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Chapter 6

Testing

1 Neyman Pearson Tests

Basic Notation. Consider the hypothesis testing problem as in Examples 5.1.4 and 5.5.4, but
with ©g = {0}, ©; = {1} (simple hypotheses). Let ¢ be a critical function (or decision rule); let
a = size or level = Eyp(X); and let § = power = E1¢(X).

Theorem 1.1 (Neyman - Pearson lemma). Let Py and P, have densities pg and p; with respect
to some dominating measure p (recall that = Py 4+ P; always works). Let 0 < a < 1. Then:
(i) There exists a constant k and a critical function ¢ of the form

[ 1 ifpi(x) > kpo()
(1) o) = { 0 if pi(l‘) < kpg(ﬁ)
such that
(2) Eop(X)=a

(ii) The test of (1) and (2) is a most powerful « level test of Py versus P;.
(iii) If ¢ is a most powerful level « test of Py versus Pp, then it must be of the form (1) a.e. p. It
also satisfies (2) unless there is a test of size < a with power = 1.

Corollary 1 If 0 < a < 1 and g is the power of the most powerful level « test, then o < 8 unless
Py=P,.

Proof. Let 0 < a < 1.
(i) Now
Po(pl(X) > Cpo(X)) = P()(Y Epl(X)/po(X) > C) =1- Fy(C).

Let k =inf{c:1— Fy(c) < a},and if Py(Y =k) > 0,let v = (a« — Po(Y > k))/Po(Y = k). Thus
with

1 if pi(x) > kpo(x)
op(x) =< ~v if pi(x) = kpo(x)
0 if pi(z) < kpo(z),

we have

E0¢(X) = P()(Y > k‘) + ’)/P()(Y = k‘) = Q.
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(ii) Let ¢* be another test with Ep¢* < a. Now

/X(q5 — ¢*)(p1 — kpo)dp = (¢ — ¢*)(p1 — kpo)du > 0,

/[¢¢*>0]U[¢¢*<0}

and this implies that

By — By = /X (6 — ¢")pdu
>k [ (6= 6" = ko~ Egd") = 0.
X

Thus ¢ is most powerful.
(iii) Let ¢* be most powerful of level a. Define ¢ as in (i). Then

/ (¢ — ") (p1 — kpo)dp = / (¢ —¢")(p1 — kpo)dp
X [¢7#¢*IN[p1—kpo#0]

{ >0 asin (i)
>0 if (e # ¢*] N [p1 # kpo]) > 0
= 0

since > 0 contradicts ¢* being most powerful. Thus u([¢ # ¢*] N [p1 # kpo]) = 0. Thus ¢* = ¢ on
the set where p; # kpg. If ¢* were of size < a and power < 1, then it would be possible to include
more points (or parts of points) in the rejection region, and thereby increase the power, until either
the power is 1 or the size is o. Thus either Ep¢*(X) = a or E1¢*(X) = 1.

Corollary proof. ¢7(x) = o has power o, so 3 > a. If 3 = «, then ¢ = « is in fact most
powerful; and hence (iii) shows that ¢(x) = « satisfies (i); that is, p1(z) = kpo(z) a.e. p. Thus
k‘zlandPl:Po. O

e If =0, let k=00 and ¢(x) = 1 whenever pi(x)/po(z) = oo; this is v = 1.

o Ifa=1,let k=0 and v = 1, so that we reject for all x with p;(z) > 0 or pp(x) > 0.

Definition 1.1 If the family of densities {pg : 6 € [0p,0:1] C R} is such that py(x)/pe(x) is
nondecreasing in T'(z) for each 6 < ¢, then the family is said to have monotone likelihood ratio
(MLR).

Definition 1.2 A test is of size o if

sup Eypo(X) = a.
[ASCH

Let Co ={¢: ¢ isof size a}. A test ¢g is uniformly most powerful of size o« (UMP of size «) if it
has size « and

Eyppo(X) > Epop(X) for all § € ©; and all ¢ € C,.
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Theorem 1.2 (Karlin - Rubin). Suppose that X has density py with MLR in T'(z).
(i) Then there exists a UMP level « test of H : 6 < 6y versus K : 6 > 6 which is of the form

1 if T(x)>c

p) =14 v if T(x)=c
0 if T(x)<c

with Eg,¢(X) = a.

(ii) B(8) = Epo(X) is increasing in 6 for 5 < 1.

(iii) For all € this same test is the UMP level o/ = 3(0') test of H' : < ¢ versus K': 0 > 0.
(iv) For all 8 < 6, the test of (i) minimizes $(#) among all tests satisfying a = Eg,¢.

Proof. (i) and (ii): The most powerful level «r test of 6y versus 61 > 6y is the ¢ above, by the
Neyman - Pearson lemma, which guarantees the existence of ¢ and . Thus ¢ is UMP of 6y versus
0 > 0y. According to the NP lemma (ii), this same test is most powerful of 6’ versus 6”; thus (ii)
follows from the NP corollary. Thus ¢ is also level « in the smaller class of tests of H versus K; and
hence is UMP there also: note that with Co = {¢: supy<g, Eg¢ = a} and C% = {¢ : Eg,¢ < o},
C, C C.

(ili) The same argument works.

(iv) To minimize power, just apply the NP lemma with inequalities reversed. O

Example 1.1 (Hypergeometric). Suppose that we sample without replacement n items from a
population of N items of which # = D are defective. Let X = number of defective items in the
sample. Then

() i)
SV

Pp(X =x)=pp(z) = for z=0vV(n—N+D),...,DAn.

Since

ppy1(r) D+1N-D-n+z

pp(z) N—-D D+1-x
is increasing in z, this family of distributions has MLR in T'(X) = X. Thus the UMP test of
H : D < Dqgversus K : D > Dy rejects H if X is “too big”: ¢(X) = 1{X > ¢} +v1{X = ¢} where

Pp,(X > ¢) +vPp,(X =¢) = a.
Reminder: E(X) =nD/N and Var(X) =n(D/N)(1—-D/N)(1 —(n—1)/(N —1)).
Example 1.2 (One-parameter exponential families). Suppose that

po(x) = c(6) exp(Q(0)T'(x))h(x)
with respect to the dominating measure p where Q(0) is increasing in 6. Then

1 if T(x)>c¢
HX)={ 7 if T()=c
0 if T(z)<c

with Ep,¢(X) = a is UMP level « for testing H : 0 < 0y versus K : 6 > 6. [See pages 70 - 71 in
TSH for binomial, negative binomial, Poisson, and exponential examples].
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Example 1.3 (Noncentral ¢, x2, and F' distributions). The noncentral ¢, x2, and F distributions
have MLR in their noncentrality parameters. See Lehmann and Romano, page 224 for the ¢
distribution; see Lehmann and Romano problem 7.4, page 307 for the x? and F' distributions.

Example 1.4 (Counterexample: Cauchy location family). The Cauchy location family pg(z) =
7711+ (x — 6)?)~! does not have MLR.

Theorem 1.3 (Generalized Neyman-Pearson lemma). Let fo, f1,..., fm be real-valued, u—integrable
functions defined on a Euclidean space X'. Let ¢y be any function of the form
1 if fo(&?) > klfl(.%') + -+ kmfm(.%')
¢o(z) =9 v(x) i folx) =kifi(@)+ -+ kmfm(z)
0 if fo(x) < klfl(.%') + -+ /Cmfm(.%')

where 0 < y(z) < 1. Then ¢y maximizes

[ ofodn

over all ¢, 0 < ¢ <1 such that

[otn= [onfidn, i=1....m.
If kj >0 for j =1,...,m, then ¢p maximizes [ ¢fodp over all functions ¢, 0 < ¢ < 1 such that
/<Z5fz‘d/t < /<Z>0fidu, i=1,...,m.
Proof. Note that
k
Jo= o)=Y kifiau= 0
j=1
since the integrand is > 0 by the definition of ¢y. Hence
[t —orpodu= Yty [(on =)= 0
j=1

in either of the above cases, and hence

/¢of0du > /¢f0dﬂ-

This is a “short form” of the generalized Neyman-Pearson lemma; for a “long form” with more
details and existence results, see Lehmann and Romano, TSH, page 77. O

Example 1.5 Suppose that Xi,..., X, are i.i.d. from the Cauchy location family

1 1

p(z;0) = ;m,
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and consider testing H : 0 = 6y versus 0 > 0y. Can we find a test ¢ of size o such that ¢ maximizes

d d
oBol00) = S Ead(X)| 7

6=0¢
For any test ¢ the power is given by

56(6) = Ed(X) = [ 6l

so, if the interchange of d/df and [ is justifiable, then

~ [ o) gyplastis

Thus, by the generalized N-P lemma, any test of the form

1 if Zp(z;600) > kp(z;6p)
d(z) =9 v(x) if Sp(z;6o) = kp(z; o)
0 if Zp(a;00) < kp(z; 0o)

maximizes @;(90) among all ¢ with Eg,¢(X) < a. This test is said to be locally most powerful of
size a; cf. Ferguson, section 5.5, page 235. But

0
57 p(z;00) > kp(x;6p)
is equivalent to
0
0 (0
sap(; 0o) Sk
p(z; o)
or
0
1
50 ogp(z;0p) > k,
or
S (90 19 Xz,(g()) > K.
!
hence for the Cauchy family (with 6y = 0 without loss of generality), since
0 2(x —0)
1 )= —————
g 08P ) = o

the locally most powerful test is given by

1 if pot2yn 2% S g
6(X) ={ e

0 if n7V230 133)22 <K

where k' is such that Eg¢(X) = a. Under 0 = 0y = 0, with V; = 2X;/(1 + X?),
EyY; =0, Varo(Y;) = 1/2.

Hence, by the CLT, k' may be approximated by 271/2z, where P(Z > z,) = a. (It would be
possible refine this first order approximation to &’ by way of an Edgeworth expansion; see e.g.
Shorack (2000), page 392.)

