentiable parametric model). Suppose that P = {Py: # € © C RF}
is a regular parametric model dominated by a sigma-finite measure p in the sense that

1
IVBrh — VB — 5Ty /Ballu = o)

Then, with 0, = 0+n"Y2h € ©, h € R*, p,(z) = [[}, po(:), and gn(z) = [[}, pe,, (2:), it follows
that

hT . 1
logL, — | — ) 1p(X;) — =hT1O)h | = 1),
and hence

L(log L,|P,) = N(—c%/2,02)

with o2 = RTI(6)h.
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Proof. This follows immediately from corollary 2 with the identification § =1. O
Now suppose that under

(21) P,: Xpi,..,Xon are i.i.d. f,

and under

(22)  Qn: Xni,..., Xun are independent with densities fr1,..., fan

with respect to u. Assume that ani, ..., ann, n > 1, are constants which satisfy
al;  Maxici<n A,
(23)  max - = e — 0 as n — 00,
1<i<n alan dorqan

and suppose there exists 0 € La(F') such that

a Ay
@) SIS~ - 25350 as n ool
=1

vahan

Corollary 4 (LAN, regression setting) Suppose that (21) - (24) hold. Then

1
@) togL, ~ (2, 31208) = on (1)

where

- (07°Y 1)

and
(27)  L(Z,) — N(0,]]26))3) as n — 0.

Proof. See Shorack and Wellner (1986), page 154 and 163 - 165. Note that corollary 2 is the
special case of corollary 4 with all a,; =1 and f,,; = f, foralli=1,...,n. O

Lemma 3.4 (Le Cam’s third lemma). Suppose that a statistic 7,, satisfies

(28) L ((Tn,logL,)"|P,) — L((T,log L))
7‘2 C
< %f(e) (T 5))

(29)  L((Tn,logLn)"|Qn) — L((T +c,logL+0*)T)

- (L5 ) (T 5))

Remark 3.1 If 7;, is asymptotically linear and log L,, is asymptotically linear (which is often a
consequence of the second lemma), then verification of (28) is straightforward via the multivariate
central limit theorem.

Then
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Proofs
Proof. (lemma 3.1, Le Cam’s first lemma). Let B, € A, with P,(B,) — 0. By the

Neyman-Pearson lemma there is a critical function ¢, = 1{L,, > k,} + v 1{L, = k,,} such that

Qn(Bn) < Qn(dn) -

But for any fixed 0 < y < oo,

Qn(Bn) Qn(Pn) = Qu(Pn{Ln < y}) + Qu(dnl{Ln >y}
YPn(bn) + Qn(1{Lyn > y})

YPn(bn) +1— Qun(Ln <y)

(a) = yPu(én) +1— Po(Lnl{Ln < y}).

IAINA

Let € > 0 and choose y to be a continuity point of £(L) such that 1 — E(L1{L < y}) < €/2;
this is possible since E(L) = 1 by hypothesis. Then £(L,|P,) — £(L) implies that P, (L,1{L, <
y}) — E(L1{L < y}) and hence 1 — P, (L,1{L,, < y}) < € for n > N;. Since P,(B,) — 0 we
also have yP,(B,) < € for n > some N3, and hence it follows from (a) that Q,(B,) < 2¢ for
n > max{Nl,Ng}. O

Proof. (lemma 3.2, Le Cam’s fourth lemma). First note that for B,, € A, we have

= /1Bnm[pn=0]dQn + / 1B, npp>0Lnd P

= /anﬂ[pnzﬂ]dQn + / 1p, LndP,
(a) < Qn(pn = O) + / 1BnLndPn
(b) > /1BnLndPn.
Thus if P,(By) — 0, L, is uniformly integrable and @, (p, = 0) — 0, then Q,(B,) — 0 by (a) and
proposition 3.1, so {Q,} < {P,}.

Conversely, if {Q,, } <{P, } so that Q,(B,,) — 0, then (b) implies that [ 1p, L,dP, — 0, so (ii) of

proposition 3.1 holds. Part (i) of proposition 3.1 holds trivially since P,,(Ly,) = [ Ln,dP, = [ 1{pn >
0}dQ, < 1, and therefore {L,} is uniformly integrable with respect to {P,} by proposition 3.1.