Note that z/(1 + 2?) — 0 as  — oo. Thus, if & < 1/2 so that k&’ > 0, the rejection set of ¢ is
a bounded set in R™; and since the probability that X = (X,...,X,,) is in any given bounded set
tends to 0 as 8 — oo, 54(0) — 0 as § — oo.
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Consistency of Neyman - Pearson tests

Let P and @) be probability measures, and suppose that p and ¢ are their densities with respect
to a common o— finite measure p on (X, .A4). Recall that the Hellinger distance H(P, Q) between
P and @ is given by

1
H(P.Q) = 5 [/~ Vardu=1~ [ Vridu=1-p(P.0)
where p(P,Q) = [ V/Pqdp is the Hellinger affinity between P and Q.

Proposition 1.1 H(P,Q) = 0 if and only if p = g a.e. p if and only if p(P, Q) = 1. Furthermore
p(P,Q) = 0 if and only if \/p L /g in the Hilbert space La(u).

Recall that if X1,..., X, are i.i.d. P or ) with joint densities

n n

p(@) =pa) = [[p(x:),  or  gulz) =q(z) = []a(=).

i=1 i=1

then p(P™, Q") = p(P,Q)"™ — 0 unless p = ¢ a.e. u (which implies p(P, Q) = 1).

Theorem 1.4 (Size and power consistency of Neyman-Pearson type tests). For testing p versus ¢
the test

(ﬁn(&) = { 1 if qn( ) > knpn(l‘)

0 if gu(z) < kppn(z)

with 0 < a1 < k, < ag < oo for all n > 1 is size and power consistent if P # Q: both probabilities
of error converge to zero as n — oo. In fact,

Epgn(X) < ky'Y?p(P,Q)" <a;*p(P,Q)",
Eg(l—¢n(X)) < kY?p(P,Q)" < ay*p(P,Q)".

Proof.  For the type I error probability we have
Epgn(X) = / Su@pa(2)due) = [ 6u(@pk @D} )dula)
< 5 [ou@p@a @)
< Y [ o) @) = kPP Q) = 1V p(PQ)"
The argument for type II errors is similar:
Eo(1-6u(X)) = [ (1= du@)an()dnlz) = [(1 - ou(@)al* @)t/ *(e)du(a)
< B2 [0 - okl @) du

ki / P/ (2) g (x)du(z) = kL2 p(P™, Q™) = k2 p(P, Q)™

IN
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Now suppose that P = Py, and Q) = Py, where Py € P = {Py: 0 € O} is Hellinger differentiable
at 6y and 6,, = 6 + n~1/2h. Thus

1
nHQ(Peo,Pen) = 2n/{,/p9n — 1/p90}2d/J,
11
~ZhT1(00)h
= 5y 1),
and consequently

nH?(Py,, Py,) > "

p(Pay, Po,))" = <1— -

1
— exp (—8hTI(00)h> .
Hence from the same argument used to prove Theorem 1.4,

- 1

(a) lim sup Eg,¢n(X) < ay 1/2 exp <—8hTI(00)h> ,
n—oo

while

(b)  limsup Ey, (1 — ¢n(X)) < ag /% exp (—;hTI(GO)h> .

n—oo

If we choose k,, = a for all n and fix h and a so that a~ /2 exp(—=hTI(6p)h/8) = «, then \/a =
a~lexp(—hTI(6p)h/8), and hence the RHS of (b) is given by o' exp(—hT1(6p)h/4).
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2 Unbiased Tests; Conditional Tests; Permutation Tests
2.1 Unbiased Tests
Notation: Consider testing

H: 0e€0 versus K: 0e06,

where X ~ Py, for some 6 € © = Qg + O, is observed. Let ¢ denote a critical (or test) function.

Definition 2.1 ¢ is unbiased if B4(0) > o for all § € ©; and 34(0) < « for all § € Oq. ¢ is similar
on the boundary (SOB) if

B¢(0):a for all 96@0 NO; =06pg.

Remark 2.1 If ¢ is a UMP level « test, then ¢ is unbiased. Proof: compare ¢ with the trivial
test function ¢g = a.

Remark 2.2 If ¢ is unbiased and (84(#) is continuous for § € ©, then ¢ is SOB. Proof: Let 6,,’s in
©g converge to §p € ©p. Then F4(0y) = lim, B4(0,) < «. Similarly 84(0y) > a by considering 6,,’s
in ©; converging to 6. Hence (4(6p) = .

Definition 2.2 A uniformly most powerful unbiased level « test is a test ¢ for which
Egpog > Ego for all 4 € ©,

and for all unbiased level « tests ¢.

Lemma 2.1 If P = {Py : 6 € ©} is such that §4(f) is continuous for all test functions ¢, then
if ¢g is UMP SOB for H versus K and if ¢g is level a for H versus K, then ¢g is UMP unbiased
(UMPU) for H versus K.

Proof. The unbiased tests are a subset of the SOB tests by remark 2.2. Since ¢g is UMP SOB,
it is thus at least as powerful as any unbiased test. But ¢g is unbiased since its power is greater
than or equal to that of the SOB test ¢ = «, and since it is level . Thus ¢ is UMPU. 0O

Remark 2.3 For a multiparameter exponential family with densities

Cilig(az) = () GXP(Z 0;T;(x)),

with 6 = (61,...,0,) € R?, the power function (,(6) is continuous in 6 for all ¢.

Proof. Apply theorem 2.7.1 of chapter 2 of Lehmann and Romano (2005) with ¢ = 1 to find
that ¢(f) is continuous; then apply it again with ¢ denoting an arbitrary critical function. O
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2.2 Application to one-parameter exponential families
Suppose that

po(z) = c(0) exp(0T (z))h(z)
for 8 € © C R with respect to a o—finite measure p on some subset of R".

Problems: Test

(1) Hy,: 6<¢6 versus Ki: 0> 0p;

(2) Hy: 6<6y0rf>6 versus Ky : 61 <0 <0y

(3) Hsy: 6 <0<0y versus Ks: 0 <6yorby<0;
(4) Hy: 0=146 versus Ky: 0 # 6.

Theorem 2.1 (1) The test ¢; with Eg, ¢1(T") = o given by

1 if T(X)>c
P (T(X)=<¢ ~v if T(X)=c
0 if T(l) < c

is UMP for H; versus Kj.
(2) The test ¢ with Ep,¢2(T) = o, i = 1,2 given by

1 if ¢ <T(X)<co
GT(X)=q v if T(X)=¢
0 if otherwise

is UMP for Hs versus K.
(3) The test ¢3 with Ep,¢3(T) = o, i = 1,2 given by

1 if T(X)<ec or T(X) > e
P3(T(X))=¢ v if T(X)=g¢
0 if otherwise

is UMPU for Hg versus K3.
(4) The test ¢4 with Eg,¢4(T) = o and EgT'ps(T) = aEp, T given by

1 if T(X)<c or T(X)>c
o(T(X)=q v if TX)=¢

0 if otherwise

is UMPU for Hy versus K3. Furthermore, if T is symmetrically distributed about a under 6y, then
Egy04(T) = «, cg = 2a — ¢ and 71 = 2 determine the constants. The characteristic behavior of
the power of these four tests is as follows:

Proof. (1) and (2) were proved earlier using the NP lemma (via MLR) and its generalized
version respectively. For (2), see pages 81-82 in Lehmann and Romano (2005). For (3), see Lehmann
and Romano (2005), page 121.

(4) We need only consider tests ¢(z) = ¥(T(z)) based on the sufficient statistic 7', whose
distribution is of the form py(t) = c()e?* with respect to some o—finite measure v. Since all power
functions are continuous in the case of an exponential family, it follows that any unbiased test
satisfies a = By (0y) = Ep,(T) and has a minimum at 6.
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But by theorem 2.7.1, chapter 2, TSH, (3, is differentiable, and can be differentiated under the
integral sign; hence

56) = 4 [ wl®) (@t

_ (<)E¢< )+ Eg(To(T))

= (—EgT)Egy(T) + Ep(Ty(T))

since, with 1o = a, 0= 3y (0) = c'(0)/c(0) + Ep(T). Thus

0 = B,(60) = Eg, (T(T)) — g, T.

Thus any unbiased test 1(1") satisfies the two conditions of the statement of our theorem. We will
apply the generalized NP lemma to show that ¢ as given is UMPU.
Let

M = {(Ep,(T), Eg,TY(T)) : (T) is a critical function}.

Then M is convex and contains {(u,uEp,T): 0 < u < 1}. Also M contains points («,v) with
v > aEy,T; since, by problem 18 of chapter 3, Lehmann TSH, there exist tests (UMP one-sided
ones) having (3'(6p) > 0. Likewise M contains points (o, v) with v < aFg,T. Hence (o, aEp,T') is
an interior point of M.

Thus, by the generalized NP lemma (iv), there exist ki, ko such that

o) = 1 when ¢(6) (ki 4 kot)e?t < c(6)e?"
B 0 when ¢(fo) (k1 + kat)et > ¢(8)elt
1 when a; + agt < e
(a) = bt
0 when aj +ast >e

having the property that it maximizes Fg)(T"). But the region described in (a) is either one-sided
or else the complement of an interval. By theorem 3.1.6 it cannot be one-sided (since one-sided
tests have strictly monotone power functions violating 3'(6y) = 0). Thus

B 1 ifT<ec or T>co
(b)  »w(T) = {0 if ¢ <T < ey

Since this test does not depend on 6" # 6y, it is the UMP (within the class of level « tests having
B3'(6p) = 0) test of Hy versus Ky4. Since 19 = « is in this class, 1 is unbiased. And this class of test
includes the unbiased tests. Hence v is UMPU.