Since P, (p, = 0) = 0, contiguity implies that Q,(p, =0) — 0. O

Proof. (lemma 3.3, Le Cam’s second lemma). The following proof is from Hajek and

Siddk (1967). For any function h with second derivative h” we have

1
h(x) = h(xo) + (x — z0)h (x0) + %(m — $0)2/0 2(1 — M)A (zo + Mz — x0))dA
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by integration by parts. thus for h(z) = log(1 + z)

1, [t 201-)

Thus, with T},; as in (15)

Gni 1, 5 /1 2(1—N)
1 -(X5) ) =21 Thi/2 Thi — =T, ————=dA

and

(@)  log(Ly Z n/ 1+>\Tm/2 2 ).

Now we truncate: set Tgi = Thil|1,,|<s) for 0 > 0. From the normal convergence criteria (see e.g.
Loéve (1963), page 316), L(W,|P,) — N(—02/4,0?) and the UAN condition (14) holds if and only
if

) 3 BTl > 8) 0
=1

(c) ZE —>—J,

(d) zn: Var(TS,) — o2
=1

where all expectations and variances are under P,. Note that fol 2(1 = X)d\ =1 and

P{max|:rmy>5}<ZP (|T| >6) =0 by (c).
=1

Let S, = {maxi<i<pn |Tni| < n}. Thus for any 0 < n < 1 there is an N = N(n) such that, for
n> N, P,(S,) > 1—mn. It follows that, on S,

N1 _ 1| <
SUp max (1+ MT:/2) 1‘ < 8n

and hence .
2(14+ M)
————d\ — 1‘ < 8n.
121?;1 /0 (1 + A\T},;/2)2 =1
Also, since T,,; = T)" for i = 1,...,n on the event S,

2(1+ )
’Z nz/ 1+/\Tm/2 d)\ Z
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so that

(14T, /2)?
Zz: (TTTLIZ)

Thus in order to prove the lemma, it suffices to show that

(1+X))
Tz AN gy
‘ 2in fo —1| <8n on Sy.

n

(e) Z(TZL]Z)Q —p, 07

i=1

To prove (e) it suffices, by Chebychev’s inequality, to show that

(f) Zn:E[(T" ’
=1

(g) lim lim sup Z Var[(T,Zi)ﬂ -0

=0 nooo
i=1

But by virtue of (d), (f) is equivalent to

n

() D BT 0.

i=1

We first prove (h) and hence (f): if n > 2, then T)". < T,,; since T),; > —2 a.s. by definition of T,.
Therefore

1/2
g
E(T). < ET,; = 2E{ ’1‘;2 (XZ)} -2<0
ni
by Jensen’s inequality. Thus for n > 2
n n
Y (ET})? < max (~ET),) Y (~ET}};) =0

since

and
max (—ET".) =0 by the UAN condition (14).

1<i<n

Now note that if (h) holds for any 1 > 2, it holds for all > 0: since

iE[(TgiF] < En:E[(T;.)?] for all 7 <~
i=1 =1
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and, by (d) both >0, Var[T\h] — 02 and Y. | Var[T)] — o2, it follows that
n

DE@HE = Y AE(T])? — Var(T))}
=1

=1

IN

Z{E[(TJI)Q] —Var(T,;) + Var(T,;) — Var(T}},)}
i=1

= Z[E[(ng)]Q + Z Var(T,,;) - Z Var(T,);)
i=1 i=1 i=1
- 0402—-0%2=0,
completing the proof of (h) and hence (f).
To prove (g), note that

n n n
D VarlT)?) < Y BT <0 ) EIT)%.
i=1 i=1 i=1
Then, by (f)
lim su Var[(T")?] < n’o?,
maw S Varl(T) <
and hence (g) holds. O
Proof.  (corollary 2). Let
1/2,
Thi =2 ﬂq , i=1,...,n, and n>1.
fl/Q(XZ,)

Note that (all expectations and variances being calculated under P with density f)

BE(Ty) =2 {/f;/Qfl/Qdu - 1} = —2H?*(fu, f), for i=1,....n

where

1 1
H(f )= 5 [UR2 = £ = 511302 - 2

and
Var(Tu) = 4 [(542 = 1P du - [B(T)F
= 8H*(fa, ) —4H" (fu, ).
Therefore, since the hypothesis ||\/7L(f71/2 — fY2) = 5|l — 0 implies n||f71/2 — f1/2||§ — ||6]|% and
||f¢1/2 — fY2|| = 0, the random variable W,, of lemma 2 has
(a)  E(Wy) = —2nH(fa, f) — |I5]3
and

Var(Wn) = 8nH?(fp, ) — 4nH(fr, [YH?(fn, f) = 4//6]]5 -
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Note that since

eP<J;?( —1)ze> < E?(Xi)—ll
fn /
_ E(f1/2( ) — 1‘)
< A2 =1l + 12— 0

uniformly in 1 <14 < n as n —, the UAN condition (14) holds. Furthermore,

2 -~ §
Var {Wn — \/ﬁ;fl/g(xi)}

f1/2
= 4nVar { 7172 (X;)—1- n—l/Q(Xl)}

= dn||(fy? = f2 = n7V26|3 — anH2(f, f)H? (fu, f)

= A|vn(f? = Y2 = 613 — 4nH* (fu, f)
(b) — 0

and hence

2
2 «— 0
E{Wn—H5H§ 727/ +2H5Hz}
= Var{ n \QFZ:(S/ }
2
2 0
{ Wy — n;flﬂ +||5”2>}

= o(l) + (E(W, )+II5H 22 by (b)

- 0+0=0 y (a).
Thus
© W 6] {fgé/ —2||6||2} 0p(1).
Since

( fZ () 20013 \P) — N(=(1/2) 2813, 12613)

it follows that
LW, —|16]51P) — N(—(1/2)]126]1%, [126]3) ,

and hence, by lemma 2 that

log L, = Wy, — ||613 + 0,(1) —2||8]13 + 0p(1) -

fz f1/2

35
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O

Proof. (lemma 3.4, Le Cam’s third lemma). Since L(log L,|P,) — L(logL) =
N(—02/2,02%) = L(0Z — 0%/2) where Z ~ N(0,1), it follows that E(L) = Eexp(cZ — 02/2) = 1,
and thus {Q,} < {P,} by Le Cam’s first lemma. Hence by lemma 3.2 (Le Cam’s fourth lemma),

L,, is uniformly integrable and Q,(p, = 0) — 0 as n — oc.
Now let f : R? — R be bounded and continuous. Then

Eq, f(Tn,logLy) = Eq,f(Th,log Ln){1p, >0 + 1jp,=0)}
(a) = Ep,f(Tn,log Ln) Ly + Eq,, f(Ty,log L)1, —o)
(b) — E[f(T,logL)L]
(c) = Ef(T +clogL +c?%)

where (b) holds since f(T,,log Ly)L, is uniformly integrable by uniform integrability of L, and
boundedness of f, and since the second term in (a) is bounded by || f||cc@n(pn = 0) — 0. It remains
only to establish (c).

To verify (c), note that (28) implies that

(@) £(Tlog L) = £( oL + %02) +2)

where £(Z) = N(u,0%(1 — p?)), p = ¢/(o7), is independent of log L, and hence

1 -
L(T +c|logL) = E(c—l—%(logL+§U2)+Z)
g

_ ¢ 2, 1 9
= 5(02(logL+U +§0)+Z).
Furthermore,

density of N(0%/2,0?)
L= logL) = t logL.
exp(log L) density of N(—02/2,02) av o8

Therefore
Ef(T,logL)L = E{E(f(T,logL)e¢ |log L)}
= E{*"E(f(T,logL)|log L)}
- E {elOgLE (f(%(logL +02/2) + Z,1og L)| log L) } by (d)
— E{E <f(c+ %(logL—F o2/2) + Z,logL+02)ylogL)}
= Ef(T +clogL+0%)  by(e),

which completes the proof of (c). Hence (29) holds. O
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4 The Hajek - Le Cam convolution and LAM theorems

Now we give statements of several convolution and local asymptotic minimax theorems. The key
hypotheses involved in virtually all the different formulations of these theorems are as follows:

A. Local Asymptotic Normality (LAN) of the local likelihood ratios of the model. A sufficient
condition for this is differentiability of the model in an appropriate sense; recall corollaries 2
and 3.