If T is distributed symmetrically about some point a under 8y, then any test 1) symmetric about
a that satisfies Ep,(T") = o will also satisfy

E90T1/)(T) = E90 (T — a)1/1(T) + CLEQMﬁ(T) =0+aa = OéEgOT

automatically. O



2. UNBIASED TESTS; CONDITIONAL TESTS; PERMUTATION TESTS 13

2.3 UMPU tests for families with nuisance parameter via conditioning

Definition 2.3 Let T be sufficient for Pg = {Py: 0 € Op}, and let PT = {P]' : 0 € Op}. A test
function ¢ is said to have Neyman structure with respect to T if

E(@X)|T)=a as. PT.
Remark 2.4 If ¢ has Neyman structure with respect to T, then ¢ is SOB.

Proof. Eyp(X)=EgE(¢(X)|T)=Epa =« forall§ € Op. O

Theorem 2.2 Let X be a random variable with distribution Py € P = {Fy: 6 € ©}, and let T
be sufficient for Pp = {Fy : 6 € ©p}. Then all SOB tests have Neyman structure with respect
T if and only if the family of distributions P7 = {P] : 0 € ©p} is boundedly complete: i.e. if
Eph(T) = 0 for all P € PT with h bounded, then h = 0 a.e. PT.

Proof. Suppose that PT is boundedly complete. Let ¢ be a SOB level « test; and define
(T) = B(¢(X)|T). Now

Ep(Y(T) —a) = Eo(E(6(X)|T)) -«
= Epp(X)—a=0

for all § € ©p, and since (T) — a is bounded, the bounded completeness of PT implies ¢(T) = «
a.e. PT. Hence a = ¢(T) = E(¢(X)|T) a.e. PT, and ¢ has Neyman structure with respect to T'.

Now suppose that all SOB tests have Neyman structure. Assume P7 is not boundedly complete.
Then there exists h such that |h| <some M with Egh(T) = 0 for all § € ©p and h(T') # 0 with
probability > 0 for some 0y € ©p. Define ¢(T') = ch(T) + a where ¢ = {a A (1 — «)}/M. Then
0 < ¢(T) <1 so ¢ is a critical function, and Fyp(T) = « for all § € Op, so that ¢ is SOB. But
E(¢(T)|T) = ¢(T') # o with probability > 0 for the above 6, so ¢ does not have Neyman structure.
This is a contradiction, and hence it follows that indeed P” is boundedly complete. O

Remark 2.5 Suppose that:

(i) All critical functions ¢ have continuous power functions (3.

(ii) T is sufficient for Pg = {Py: 0 € Op} and PT = {P] : 6 € ©p} is boundedly complete.
(Remark 2.3 says that (i) is always true for exponential families pg(x) = c(8) exp(>_ 6;Tj(x)); and
theorem 4.3.1, TSH, page 116, allows us to check (ii) for these same families.) Then all unbiased
tests are SOB and all SOB tests have Neyman structure. Thus if we can find a UMP Neyman
structure test ¢g and we can show that ¢g is unbiased, then ¢y is UMPU. Why is it easier to find
UMP Neyman structure tests? Neyman structure tests are characterized by having conditional
probability of rejection equal to o on each surface T' = ¢. But the distribution on each such surface
is independent of # € ©p because T is sufficient for PT. Thus the problem has been reduced to
testing a one parameter hypothesis for each fixed value of t; and in many problems we can easily
find the most powerful test of this simple hypothesis.

Example 2.1 (Comparing two Poisson distributions).

Example 2.2 (Comparing two Binomial distributions).
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Example 2.3 (Comparing two normal means when variances are equal).

Example 2.4 (Paired normals with nuisance shifts).

2.4 Application to general exponential families; k—parameter

Consider the exponential family P = {FP¢} given by

Pog(x) = c(6,€) exp(U (z +Z@ i

with respect to a o—finite dominating measure p on some subset of R™ where © is convex, has
dimension k + 1, and contains interior points 6;, i = 1, 2.

Problems: Test

(1) Hy: 0<¢6 versus Ki: 0> 0o

(2) Hy: 6 <6;0r0>0, versus Ky : 01 <0 <0y

(3) Hs;: 6; <0<0y versus Ks: 0 <6yor6y<0;
(4) Hy: 0=146, versus Ky: 0 # 06y.

Theorem 2.3 The following are UMPU tests for the hypothesis testing problems 1-4 respectively:
(1) The test ¢1 given by

1 if U > c(t)
¢1(z) = () if U=c(t)
0 if if U<c()

where Eg,(¢1(U)|T =t) = o is UMPU for H; versus Kj.
(2) The test ¢o given by

1 if Cl(t) <U«< CQ(t)
p2(z) = () if U=cit)
0 if if else

where Eg, (p2(U)|T =t) = o, i = 1,2, is UMPU for Hj versus K.
(3) The test ¢3 given by

1 if U<ei(t) or U> caft)
o3(z) = ¢ v(t) if U =c¢(t)
0 if if else

where Ey, (¢3(U)|T =t) = o, i = 1,2 is UMPU for H3 versus K.
(4) The test ¢4 given by

1 if U<ei(t) or U>caft)
Pa(z) = wlt) if U=c¢()
0 if if else

where Ep,(¢p4(U)|T =t) = o and Ep{Us(U)|T =t} = aEg,{U|T = t} is UMPU for Hy versus
Ky.
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Remark 2.6 If V = h(U,T) is increasing in U for each fixed ¢ and is independent of T on Op,
then

1 if V>e
ox)=1{ v if V=c
0 if V<e

is UMPU in (1).

Remark 2.7 If h = h(U,T) = a(t)U+b(t) with a(t) > 0, then the second constraint in (4) becomes

or Eg,(Vo|T =t) = aEy,(V|T =t), and if this V is independent of 7" on the boundary, then the
test is unconditional.
2.5 Permutation Tests
Consider testing
H.: Xq,...,Xm,Y1,...,Y, are i.i.d. with df F € F,
where F, is the collection of all continuous distribution functions on R, versus
Ki: Xq,...,. X, Y,...,Y, have joint density function A.
We seek a most powerful similar test: ¢ is similar if
(1) Ermno(X,Y) =« for all F € F..

But if Z = (Z1,...,ZN) with N = m + n denotes the ordered values of the combined sample
Xi,..., X, Y1,...,Y,, then when H. is true, Z is sufficient and complete; see e.g. Lehmann and
Romano, TSH, page 118. Hence (1) holds if and only if (by theorem 2.2)

E((ﬁXY)\Z—z)—a forae z=(21,...,2N)

(2) = (rz) N, Z¢

mell

where the sum is over all N! permutations z’ of z. Thus if &« = I/N!, then any test which is
performed conditionally on Z = z and rejects for exactly I of the N! permutations 2’ of z is a level
« similar test; moreover (2) says that any level « similar test is of this form.

Definition 2.4 Tests satisfying (2) are called permutation tests. (Thus a test of H. versus K is
similar if and only if it is a permutation test.)

We now need to find a most powerful permutation test by maximizing the conditional power.
But

Ep(o(X.Y)|Z =2) = Z<Z> —
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Since the conditional densities under the composite null hypothesis and under the simple alternative
h are

1
N!

h /
and  pi(2]z) = z) 2 e{nz: Tell},

2o h(2")
the conditional power is maximized by rejecting for large values of

p1(2']2) , . N!
= K.h(Z with K, = ————.
o(2]z) ~ ) 2= SR

po(Z|z) =

Thus, at level o = I/N! we reject if
h(Z) > c(2)

where ¢(z) is chosen so that we reject for exactly I of the N! permutations 2’ of z; or else we use a
randomized version of such a test.

Example 2.5 Suppose now that we specify a particular alternative:

Xi,...,X;m areiid. N(61,0?)

Kooy vy areiid. N(6s,02)

where 0; < 6, and o? are fixed constants. Then the similar test of H, that is most powerful again
this simple K rejects H for those permuations 2’ of 2z which lead to large values of

(2702) N2 exp {—2}‘2 <§:(Xz —61)* + Z(Y] - 92)2> } ;
1 1

or small values of

m n

D (Xi— 6017+ (V) — )’
1 1
=D X7+ Y+ mb+nb3—200> X;—20,) Y,
1 1 i=1 j=1
or large values of
m n m91+n92 m n
elzljxinzl:Yj—N (;Xﬁ;l/j)
mn S —
=—(0—6)(Y - X
v (2 = 1) )s

or large values of
Y - X,

or large values of

91ZXZ‘+922Y3‘—91(ZXi+ZYj) = (92—91)23/3'7
1 1 1
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or large values of

VBT %)
e (T2 - S - w302
JET -

T.

IS ST

Thus the most powerful similar test of H. versus K is

N1 it T >ca(2)
¢(z)_{ 0 if 7<cal2)

where ¢, (z) is chosen so that exactly aN! of the permutations 2z’ lead to rejection (1f this is possible;
if not we can use a randomized test). But we know that 7 takes on at most (m) distinct values

according to each of the (Z) assignments z, of m of the z;’s to be X;’s. Thus

1 if 7(z.) > cal(2)
(3) P(2.) = { 0 if 7(2.) < ca(2)

where ¢, (z) is chosen so that exactly a( ) of the assignments z. of m of the z;’s to be X;’s leads
to rejection.

Since the test (3) does not depend on which 6 < 65 or o we started with, the test is actually
a UMP similar test of H. versus K = Uy, g, ,2K1; i.e. different normal distributions with 61 < 62,

o2 unknown.