B. For the convolution theorems we will also hypothesize regularity of the estimators: the only
estimators considered will be those for which the local limiting distributions do not depend
on the direction or (magnitude) of the approach of the local parameter point to the fixed
point under consideration.

C. Pathwise differentability of the parameter being estimated as a function of the underling P € P
metrized by the Hellinger metric. This amounts to Hadamard differentiability along the model

P.

Our goal in this section will be to explain the basic hypotheses require in different settings, and
to discuss several useful refinements and extensions of the basic theorems. For complete proofs we
refer the reader to the original articles by Hajek (1970), (1972), Le Cam (1972), Ibragimov and
Has'minskii (1981), van der Vaart (1988), Millar (1983), Le Cam (1986), and Bickel, Klaassen,
Ritov and Wellner (1993).

Convolution and LAM theorems for finite-dimensional parameter spaces

Suppose that P = {Py : § € ©}, © C R* is a Hellinger differentiable parametric model. Set
[(x;0) = log p(x;0), and let

In(0) = Zn:l(Xi;G)
i=1

denote the log-likelihood of Xj,..., X, a sample from Py, = Py € P. Then by corollary 3 of Le
Cam’s second lemma we know that

(1) 1B +nY28) — 1,(60) = £7 S, (80) — %tTI(HO)t +on,(1)

where
1
Sn(bo) = —= > UXi;60)
i
is the score for 6 at 6y (based on the entire sample X1, ..., X,,) and I(6p) is the Fisher information

matrix defined in section 2. It follows that
1
(2)  1a(6o+n"Y2) — 1,(00) —a N (—2tTI(90)t, tTI(eo)t>

under Py. This is sometimes called the Local Asymptotic Normality, or LAN condition. It is
one key ingredient of the Hajek convolution theorem. The second key ingredient is the following
definition of regularity of an estimator sequence T,.
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Definition 4.1 T = {T,} is a locally regular estimator of 6 at 6 = 6y if, for every sequence
{6,,} € © with \/n(0, — 6p) — t € R*, under Py,

V(T —0y) —q Z as m — 0o

where the distribution of Z depends on 6y but not on ¢. Thus the limit distribution of v/n(T,, — 6,,)
does not depend on the direction of approach t of 8,, to 6.

With these two basic ingredients, we can state a simplified version of Hajek’s (1970) convolution
theorem.

Theorem 4.1 Suppose that (2) holds with I(6y) nonsingular and that {T,,} is a regular estimator
of 8 at 6y. Then

3) Z2Zy+ A
where Zy ~ N(0,171(6p)) is independent of A,.

Héjek (1970) proved a somewhat more general theorem based on just the LAN hypothesis (2)
using a method based on “Bayesian considerations”. This method of proof is developed further in
van der Vaart (1989). A different proof using characteristic functions due to Peter Bickel is given
in Roussas (1972) and also in Bickel, Klaassen, Ritov and Wellner (1993). This latter type of proof
was exploited and developed by R. Beran (1977a, 1977b) in more general settings.

In words, theorem 4.1 says that the limiting distribution of any regular estimator 7}, of # must
be at least as “spread out” as the N(0,171(6p)) distribution of Zy. Thus an efficient estimator is
a regular estimator for which the limiting distribution is exactly equal to Zg. Another way to say
this is in terms of the following asymptotic optimality theorem.

Corollary 1 (H4jek, 1970). Suppose that {7T},} is a locally regular estimator of 6 at 6y and that
l: R*¥ — RT is bowl-shaped: i.e.

@) lx) =l(=2),
(44) {z:l(z) <c} is convex for every ¢ > 0.

Then

lirginf Epl(v/n(Ty, — 6p)) > El(Zo)

where Zo ~ N(0,171(6p)).

If a supremum over 6 in a local neighborhood of 6y is added to the left side of (4), then the
same type of statement holds for an arbitrary (not necessarily regular) estimator 7), of #. This is
the Héjek - Le Cam asymptotic minimax theorem due to Hajek (1971), and, in a more abstract
form to Le Cam (1971).

Theorem 4.2 (Hdijek, 1971). Suppose that (2) holds, that 7, is any estimator of 6, and that [ is
bowl-shaped. Then

(4) lim liminf  sup  Epl(v/n(T, —6)) > El(Z) .
000 MO0 g /19— 00| <6
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5 A Basic Inequality

First we need two lemmas.

Lemma 5.1 Let P, @ be two probability measures on a measurable space (X,.A) with densities
p, q with respect to a o—finite dominating measure . Then

(1-H*(P,Q))* < 1—{1—/(17/\Q)du}2§2/(p/\q)du~

Proof. The second inequality is trivial. To prove the first inequality, note that by Exercise
2.1.6

(1- H(P.Q)? + (1 / p A qdp)’
2

(o) + (3 o)

/\qu)z +1 ([ va-valve+ fldu>

(
< ([ vmwn) + 3 [wn-varau [ vara
1.

Lemma 5.2 If P and @ are two probability measures on a measurable space (X, .A) with densities
p and ¢ with respect to a o—finite dominating measure y and P™ and Q™ denote the corresponding
product measures on (X", A,) (of X1,..., X, i.i.d. as P or () respectively), then

(1) p(P"Q") = p(P,Q)".

Proof. Note that

p(P",Q") =/ / Hp (i) | | a(@s) dp(ar) - - - dpp(an)

— /.../\/p(xl)q(xl)...p(xn)q(mn)d/L(l'l)-..du($n)

- / VoD@ du(zr) - / V@) a(@n)du(zn)
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Remark 5.1 Note that (1) implies that
H*(P",Q")=1—p(P",Q")=1—p(P,Q)" =1— (1 - H*(P,Q))"
by using exercise 2.1.5 (chapter 2, page 10) twice.

With these two lemmas in hand we can prove our basic inequality.

Proposition 5.1 Let P be a set of probability measures on a measurable space (X,.A), and let v
be a real-valued function defined on P. Moreover, let [ : [0,00) — [0, 00) be an increasing convex
loss function with [(0) = 0. Then, for any P;, P, € P such that H(P;, P») < 1 and with

Bnif (X1, .., Xn) = Bnif(X /f JdP? /f r1v s ) dPi(1) - dP ().
for ¢ = 1,2, it follows that
(2) inf max {Enil(|Tn — v(P1)|), Enpl(|Tn —v(P2)|)}

1
> (41/(P1) —v(Py)|{1 - HQ(Pl,Pg)}%) :
Proof. By Jensen’s inequality
Enil(|Tn —v(P)]) = U(En| T —v(B)]),  i=1,2,
and hence the left side of (2) is bounded below by
l <ip}1f max{E, 1|1, —v(P1)|, En2|T, — V(PQ)‘) .

Thus it suffices to prove the proposition for [(x) = . Let p1 = dPy/(d(P1+P2), po = dPy/d(P1+P3),
and p = P; + P, (or let p; be the density of P; with respect to some other convenient dominating
measure (1, i = 1,2). Now

max {En,l‘Tn — V(Pl)‘, En,Q’Tn — V(PQ)‘}

- % {/ | T (x) — v(P1)| rllpl(xi)d,u(gyl) e dp(m)
=1

1
> 5 {EnJ’Tn —v(P)| + En,Q‘Tn —v(P)}

> 2 { Ji@) = (Pl + 17u(0) — v [ a(o:) A ][ paoidduon) - du(xn)}
=1 =1
> (P = v(p)| [ [Tprte) n [ mateduton) - duten)
=1 =1
> %p(a) _U(P)|{1 = HX (PP, PP)}® by Lemma 5.1

1
= Z|V(P1) —v(P)|{1 - H*(Py, P»)}*" by Lemma 5.2 .
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Example 5.1 (Regular parametric model). Suppose that P = {Py: # € © C R*} with Py << p
for all 0 so that pg = dPy/du exists for all § € ©. Suppose that py is differentiable at 6y € © in the
following sense: there is a function lg such that

6 [ Vi~ 50~ 60 oy die = oll8 ).