2

Example 2.6 Suppose that (X, X3) = (56, 72), (Y1,Y2,Y3) = (68,47,86). Thus X = 64, Y = 67,
Y — X = 3. Here Z = (47,56,68,72,86), and ) = 5!/(2!3!) = 10. (Note that 5! = 120.) Note

Table 6.1: (g) Possible Values of 7, N =5, m =2

combination | 47 56 68 72 86 |Y — X | Y Y] T
1 Y Y Y X X | —220]| 171 | —1.436
2 Y Y X Y X | -187]| 175 | —1.219
3 Y X Y Y X | 87| 187 | —0.566
4 Y Y X X Y| 70| 189 | —0.457
5 X Y Y Y X| -12] 196 | —0.076
6 Y X Y X Y 3.0 201 | 0.196
7 Y X X Y Y 6.3 | 205 | 0.414
8 X Y Y X Y 10.5 | 210 | 0.686
9 X Y X Y Y 13.8 | 214 | 0.903
10 X X Y Y Y 23.8 | 226 | 1.556

that @8) = 184,756, and, by Stirling’s formula (m! ~ v/27m(m/e)™) that

2m 1 5
~ ——_92m 7
<m) Jrm as T 00
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so the exact permutation test is difficult computationally for all but small sample sizes. But
sampling from the permutation distribution is always possible.

Remark 2.8 We will call the present test “reject if 7 > c,(z)” the permutation t - test; it is the
UMP similar test of H. versus K specified above. If we consider the smaller null hypothesis

Hg: X1,...,Xm,Y1,...,Y, iid. N(0,0°) with 0, o2 unknown,
then we recall that the classical t -test “reject if 7 > t;,4n—2," is the UMPU test of Hg versus K.

The classical t—test has greater power than the permutation t—test for Hg; but is not a similar
test of H,.. If we could show that for a.e. z the numbers

Co (é) and tm+n—2,a

where just about equal, then the classical t—test and the permutation t—test would be almost
identical.

Theorem 2.4 If F € F, has Er|X|? < 0o and if 0 < liminf(m/N) < limsup(m/N) < 1, then
ca(z) = 2a

where P(N(0,1) > z,) = a. Since we also know that t,,4n—24 — 2a, it follows that c,(z) —
75m+an,o¢ — 0.

Proof. Let an urn contain balls numbered 21, ..., zy. Let Yi,...,Y, denote the numbers on n
balls drawn without replacement. let z = N~V 2, 02 = N"' 32V (2 — )2, m = N — n. Then

—— — n—1 O'z
EY =7Z, and o3 =Var(Y) = (1— N—l) s

Moreover, by the Wald - Wolfowitz - Noether - Hajek finite sampling CLT

Y -2
ON

—4 N(0,1)

as long as the Noether condition

maxi<i<n |2 — Z|*
a NN = — —0
@ AR

holds.
Now rewrite the permutation t— statistic 7: note that

LNy, - LYy iy
Tm X2 Y

Y-X =Y
N _
m

(Y—?),
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and hence
VEEY - X)
T =
Z; mn;Ns v
\/N 2{2Z2 Z )2 T(Y_X)Q}
Y-z
_ Vimee
N ;2 _ 1 N (Y—2)?
N-2"z N—-2 N-1 l(l_]%:]i)
_ /N — 2 7—2/(71\7
B N -1 Y z
— =7~ N(0,1)
¢ \/1—0 72
if
Y L Z~ N
ON

in probability or, better yet, almost surely; i.e. if

P(Y_th‘Z—z> — B(1)
ON

in probability or almost surely. But this holds under the present hypotheses in view of the finite -
sampling CLT 2.5 which follows, if we can show that

(b) NN —a.s. 0

where 1y is key quantity in the Noether condition (a). To accomplish this note that even under
the alternative hypothesis F' # G and Er|X|? < co, Eg|Y|? < oo,

1 1 (& 5
il Z.—7)? = = 7} - NZ
X R

(m—1) (n—1)
= NSkt Sy
—as Aox + (1= No? > min{ok,0%} >0

for any subsequence N — oo for which Ay = m/N — A, and hence the denominator of 7y
(divided by N) has a positive limit inferior almost surely. To see that the numerator converges
almost surely to zero, first recall that max;<;<p | X;i|/n —q.5 0 if and only if Fr|X;| < co. Hence
maxi<i<n |X;|2/n —q. 0 if and only if Er|X1|? < co. Thus we rewrite the numerator divided by
N as

1 9 2 9 2
— < — :
max |Z; — Z| < {%%]ZZ\ +7 }

i<N
< 2 [ naxmax | X \ym+(ﬁf+ﬁ?f
= e s TAXI NTTN
1 2 1 9 2 m— n —\2
< 2max{max [P, max (VP + G (GX 1Y)

—as 04+0.
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Hence (b) holds (even under the alternative if EpX? < oo and EgY? < 00). O

Theorem 2.5 (Wald - Wolfowitz - Noether - Hajek finite - sampling central limit theorem). If
0 < liminf(m/N) < limsup(m/N) < 1, then

Y -Z

ON

—q Z ~ N(0,1) as N — o0

if and only if

maxi<;<n |Zi — 5’2

(4) NN = ~ — — 0 as N — oo.
2o |z =2
Moreover,
Y-z 1/4
sup‘P( §t> —@(t)’ §5< 77N> for all N >1.
t ON mAmn
Proof. See Héjek, Ann. Math. Statist. 32, 506 - 523. For still better rates under stronger

conditions, see Bolthausen (1984). O
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3 Invariance in Testing; Rank Methods
3.1 Notation and Basic Results

Let (X,A, Py) be a probability space for all § € ©, and suppose 6 # 6’ implies Py # Py. We
observe X ~ Py.

Suppose that g : X — X is one-to-one, onto X, and measurable, and suppose that the distri-
bution of gX when X ~ Py is some Py = Pgp; that is

(1) Py(gX € A) = Py(X € A) for all A € A,
or equivalently
Py(g7tA) = Pyy(A) for all A € A,
or, equivalently,
Py(A) = Py(gA) for all A€ A.
Hence
(2)  Eph(9(X)) = Egoh(X).

Suppose that g = ©.
Let G denote a group of such tranformations g. We want to test H : 0 € Oy versus K : 0 € O.

Proposition 3.1 G is a group of one-to-one transformations of © onto © and is homomorphic to

G.

Proof. Suppose that gf; = gha. Then Py, = Py, by (1). Thus 6; = 02 by assumption. Thus
g€ G is one-to-one.
Closure, associativity, and identity are easy.
If X ~ Py, then g1X ~ Py, and (g2091)X = g20(91X) ~ Pj,05,0, while (g2091)X ~ Pgsgr, SO
72001 =Gg20g1. If X ~ Py, then g7 X ~ PF@? so gog ' X ~ Pgog:107 while go g™ !X = X ~ Py,
1

sogog-l=¢; thus g-! = ¢g=1, and G is a group. O

Definition 3.1 A group of one-to-one transformations of X' onto X is said to leave the testing
problem H versus K invariant provided go = © and g0y = O for all g € G.
3.2 Orbits and maximal invariants

Definition 3.2 x; ~ zomod(G) if 9 = g(x1) for some g € G.
Proposition 3.2 ~ is an equivalence relation.

Proof. Reflexive: x; ~ x; since 1 = e(x1).

Symmetric: g(x1) = w2 implies g~ (z2) = 21.

Transitive: x; ~ x9 and xg ~ x3 implies 1 ~ x3 since gi(x1) = x2 and ga(z2) = x3 implies
(g2091)(x1) =23. O
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Definition 3.3 The equivalence classes of ~ are called the orbits of G. Thus orbit(z) = {g(x) :
g € G}. A function ¢ defined on the sample space X is invariant if ¢(g(x)) = ¢(z) for all x € X
and all g € G.

Proposition 3.3 A test function ¢ is invariant if and only if ¢ is constant on each orbit of G.

Proof. This follows immediately from the definitions. O

Definition 3.4 A measurable function T : X — RF for some k is a maximal invariant for G (or
GMI), if T is invariant and T'(x;) = T'(x2) implies x; ~ x2. That is, T is constant on the orbits of
G and takes on distinct values on distinct orbits.

Theorem 3.1 Let T be a GMI. Then ¢ is invariant if and only if there exists a function h such
that ¢(z) = h(T(x)) for all z € X.

Proof.  Suppose that ¢(z) = h(T(z)). Then

¢(gz) = M(T(gz)) = W(T(x)) = é(x),

So ¢ is invariant.

On the other hand, suppose that ¢ is G—invariant. Then T'(x1) = T'(z2) implies 1 ~ x2 implies
g(x1) = xo for some g € G. Thus ¢(x2) = ¢(gz1) = ¢(x1); that is, ¢ is constant on the orbit. It
follows that ¢ is a function of 7. O

3.3 Examples

Example 3.1 (Translation group). Suppose that X = R" and G = {g: gz = z + cl, ¢ € R}.
Then T'(z) = (1 — Xn, ..., Tn—1 — Tp) is a GML

Proof: Clearly T is invariant. Suppose that T'(z) = T'(z*). Then z; = z} — (2}, — xy,) for i =
1,...,n —1, and this holds trivially for i = n. Thus z* = g(z) = 2 + ¢l with ¢ = (2* — 2,,).
Example 3.2 (Scale group). Suppose that X = {z € R": z, #0},and G ={g: gz =cz, c €
R\ {0}}. Then T'(z) = (x1/n, ..., Tn_1/xy) is a GML

Proof: Clearly T is invariant. Suppose that T'(z) = T'(z*). Then 2} = (2}, /x,)x; fori=1,...,n—1,
this holds trivially for ¢ = n. Thus z* = g(x) = cx with ¢ = (a2} /z,,).

Example 3.3 (Orthogonal group). Suppose that X = R” and G = {g: gz =Tz, T an n X
n orthogonal matrix}. Then T'(z) = 2Tz = > | 22 is a GML.

Proof: T(gz) = 2'TTTa = 2”7z, so T is invariant. Suppose that T(z) = T'(z*). Then there exists
I' =T'; 2+ such that z* = T'z.

Example 3.4 (Permutation group). Suppose that X = R™ \ {ties}, and G = {g : ¢g(z) = 7z =
(Tr(1),- - »Tr(n)) for some permutation 7 = (7(1),...,m(n)) of {1,...,n}. Note that #(G) = nl.
Then T'(z) = (z(1) -, %(n)) = (., the vector of ordered z’s is a GMI.

Proof. T(gz) = T(rz) = x(.) = T(z), so T' is invariant. Moreover, if T'(z*) = T'(z), then 2* = Tz
for some 7 € II, so T' is maximal.
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Example 3.5 (Rank transformation group). Suppose that X = {x € R" : z; # x; for all i #
j} =R\ {ties}, and G = {g : g(z = (f(z1),..., f(zn)), f continuous and strictly increasing}.
Then T'(z) = r = (r1,...,my) where r; = #{j < n: z; < x;} denotes the rank of z; (among
L1y - ,;L'n).

Proof: T is clearly invariant. If T'(z*) = T'(z), then, relabeling if necessary, we have a picture as
follows:

Example 3.6 (Sign group). Suppose that X = R™ and that G = {g,e}" where g(x) = —x and
e(r) = x. Then T'(z) = (|x1], ..., |zn|) is a GML

Example 3.7 (Affine group). Suppose that X = {x € R" : x,_1 # x,} and that G = {g: g(z) =
az + bl with a # 0, b € R}. Then

T(x):< T — Tp .”7xn2_33n>

b
Ip—1 — Tn Ip—1 — Tn

is a GMI. Note that

1 —x Ty — T
T(z) =
(2) < Pt EEEE S )
is also a GMI (on X = {z € R": s> 0} where s> =n"! 3"  (z; — 2)?).

Remark 3.1 In the previous example G = Gy @G = scale@translation = {ga0g1 : ¢1 € G1, g2 €
Gao}. Then Y = (x1 — xp, T2 — X, ..., Tn_1 — Ty) is a G1— MI. In the space of the G1—MI we have
Z = (y1/Yn-1s- -y Yn—2/Yn—1) is a Goa—MI. Thus Z is the GMI. If this works, it is OK; see theorem
2 on page 218 of TSH. But it doesn’t always work. When G = G5 & G, it does work if Gy is a
normal subgroup of G. [Recall that G is a normal subgroup of G if and only if ¢gG1g~! = G for
all g € G.]

Example 3.8 (Signed rank transformation group). Suppose that X = RV\ {ties} as in example 3.5
(but with N instead of n), but now let and

G={g: g(x) = (f(z1),..., f(zn)), f is odd, continuous, and strictly increasing}.

Then T(z) = (r,s) = (ri,...,"m,S1,...,5n) where r1,..., 7, denote the ranks of |x;|,..., |z, ]|
among |z1], ..., |rn|and s1, ..., s, denote the rank of |z;,|,...,|z;, | among |x1|,. .., |zn| and where
Tiyyeens Ty, <0<:cj1,...,$jn.

Proof: T is clearly invariant. To show maximal invariance, the picture is much as in example 3.5,
but with the function f being odd; see Lehmann TSH pages 316 - 317.
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Example 3.9 Suppose that X = {(z1,22) : x2 > 0} and that G = {g: g(z) = (z1+0b,22), b € R}.
Then T'(z) = z2 is a GML

Example 3.10 Suppose that X = {(z1,22) : 22 > 0} as in example 3.9, but now suppose that
the group G = {g : g(x) = (cx1,cx2), ¢ > 0} or G = {g : g(x) = (cx1,|c|z2), |c|] # 0}. Then
T(x) = x1/x2 is a GMI in the first case (¢ > 0), and T'(x) = |z1|/x2 is a GMI in the second case
(c#0).

Example 3.11 Suppose that X = {(x1,x2,23,24) : w3,24 > 0} and that G = {g : ¢g(z) =
(cx1 + a,cxa + b, cas,cxq), a,b € R, ¢>0}. Then T(x) = x3/x4 is a GML

3.4 UMP G-invariant tests

Theorem 3.2 If T(X) is any G—invariant function and if v(#) is a GM1I, then the distribution of
T(X) depends on 0 only through v(0).

Proof. Suppose that v(6;) = v(63). Then there exists g € G such that g = . Let g be the
element of G corresponding to g € G. Then by (1)

By (T(X) € A) = Py, (T(9X) € A) = Pgo, (T(X) € A) = P, (T(X) € A)

for all A € A. Thus the distribution of T" is a function of v(f). O

Theorem 3.3 Suppose that H versus K is invariant under G. Let T(X) and = v(6) denote
the GMT and the GMI; and suppose both are real-valued. Suppose that the densities ps(t) =
(dPéT /dp)(t) with respect to some o—finite measure p have MLR in T'; and suppose that H versus
K is equivalent to Hy : § < &g versus K7 : 0 > §g. Then there exists a UMP G— invariant level «
test of H versus K given by

1 if T>ec
Y(I) =< ~v if T=c
0 if T<e
with Es,¢(T) = a.
Proof. By theorem 3.1 any G—invariant test ¢ is of the form ¢ = ¢(T'). By theorem 3.2,

the distribution of T" depends only on §. Thus our theorem for UMP tests when there is MLR
completes the proof. O

Example 3.12 Tests of 2 for N(u,0?). Let Xi,...,X, be iid. N(u,0%). consider testing
H: o<ogversus K: 0 >0p. Then G ={g: g(z) =z+cl, c € R} leaves H versus K invariant.
By sufficiency we can restrict attention to tests based on X and S = > 7(X; — X)2. let G* denote
the induced group ¢*(X,S) = (X +¢,S5). Thus S is a G*MI by example 3.9. Now S ~ o%y2_,
which has MLR in S. Thus by theorem 3.3, the UMP G*—invariant test of H versus K rejects
Hif S > 08)(%_1’&. By theorem 6.5.3, Lehmann and Romano, TSH (2005), page 229, it is also
the UMP G-invariant test; also see Ferguson, page 157. (Recall from chapter 2 that this optimal
normal theory test has undesirable robustness of level problems when the data fail to be normally
distributed.)
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Example 3.13 Two-sample t - test. Let Xi,...,X,, be i.id. N(u,0?) and Yi,...,Y}, be ii.d.
N(v,0?), and consider testing H : v < pu versus K : v > u. By sufficiency we can restrict
attention to tests based on (X,Y,S) with S = Y (X; — X)? + >.(Y; — V)2 Then the group
G={g: g(z) =azx+bl, a >0, be R} leaves H versus K invariant and if G* denotes the induced
group

g (X,Y,S) = (aX +b,aY +b,a>S),
then T(X,Y,S) = (Y — X)/V/S is a G*—MI. Note that

mn(y _ X mn
tEN(s): ~ N =27 ~ tmin2(6)

with 6 = \/mn/N(v — p)/o, and that H versus K is equivalent to H' : § < 0 versus K’ : § > 0.
Since the non-central t—distributions have MLR, the UMP G*—invariant test of H versus K is the
two-sample t—test, “reject H if t >t 424"

Example 3.14 (Sampling inspection by variables). Let Y,Y7,...,Y, be iid. N(u,0?). Let p =
P(Y < yo) = P(good) for some fixed number yy. Consider testing H : p > py versus K : p < pg.
Now

p = P(Yﬁyo)—P<Y_y0_(M—yo) Syo—u>

g g
_ P(X—@g_&)
g g

where XZ-EYZ-—yONN(GE,u—yo,UQ)
— B(~0/0) = 1-D(0/0),

or §/o = ®1(1 —p). Thus, on the basis of X1,..., X, we wish to test H : /0 < co = @ (1 —pg)
versus K : 0/0 > cg. Now X, S = V52 are sufficient. Also, H versus K is invariant under the group
of example 3.10 with ¢ > 0; and a GMI in the space of the sufficient statistic is T = /nX/S. Now
T ~ t,—1(9) where 6 = \/nf/o, and the family of distributions has MLR in T'. Also H versus K is
equivalent to H' : § < g = /n® (1 — pg) versus K’ : § > &y. Thus the UMP G—invariant level a
test of H versus K rejects H if T > t,,_1 4(dp). [Note the use of the non-central t-distribution as a
null distribution here!]

Example 3.15 (ANOVA - General Linear Model). The canonical form of ANOVA is as follows:

O: ZNNn(UvU2I)» UGVkCRn
where V}, is a subspace of R"” with dimension k < n,
andn; =0, t=k+1,...,n,

O : Z ~ Ny(n,o?I), ne Vi_p CR”
where Vj._, is a subspace of V}, with dimension r < k, and
and7; =0, ¢=1,...,nk+1,...,n.
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We let
Gl = {gl g1 = (217"'7ZT72T+1 +A7"+17"‘7Zk +Akvzk'+17"‘7zn)7 with A’L € R})
Gy — 921 922 = (2], o 25 2y oy Zhy Zhit s - -+ 5 Zn),s
(2],...,2F) an orthogonal transformation of (z1,...,2,) |’
G — g3 : g3z = (21,...,zr,zr+1,...,zk,z,’gﬂ,...,z;),
3 (241 - -+ 2n) an orthogonal transformation of (2g11,...,2n) [’
G4 ={9r: gaz = cz, where ¢ # 0};
and, finally

G=G,0G3DGy®G1={gs0g30g2091: ¢ €Gy, i=1,...,4}.

Then H versus K is invariant under G.
Now T1(2) = (21, -+ 2ry Zkt1s- -+, 2n) is & G ML
In the space of the GiMI, a GoMI is To(2) = (31— 22, 2kt 15+ - -5 2n)-
In the space of the Go ® GIML, a GsMIis Ts(z) = (31 22, >0 j g 20)-
In the space of the G3 & Go & G1MIL, a G4MLis T'(z) = ((n — k) /r) (37 22/ >opi1 22)-
Now T'(z) is a GMI; thus any G—invariant test function for H versus K is a function of T'(z)
by theorem 3.1. Similarly,

(0277717 LI 7777’) iS a élML
T
(027277?) isa Go® GMI; and a G3 @ Go ® G1MI;
i=1
and
T2
P=x= =t o g
o

Thus the distribution of any invariant test depends only on 62.
Now T ~ F, ,_1(6?), which has MLR in T'. Also, H versus K is equivalent to H' : § = 0 versus
K’ :6 > 0. Thus the UMP G—invariant test of H versus K rejects H when T' > F, ;,_ o.