Let 6,, = 6y +n~'/2h so that \/n(6,, — 6p) = h. Note that (3) implies that

W (Po, Po) = 5 [Won = vl dn =5 [ Valyam, - i) du

1 ..
- 3 / KT 1917 b pa, dps
1 . . 1
= ghTEeo{le(X)léF(X)}h = ghTIwo)h-
This implies that

77,H2 (Pgn y Pgo)

2n
- ) — exp(—(1/4)hTI(6p)h) .

(1~ H2(Py,. Py,))" = <1 -
Hence if we take v(Pp) = ¢, we have
W(Pa,) = (Poy)| = n= V2T,

and it follows from Proposition 5.1 that for any convex increasing function ! we have

(@) ptmax [y, 11T, — v(Fy, ), B d(T —(Po))}
> 1 () PRI - 2P0 P

1 _ nH? Pgn,Pg n
(5) = l<4n 12)p|{1 - (no)}? ) :

For example, with [(z) = x, this yields

n'/2 inf max {Ep, |T,, — v(Py,)|, Ego|Tn — v(Pa, )|}
1 o2(Py, Py )" 1
> Z|cTh[{1 - B (Pon, Poo) 1™, 21T h| exp(—=hTI(0)h/4).
4 n 4
By choosing h = al~!(6p)c this bound becomes
1
Zale” 7! (B0)el exp(—a*e I} (Bo)e/4) = |7 17 (Bo)el 2 {6—1/4/4}

by taking a = {11 (8y)c} /2.
With [(z) = 22 we obtain

inf max { Ey, {n|T, - v(Py,)*}, Ego{n|Tn — v(Po,)*}}

1 %P, . P)1™" 1
> 175|chL|2 {1 - w} - 173|CT11|2 exp(—hTI(09)h/2).
n
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By choosing h = al~!(fp)c this bound becomes

%a2(CTI_1(00)C)2 exp(—a?ct T (0p)e/2) = T T71(6p)c {6_1/2/16}

by taking a® = {¢'1-1(6y)c} . Thus we conclude that for the choice h = I~ (6p)c/{cT 11 (6p)c}'/?
we have

hmlnflnfmax{Egn{n\T *V(P@n” } Eoo{n|T), — (Pgo)]2}}

n—0o0

> 17 () {116€xp(—1/2)} = E[N(0,cT7(6p)c)]? {116 exp(—l/Q)} .

Example 5.2 (Uniform(0,6)). Suppose that Xi,...,X,, are i.i.d. Uniform(0,0) with densities
po(z) = 0 1 () for 6 € (0,00). Fix 6p > 0 and let 6, = 6y + cn~'. Then

Oo NGy, 1
p(PHO’ Pgn) = / 7dﬂf
0

90911
ARAYS
V000,
B { Vo0, if 6y < 0,
Vo 0o, it 6y >0,

_ { V1/(L+ (c/bo)/n), if 6y <0,

1+ 0/90 /n, if 69> 0,.
Thus
(1_H2(P907P¢9n))2n = p(P907P9n)2n
1/(L+ (¢/00)/n)™, if ¢>0
(1+ (¢/60)/n)™, if ¢<0.

6*0/90, if ¢>0
e~ld/foif ¢ <0

= exp(—|c|/0o).
Thus if v(FPy) = 0 and I(z) = z, it follows that
inf max {Ep{n|Tn — v(Fy, )}, Eo{n|Tn — v(Fs)[}}
- 4
1 1
> Xl exp(—lel80) = L6 (1el/0) exp( el ).

The right side is maximized by the choice |c¢| = 0y, and for this choice we conclude that

1
hmlnflnfmax {E{n|T, — v(Py,)|}, Eoin|T, — v(Pa,)|}} > 790

n—oo T,
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Note that the particular estimator T, = "—H maxj<;<p X; (which is the unbiased modification of
the MLE) satisfies
n+1
Eo{n|T, — 0]} = Egn‘ X —0(
n
= (n+1) EQ‘X(H) - U

= (n+1) /0 ‘1‘ - LG’n(m/@)"_ldx/G

= On(n+1) / ‘ ]
n /(n+1) 1
= On(n+1) ( ) " du —i—/ (u S ) u" " du
n/(n+1) n+1

= Gn(n—kl)(n_i_1 <n—|—1> — 2e”

since Pg(X(n) < m) = (:L‘/G)n

u ldu

Example 5.3 (Monotone densities on R™). Suppose that
P ={Pon R": dP/d)\ = p is monotone nonincreasing} .