Reduction to canonical form

The above analysis has been developed for the linear model in canonical form. Now the question
is: how do we reduce a model stated in a more usual way to the canonical form? Suppose that

X ~ Nn(§a 021)

where £ = EX = Af € L, where A is a (known) n x k matrix of rank &, 0 is a k x 1 vector of
(unknown) parameters, and L is the k—dimensional subspace of R" spanned by the columns of the
matrix A. Let B be a given r X k matrix, and consider testing

H: BO=0 o ¢ely

where L; is a (k — r)—dimensional subspace of R".
To transform this form of the testing problem to canonical form, let T" be an n x n orthogonal
matrix with:

(1) the last n — k rows of T are orthogonal to L; i.e. orthogonal to the columns of A.
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(ii) the rows r+1,...,k of T span Lj.

Then set Z = TX. We compute
n=EZ=TA0="T¢E,

and note that:

(@) M1 =+ =nn =0 always by (i).
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(b) m =---=mn, =0under H by (ii) since the first  rows of T" are orthogonal to L.

Now we will re-express the F'—statistic we have derived in terms of the X'’s:

n

k n
S2(n) > Zi—m) =) (Zi—m)+ > Z
=1

i=1 i=k+1

n
> >z

i=k+1

by taking n; =17); = Z;, i =1,...,k. But since T is orthogonal, n = T¢, and Z =TX,

3) S = lz-nlP=Z-n"(Z-n")

(4) = X-9Tx-¢NH=> (Xi-&)?
i=1

so that

n

(6)  mind (Xi—&)? =) (X - &)’ 222

€L
£ i=1 i=k+1

where § is the Least Squares (LS) estimator of { under { = Af € L. Similarly, under H : § € Ly

(or m = --- =mn, =0 in the canonical form),
k n
S*(n) = 222 o Gi-m)+ ), 7}
i=r+1 i=k+1
DTSN
k+1

by taking n; = 7); = Z; for i =r +1,..., k, and hence by (4)

n

©  pp =Ygy s Y 2

=1 i=k+1

where é is the least squares estimate of £ under the hypothesis { € Lj.

yields

n R n

Z 7P =) (Xi=&)* =) (Xi—&)%

i=1 i=1

Combining (5) and (6)
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here L; is a subspace of dimension k — r contained in L, which is a subspace of dimension k
contained in R™. Now since X —¢ L L

eL.

[

(7) X —§ 1L L; in particular,X—éJ_ § -
Hence
I1X — &) = I1X — &% + 1€ — &2

by (7), and we have

and the F'—statistics which yields the UMP G—invariant test of H : § € Ly versus K : § ¢ Ly
may be written as

IR N AT Vo BN ALy aNC A Y
Y (X =& (n—k) S (X — )2/ (n—k) ‘

To re-express the noncentrality parameter of the distribution of F' under the alternative hypothesis
in terms of £ (instead of n), let { € L, and let §0 denote the projection of { onto Lj: thus
= §0 + (£ - §0) where §0 € Ly and § —§0 1 L;. Then

5 =3 0P fo? = 3 HE(E) - £(©))
i=1 =1

3.5 Rank tests

First we need to be able to compute probabilities for rank vectors. Our first job here is to develop
a fundamental formula due to Hoeffding which allows us to do this.

Let Z1,...,Zy be independent real-valued random variables with densities fi,..., fy respec-
tively. Let

Rizrankof Zl in Zl,...,ZN:#{jSNZ ZjSZZ}:NFN(ZZ)

fori=1,..., N where Fy is the empirical distribution of the Z;’s. Thus

PR=1)= [ [ Aa) fvlen)dan--don
where
S={z: Ri(z)=mri, i=1,...,N} ={z: 24, <+ < 2dy}

where d = r~!, the inverse permutation, rod = ror~! = e. (Example: N = 3; z = (10,5, 8). Then
r=(3,1,2) and d = (2,3,1).) Hence, letting z4, = v;,

S={Wn<---< Wy},
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and

1 Efl(v(n)) o 'fN(V(rN))

N! h(v(rl))h(v(rjv))

where V(1) < --- < V() are the order statistics of a sample of size N from h. This formula is one
version of Hoeffding’s formula.

Of course, sometimes direct calculation succeeds immediately. Here are two simple, but impor-
tant, examples:

Example 3.16 Suppose that F; = F2 with A; > 0,i=1,..., N and F continuous. Then

N
r1<-<TN i=1

N
AiuiA"_ldui
0<us <-<uy <1y

-
- 1

—_— —

AiuiAFlAgu?ﬁAZ—lduQ cduy
0

IA

u2<--<uny<1l =3

N
A
- _HZ; 1Aj.

This yields any probability P(R = r), r € 11, by relabeling:

S

N
Ag;

==

i=1

Example 3.17 (Proportional hazards alternative). Similarly, suppose that (1 — F}) = (1 — F)%i
with A; > 0,7 =1,..., N and F continuous; this is equivalent to A; = —log(1—F;) = A;{—log(1—
F)} = A;A, the proportional hazards model. Then

N
PR=e¢) = PXi<--<Xy)= [ d{1 — (1 — F ()
Rl R B | CLCE R
= A
= (1 — i—1 Wi
- / /0§u1§-~§uNs1ilj[1A2(1 e
. N A

1
= <N A
i=1 Zj:i Aj

This yields any probability P(R =r), r € II, by relabeling:

Ay,
PR=1)=]] =2
5

i=1
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Now suppose that Xi,..., X, are i.i.d. F and Yi,...,Y, are i.i.d. G, F,G € F.; and let G
denote the group of all strictly increasing continuous transformations of the real line onto itself,
example 3.5.

Proposition 3.4

A. The two-sample problem of testing H : F = G versus K : F <, G, F,G € F., is invariant
under G.

B. The rank vector R is a G—MI.

C. ¢¥(u) =GoFHu)is a G—MI.

D. The ordered Y ranks Q1 < --- < Q, are sufficient for R; Q; = NHx(G,,'(i/n)), i=1,...,n
E. Hoeffding’s formula: suppose that f and ¢ have densities f and g respectlvely, and that f(z) =
implies g(z) = 0. Then

PQ=q) = va(q

7’L

where V(;) < -+ < V| are the order statistics of a sample of size N from F. Furthermore, this
probability may be rewritten as

P(Q=gq) = (Nl)E I]¢Ua)
n j=1

where Uy < -+ < Uy are the order statistics of a sample of N Uniform(0, 1) random variables.

Proof. Statements A - C follow easily from the preceding development. To prove E, we
specialize Hoeffding’s formula by taking f; = ffori=1,...,m, fi=gfori=m+1,...,N, and
h = f. Then

P(E - 7” H % V(Tm-m) H ?
j=1 7j=1

Hence

PQ=q9) = Y, PR=1n= H% S

r: q(r)=q

Note that the claimed sufﬁciency of Q for R in D follows from these computations.
To see the second formula, note that ¥'(u) = (g/f)(F~(u)), and that

_ — d
(F ' Uy, . FHUwN)) = Viays - Vi)-
O
Here are several applications of Hoeffding’s formula: we use the preceding results to find locally

most powerful rank tests in several different two-sample testing problems: location, scale, and
Lehmann alternatives of the proportional hazards type.
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Proposition 3.5 (Locally most powerful rank test for location). Suppose that F' has an absolutely
continuous density f for which [|f’(z)|dz < oo. Then the locally most powerful rank test of
H:F =G versus K : G = F(- — ) with 6 > 0 is of the form

1 i Sy= Y0 Er (-5 (V) > ka
o@)=19 v if Sy =ka
0 if Sy < kg

where V(1) < --- < V() are the order statistics in a sample of size N from F.

Proof. For a rank test, ¢ = ¢(Q), we want to maximize the slope of the power function at
0 = 0: i.e. to maximize the slope at 6 = 0 of

Bs(0) = Epd(Q Z ¢(a)Po(Q = q)-
To do this we clearly want to find those g for which

LP@Q=q)

de 6=0

is maximum. But, by using proposition 3.4 and differentiation under the expectation (which can
be justified by the assumption that [ |f’(z)|dz < 00),

Vu
Gre-l,, - {H }\H

A M0 sy fa—6) f'(z — 6)
all sy = = 1 ﬂ%)’eo{ 7o) Lo}
Tlf/
= =3 L)
Z 7
O

Example 3.18 If F is N(u,0?), then without loss (by the monotone transformation g(X) =
(X —p) /o, we may take F' = @, the standard N (0, 1) distribution function. Then —(f'/f)(z) = z, so

E{(=f"/Y(V&))} = E(Z;)) where Z(1y < --- < Z(yy are the order statistics of IV standard normal
(N(0,1)) random variables, and Sy = »>"_; F(Z(,,)). Note that F(Z(;) may be approximated by
®~1(i/(N + 1)), or by ®~1((3i —1)/(3N + 1)).
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Example 3.19 If F is logistic, f(z) = e ®/(1 +e %), then f = F(1 — F), and —f'/f = 2F — 1.
Since F'(V(;) 4 Ugy where Uy, ..., Uy are uniform(0, 1) random variables with EU;y =i/(N + 1),
the LMPRT of F' versus G = F(- — 0) rejects H for large values of Sy = 377, @;; this is the
Wilcoxon statistic.