Suppose that we want to estimate v(P) = p(zg) for a fixed zg € (0,00) on the basis of a sample
Xi,..., X, from Py € P. Let py be the density corresponding to Py, and suppose that pj(zo) < 0.
To apply Proposition 5.1 we need to construct some density p, that is “near” pg in the sense that

nH?(pn,po) — A

for some constant A, and
v (Pn) = v(Po)| = b,

where b,, — co. Hence we will try the following choice of p,. For ¢ > 0, define

-1/3 1/3

po(x) if x<xy—cn or ©>xg+cn /7,
pn(z) =< po(zo — cn_1/3) if zg—en 13 < 2 < x,
polzo + cn_1/3) if xo <z <xzo+en 3.

It is easy to see that
6)  n'Bu(P) — v(Po)] = [n'*(po(xo — en™/3) — po(wa))| — |ph(zo)lc
On the other hand we calculate

1 [o.¢]

Tonm) = 5 [ Vol = V(o) da
_ 1/°° [v/Pu(@) = /Po(2)]*[\/Pn(2) + /Po(2)
2 Jo ()
1

\/pnx +\/p037
* [pa(z) = po(@)]?

)
2o [V/Pu(®) + /Po(2)]?

dx
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1/“’ [po(wo — en™/3) — po())? o
2 xg—cn—1/3 [\/pn(l’) + \/pU(x)]Z
L roren ™ o (g + en1/3) — po(a))?
T3 /a:o [VPn() + /po(x)]?
L ) e
2 /acgcn—1/3 [\/pn(.%') =+ \/p0($)]2
1 xo+en~1/3 [p6($;§*)($0 + cn_1/3 _ :L,)]2
"3 /xo [v/Pn(2) +/po(2)]?
EM " zo —en” Y3 — 2)%dx
2 (2/po(0))? A e
1])/(#())2 zoten=1/3 N Cn71/3 . ) N
o e M "
po(xo)? ¢

4po (o) 3n

o—en—1/3

Now we can combine these two pieces with Proposition 5.1 to find that, for any estimator T,, of
v(P) = p(xo) and the loss function [(x) = |z| we have

inf max {Enn1/3yTn — u(P,)|, Eon\/3|T, — V(P0)|}

nH?(P,, Py) }2”

> ) -ur) {1 - 0

nH2(P,, Py) }2”
n

= (o - )~ (e {1 -

L, ( Po(0)* 3) L, ( Po(0)* 3>
- - To)lcexp | —2——F—"=—¢c" | = - To)lcexp | — c
4‘1)0( 0)‘ P 12p0($0) 4|p0( 0)‘ p 6p0($0)

We can choose ¢ to maximize the quantity on the right side. It is easily seen that the maximum is

achieved when
C=Cy= <2p0(x0)>1/3
Po(x0)?

This yields

~1/3

lim inf inf max { Eyn'/?|Ty, = v(Po)l, Bon' [T = v(By)| } = S (2lpt(zo)lpo(w0))

n—oo Ty,

This bound has the appropriate structure in the sense that the (nonparametric) MLE of p, p,
converges at rate n~/3 and the same constant is involved in its limiting distribution:

1'% (Ba(x0) — po(20)) —a (Ipo()Ipo(x)/2)'*(2Z)

where Z = argmin{W (t) + t*} and W is a standard Brownian motion process started at 0, as has
been shown by Prakasa Rao (1969) and Groeneboom (1985).
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Example 5.4 (Interval censoring or “current status” data). Suppose that T,T1,...,T, are i.i.d.
Fon R" and Y,Y1,...,Y, are i.i.d. G and independent of the X’s. Suppose that we are not able
to observe the T;’s, but instead we can only observe X; = (V;, 1i5,<y;)) = (Vi,A), i = 1,...,n
Note that with X = (Y, 1{T <Y}) = (Y,A) we have

(A]Y = y) ~ Bernoulli(F'(y)) .