Proposition 3.6 (Locally most powerful rank test for scale). Suppose that F' has an absolutely
continuous density f for which [ |zf'(z)|dz < co. Then the locally most powerful rank test of
H:F =G versus K : G = F(-/0) with 6 > 1 is of the form

L if Sy =270 an(g) > ka
o) =4 v if Sv=ka
0 if Sy < kg

where

!

i>§<v@>}

and V(;) <--- < V) are the order statistics in a sample of size N from F'.

an(i) = Ep{-1-V

Example 3.20 If f(z) = e "1jg «)(x), then (f'/f)(z) = —1, and hence an (i) = Ep{—1+V(;} =
Er{V(s) — 1} where V{;) are the order statistics of a sample of size N from F. But
i Zj
Vi = e T
(©) ; N—j+1

where Z; are i.i.d. exponential(1), and hence

i N
1 1
7j=1 k=N—i+1
since F~1(t) = —log(1 —t). These are the Savage scores for testing exponential scale change; the

approximate scores are

aN(i):—log<1—N:1>, 1=1,...,N,

and the resulting test is sometimes called the “log-rank” test. Its modern derivation in survival
analysis is via different considerations which allow for the introduction of censoring, and rewritten
in a martingale framework. [Recall that Zgzl k~' —log N — v = .5772---, Euler’s constant, as
N — o0, S0

Ny N Neig
2 F T il
k=N—i+1 k=1 k=1
N 1 N—1 1
= Zk—log]\f—< k—log(N—i))—log(l—)
k=1 k=1
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for large N|
Note that when F' is exponential(1), then

(1-G(2)) =1~ F(¢/6) = exp(~x/0) = (1 - F(«))"/*,
or, A¢ = (1/0)Ar = AAp with A =1/6. Hence
Y =1-(1-u)' =1-(1-u?
and ¢'(u) = A(1 — u)®~1. Since the distribution of the ranks is the same for all (F,G) pairs

with the same 1, it follows that in fact the Savage test is the locally most powerful rank test of
H : F = G versus the Lehmann alternative K : (1—-G) = (1—F)?, A < 1.

Example 3.21 If F is N(0,0?), the LMPRT of F = G versus K : G = F(-/0), § > 1, rejects for
large values of Sy = > 7, an(Q;) where ay(i) = E(Z(Qi)) and Z(1) < --- < Z(y is an ordered
sample from N (0, 1). The approximate scores are (®~1(i/(N + 1))2.

Remark 3.2 Note that any rank statistic of the form Sy can be rewritten in terms of empirical
distributions as follows:

N

Sn =Y an(Q) =Y an(Rmij) =Y _an(i)Zyi

j=1 j=1 i=1

where Zy; = 0 or 1 according as the ith largest of the combined sample is an X or Y. Let
Hy(x) = empirical df of the combined sample. Then Hy'(i/N) = ith largest of the combined
sample, nG,,(Hy'(i/N)) = the number of Y;’s < Hy'(i /N) and Zy; = A{nG,(Hy")}(i/N) where
Ah(y) = h(y) — h(y—). Therefore we can write

Sy = ZGN )ZNi = ZGN )A{nGy(Hy')}(i/N)

- /@v )dG, (Hx! (1))

where ¢y (u) = ZZ 1an(@)1{(i—1)/N <u<i/N} for 0 <u<1. If ¢y — ¢ and Ay — A, then it
is often true that under alternatives F # G,

SN—/¢N )dG,, o Hy! /¢> )dG o H™(u)

where H = AF + (1 — \)G.
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4 Efficiency of Tests
4.1 The Power of two tests

Example 4.1 (Power of the one-sample t—test:) Let X1,..., X, beiid. (f,0?). We wish to test
H : 0 <6y versus K : 0 > 6. The classical test of H versus K rejects H when t,, = \/ﬁ(Y—Qo)/S >
tnfl,a-

(i) This test has asymptotically correct level of significance (assuming E(X?) < oo as we have by
hypothesis) since, with Z ~ N(0,1),

Py (tn > th—1.0) = P(Z > z,) = ..
(ii) This test is consistent since, when a fixed 6 > 6y is true

Va(X =) vl ~00)
S S

—qg Z+00=0

tn

and t,_10 — 2o so that Py(t, > th—1,4) — 1.
(iii) If X1,...,X, are i.id (6,02 = (o + n_l/zcn,a2) where ¢, — ¢, then

V(X =6) | e
S S
ey T+ g ~ N(c/a,1).

tn

Let (3¢ (0) denote the power of the t—test based on X1,..., X,, against the alternative §. Then

(1) ﬂ;(@n) = 53(90 + nil/zcn)
(2) = PHOJFCH/\/,;(tn > tp—1a) — P(N(c/o,1) > z4).

Example 4.2 Let Xi,..., X, be i.id. with d.f. F = Fy(- — 6) where Fj has unique median 0 (so
that Fy(0) = 1/2). We wish to test H : § < 0y versus K : 6 > 6. Let Y; = 1{X; > 0o} = 1j9, o) (Xi)
for i = 1,...,n. The sign test of H versus K rejects H when S,, = v/n(Y, — 1/2) exceeds the
upper « percentage s, o of its distribution when 6y is true.

(i) When 6 is true, Y; is Bernoulli(1/2) so that S, —g4 Z/2 ~ N(0,1/4). Since the exact
distribution of nY,, = > 1Y; is Binomial(n, 1/2) for all d.f.’s F' as above, the test has exact level
of significance « for all such F.

(ii) This test is consistent, since when a 6 exceeding 6y is true

Sn = V(Y = Pp(X > 6o)) + Vn{Ps(X > 6) — 1/2)}
—a N(0,p(1 —p)) + 00 =00
withp=1— F(6p — 6) > 1/2 so that Py(S, > sp.a) — 1.

(iil) If X1,..., X, are iid. Fy(- — (6p + n~'/2d,)) where d,, — d as n — oo and where we now
assume that Fj has a strictly positive derivative fy at 0. Then, using Fy(0) = 1/2, we have
Sn = VY = Pyig,ym(X = 00)) + vVl Py pa,/ym(X > 00) — 1/2)}

= p /2 {Binomial(n, 1 — Fy(—dn/v/n)) — n(1 — Fo(—d,/v/n))}
+ Vn(Fp(0) = Fo(—dn/vn))
—a  Z/2+ dfo(0) ~ N(dfo(0),1/4).
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Thus the power of the sign test 32(6) satisfies
Bi(0o +n2d,) — P(Z/2+dfo(0) > 2a/2) = P(Z > za — 2df5(0)
(3) = P(N(2dfp(0),1) > za).

4.2 Pitman Efficiency

Definition 4.1 Pitman efficiency is defined to be the limiting ratio of the sample sizes that produce
equal asymptotic power against the same sequence of alternatives.

Now equal asymptotic power 3 in (2) and (3) requires that
c
(1) < =2a5(0).

If the t—test is based on NN; observations and the sign test is based on Ng observations, then equal
alternatives in example 4.1 and example 4.2 requires that

(5)  en/VNe=dn,/\/Ns.

Thus the Pitman efficiency ez of the sign test with respect to the t test is just the limiting value
of N;/N; subject to (4) and (5). Thus

Exercise 4.1 Evaluate es; = 402 f2(0) in case:

(i) fo is Uniform(—a,a);

(ii) fo is Normal(0, a?);

(iii) fo is Logistic(0,a): (i.e. fo(z) = ate™®/*/[1 4 exp(—z/a)]?.
(iv) fo is ¢ with k degrees of freedom;

(v) fo is double - exponential(a); fo(z) = (2a)~! exp(—alz|).

A General calculation

We now consider the problem more generally. Suppose that X1, ..., Xy have a joint distribution
Py where 6 is a real-valued parameter. We wish to test H : 6 < 6y versus K : 6 > 0y. Suppose that
the T3 test and the T5 test are both consistent tests of H versus K; and that the T; test rejects H
if the statistic Tv; exceeds the upper a percent point of its distribution when 6 = 6. Since both
tests are consistent, it is useless to compare their limiting power under fixed alternatives; hence
we will compare their power on a sequence of alternatives that approach 6y from above at the rate
1/V/N.

Suppose that for each ¢ > 0 the statistics T ; satisfy

Poytenyw(Ini < x) = P(N(cpi,0f ) = P(N(cpi/oi, 1) < x)
for all x as N — oo for any sequence of ¢y’s converging to ¢. Let the 77— test (the To—test) use Ny
(use N2) observations against the sequence of alternatives cy, /+/N1 (the sequence of alternatives
¢N, /v Na) where ¢y, — ¢1 (where ¢y, — ¢2). Equal asymptotic power requires

Clper  Col42

o1 oy’
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and equal alternatives requires

CN1 _ CN2 .
VNI VNY

solving these simultaneously leads to

(6) &:iﬁwzem_
N ey, (p2fo2)?

Note that the efficiency eq 2 is independent of the common level of significance « of the tests, of the
particular value of the asymptotic power G, and of the particular sequences that converge to the
values of ¢; and ¢y that are specified by the choice of 3. Since so much is summarized in a single
number, the procedure is bound to have some shortcomings; however it can be extremely useful
and informative.

The quantity €; = (u;/0;)? is called the efficacy of the T;—test, and hence the efficiency e1,2 is
the ratio of the efficacies.

1

Exercise 4.2 Define your idea of what the exact small sample efficiency e, ¢ (v, 3, n) of the sign test
with respect to the t—test should be. Compute some values of it in case X1,...,X,, are normal,
and compare these values with the asymptotic value es; = 2/7=.6366... that was obtained in
exercise 4.1.

Exercise 4.3 Now redefine Pitman efficiency to be the ratio of the squared distances from the
alternative to the hypothesized valued 6y that produce equal asymptotic power as equal sample
sized approach infinity. Show that you get the same answer as before.