It follows that if G has density ¢ with respect to Lebesgue measure A on RT, then the observations
X, X1, ...,X, have density
pr(y,0) = F(y)°(1 = F(y))' g(y)
for y € Rt and § € {0,1} with respect to the product u of counting measure and Lebesgue on
{0,1} x R™.
Suppose that we want to estimate v(Pp) = F(x¢) for some fixed xy € (0,00). We would like
to find a lower bound for estimation of this parameter. We will proceed much as in the previous

example: Fix a distribution function Fy, and suppose that Fy has a positive derivative at xzq:
Fi(x0) = fo(zo) > 0. For ¢ > 0, define

1/3 1/3

Fy(x) if z<x9g—cn~ or T >x9+cn /7,
Fo(z) =4 Fylzg—en™3) if g —en V3 <z < o,
Fo(zo+en™1/3) if zg<x < x94cen~ /3.

Then it is easily seen that
(1) 0" P(P) = v(Po)l = [n'/*(Fo(wo — en™"/%) = Fy(0))| = |Fy(wo)le = f(wo)e.

On the other hand we calculate, letting p, = pr,,

B oror) = 5 [[Voale) = Voo )

1 [Wpa(®) = Vpo(@)P[V/Pa(2) + V@
- 2/ [v/Pn(2) + v/po(2)] M( )
)

_ 1 [po(z) = po(@)*
2 [\/Pn($)+\/po( )2 ux)
_Lm [RBe—e) - R@P
) 2/% 13 [ Fu(2) + /Fo(x))? (z)d
1 xoten—1/3 [FO(QSO +Cn—1/3) _F0($)]2
’ /0 VEu (@) + VFo(2)]? ()d

[1— Fo(zo — en~3) — (1 — Fy()))?

+ 5 so—en-1/3  [\/1T = Fp(x) + /1 = Fo(z)]2 e
1 [moten/3 [1 — Fy(xo +cn_1/3) (1 — Fy(z))]?
+2/ (V1= Fu(z) + /1 — Fo(2))2 o
1

8Fo(x0)(1 — Fy(xo)) /gﬂom_l/3 [Fo(xo — cn—1/3) — Fg(x)Pg(x)da:

—1/3

1 /xo+cn [F ( 4 —1/3) _F ( >]2 ( )d
+ 8Fp(z0)(1 — Fy(zp)) 0{Zo T €n o(z)|” g(x)dx
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+ O(n_l)
9(xo) folxo)* ¢

4Fy(x0)(1 — Fo(zo)) 3n

much as in the preceding example.
Combining these two pieces with Proposition 5.1 we find that, for any estimator T}, of v(Pp) =
F(x0) and the loss function I(z) = |x| we have

inf max {Ennl/S]Tn — u(Pp,)|, Eon/3|T,, — V(PFO)\}

n

2n
> ilnl/s(u(Pn) —v(Ry))| {1 _ nH%%,H;)}

= i\nl/:g(Fo(wo —en™Y3) — Fy(xo))| {1 —

~ g(wo) fo(wo)® 03)
6F0(:L‘0)(1 —FO(:EO)) ‘

nH2(P,, Py) }2"
n

1
— Zfo(xo)cexp (
We can choose ¢ to maximize the quantity on the right side. It is easily seen that the maximum is

achieved when s
o= <6F0(x0)(1 - Fo(xo)) /
- 39(x0) fo(wo)? '

This yields

lim inf inf max {Enn1/3|Tn —u(Py)|, Egn'/3|T;, — V(Po)]}

n—oo T,
N e—1/3 <2F0(x0)(1 — Fo(mo))f0($0)>1/3
= 4 9(z0)

This bound again has the appropriate structure in the sense that the (nonparametric) MLE of F,
F), converges at rate n~/3 and the same constant is involved in its limiting distribution:

Fo(o) (1 ~ Fo<mo>>fo<xo>)1/3 (22)

n'3(Fy (o) — Fozo)) —a < 29(xo)

where Z = argmin{ W (t) +t?} and W is a standard Brownian motion process started at 0; this was
shown by Groeneboom and Wellner (1992).