Note that if 77 and 75 are estimating the same thing (that is, if ©1 = p2), then e; o is just the
ratio of the limiting variances.
Also note that the typical test of H : 8 < g versus K : 8 > 6 is of the form: reject H if

Vil —Ey(D)
Varg,(vn(T)) ~— "

Thus when 0 + ¢/\/n is true, intuitively we have (letting m(0) = Ey(T), and o3 = Varg,(v/nT)),

V(T = By, (T)) Vgt WD) JR(T = By oy ya(T))
Varg, (v/n(T)) VVarg,(Va(D)  [Varg, o/ a(vA(T))
| Vialm(0o +c/yr) — (%)
Varg, (v/n(T))
em!(6p) N (em!(6
————= ~ N(em/(0y)/00,1).

—q 1-Z+
Thus we expect (m/(6y)/c0)? to be the efficacy.
Exercise 4.4 Now consider testing H : 6 = 0y versus K : 6 # 0y on the basis of a two-sided test

based on either the T7 or the T5 statistics consider previously. Show tha the same formula for
Pitman efficiency is appropriate for the two-side test also.
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Exercise 4.5 Again consider testing H : 6 = 0y versus K : 6 # 0y; but suppose now that
Tpi —a Xi(¢6;) as n — oo

under any sequence of alternatives 0y + ¢, /y/n having ¢, — ¢ > 0 as n — oo. Here k is a fixed
interger, and the limiting random variable has a noncentral chi-square distribution. Show that the
Pitman efficiency criterion leads to e o = 6% /43.

4.2 Some two-sample tests

Example 4.3 (The two-sample t—test). Let Xi,...,X,, and Y7,...,Y, be independent samples
from the distribution functions F' and G = F(- — ) respectively. The classical test of H : 6 <0
versus K : 6 > 0 rejects H if
V(Y - X)
tm,n = 1N 2 T a2 > tm—l—n—Q,a-
m— n—
\/ 25% + vy

(As noted in section 6.2,this test has certain optimality properties when F' is a normal distribution.)
If F is any d.f. having finite variance, then:

(i) When 6 = 0 we have t,, , —4 N(0,1) provided m A n — oc.
(ii) When 6 > 0 is true, then the test is consistent as m A n — oco.

(iii) If Ay =m/N — A € (0,1) as m A n — oo, then

Py yii(tmn > tmin—n.a) = P(ey/AL = A)/0,1) > za).

Thus the efficacy of the two-sample t—test is

(7) e =M1 —))/o%

Example 4.4 (The Mann-Whitney and Wilcoxon tests). Let Xi,...,X,, be iid. F and let
Y1,..., Y, beiid. G where F' and G are continuous d.f.’s, and consider testing H : F = G versus
K: F <;G (ie. G(z) < F(z) for all z and G(x) < F(x) for some x).

The Wilcoxon test is “reject H if Wy, = 370, Q; = > i_; Rimyj is too big”. Tables of the
exact null distribution of W, ,, for small m,n are available, so the level is exactly a. Moreover, if
H is true,

Wm,n - EH(Wm,n) B Wmm — TZ(N + 1)/2
Varg(Win) mn(N +1)/12

—4q N(0,1)

provided m A n — oo; this follows from the Wald-Wolfowitz-Noether-Hajek permutational CLT
since

N N la; —al> 1 (N-1)*/4

= mAn(N2—1)/12

mAn m/\nzl(ai_a)z

provided m A n — oo.



38 CHAPTER 6. TESTING

The Mann-Whitney test is described as follows: let

5%221{)( <Y}

=1 1=1

Mann and Whitney proposed to reject H if Uy, ,, is “too big”. Since
mnUpmn+n(n+1)/2 =Wy,

when H is true we have
Unn—1/2
(N +1)/12mn

For arbitrary F' and G

—q N(0,1) as mAn— oo.

EUpp=FH{X <Y}=PX<Y)= /FdG,
while, for arbitrary continuous F' and G

Var(vmnUp,) = (n—1) /(1 — G)%dF

+(m—1)/F2dG—(N—1) (/FdG>2+/FdG

= (n—1)Var(l - G(X)) + (m - D)Var(F(Y)) + /FdG(l - /ch;).

We now consider the local alternatives ¥ < X + ¢/V'N, or G = F(- — ¢/V/N). We also suppose
that Ay = m/N — A. Then
Unn=1/2  _ Unn—JFdG  [FdG-1/2

(N +1)/12mn VN +1)/12mn /(N +1)/12mn
= Zm,n + amn

where it seems intuitive that Z,, , —4 Z ~ N(0,1) as N — oo and

12mn 1
Ummn = WW{/FCZG—2}

= L2mn f{/ F(z)dF(z — ¢/vN) — /FdF}

N(N +1)

12mn
= vy [ VR = oV - Fapart)

VI2A(1 — )\)c/fg(:r)dx

assuming that F has density f with [ f?(z)dz < co. Thus under (F,G) = (F, F(- — ¢/V'N))

Um,n_1/2 _)dz_{_c\/M/jawN(C\/m/fZ’l)

(N +1)/12mn




4. EFFICIENCY OF TESTS 39

Thus the efficacy of the U—test is

(8) ey =12\(1—\ (/ﬁ dx)

Combining the efficacies in (7) and (8) for the t—test and the U—test respectively gives the
Pitman efficiency of the U—test with respect to the t—test:

() 12 2— ){/foQ}Q 1252 (/]@)2.

Proposition 4.1 ey (F) > 108/125 = .864.. ..

Proof.  first note that ey ¢(F) = ey(F(-—a)/c). Thus it suffices to minimize [ f?(z)dz subject
to the restrictions

/xzf(x)dx =1, /a:f(x)dx =0, f(z) >0, /f(x)dx =

Consider minimizing
= [ {P@+ f@e - )
with b > 0 subject to f > 0 and [ f(z)dz = 0. Now

f2(@) +20f(2)(2® —a®) = f(2){f(2) + 2b(a® — a®)}
A{A+2b(2* —a*) >0 for |x| > a.

Thus take f(x) = 0 for |x| > a and minimize the integrand pointwise for |z| < a. This yields
A= f(z) = b(a® —2?). Thus the minimizer fo,(x) = f = b(a® —22)1_, 4 (). Choosing a and b so
that [2%f(z)dz =1 and [ f(x) =1 yields a = v/5, b = 3v/5/100, and hence [ f*(x)dx = 3/5/25.
Hence

ere > 12{/ f2y(x)dx}? =12(9 - 5)/625 = 108/125.
O

Proof of asymptotic normality of U,,, under local alternatives Suppose that

XN71, . 7XN,m are 1.i.d. FN
YN,l . ,YN,n are i.i.d. GN

where Fy, Gy, and H are continuous df’s satisfying ||[Fy — H||xc — 0 and |Gy — H||ooc — 0
as N — oo. Let F,, and G, denote the empirical df’s of Xn1...,XnNm and Yy 1,...,YNm
respectively. Now

Unin = / FpndGy,.
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Consider

mn 1 /mn 1
— 77\?{/(]Fm—FN)dGn—I-/FNd(Gn—GN)}
mn < / FndGy — / GNdGN>
N
n m N+ 1\ Y2
/U FNdG - /V GN dFN+<12N> am,’m

here U,, is the empirical process of m i.i.d. Uniform(0,1) rv’s and V,, is the empirical process of n
iid. Uniform(0, 1) rv’s independent of the random variables used to define Uy,. Thus for special
constructions of U,, and V,, and independent Brownian bridge processes U and V,

T(Um,n—;> .y ﬁ/ H)dH — f/V dH+fa

1=

_ / (VI AU(t) — VAV() bt + ——

V12
‘ (Z+a)~ —=N(a1)
= a) ~ a,
\ﬁ V12
since
1 1
02:/ /(s/\t—st)dsdt:
0o Jo
Convergence of the first term above is justified by:
| [ D)6, - / U(H)dH|
< |/ U(F))dGn| + y/ (Fy) = U(H))dGn|
+] / U()A(C,, — 1)
< U -0 [ 4G + [U(E) - U] [ d,

+1 [ 0@, - 1)

—as 04+04+0=0

where the convergence of the first term follows by the special (Skorokhod) construction of {U,,, U}
and [ dG, = 1; the convergence of the second term follows from ||F, — H|| — 0 and uniform
continuity of U for a.e. fixed w; and converence of the third term follows from Helly-Bray since
U(H) is a bounded continuous function a.s. and G,, —4 H almost surely. To see this last claim,
note that
HGTL_HH ||Gn_GN+GN_HH
n V(G| + |Gy — H]
n~ 2V (Gr) = V(GN)| +n T2V + |Gy - H|

VANVA
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Exercise 4.6 Evaluate ep(F) = 1202([ f2(z)dz)? in case:
(i) f is Uniform[—a,a].

(ii) f is Normal.

(iii) f is Logistic.

(iv) fis tg.

(v) f is double-exponential.

Exercise 4.7 (General behavior of the centering constants for U, ). Suppose that

IVR(YE =07 = Zab?s 0, and V(g hM?) — Lt/ 0.
Then

WAy 1)~ [ adif|w =0, ad VNG -H)- [ paH]w 0.
Show that this implies (using [adH = 0= [ SdH) that

i = VIAT=N) [ (L H)(a - p)ait

Check that the result for shift alternatives H = F and G = F(- — ¢/v/N) follows with o = 0 and
B=-1/rf.

4.4 Pitman efficiency via Le Cam’s third lemma.

Often the limiting power and efficacy of a test can be easily derived via Le Cam’s third lemma,
lemma 3.3.14. Recall tht the essence of that lemma is that the joint limiting distribution of a
statistic and the local log-likelihood ratio under the null hypothesis determines the joint limiting
distribution of the statistic and the local log-likelhood ratio under the sequence of local alternatives.
Here we simply illustrate this approach with the examples considered in section 6.4.1.

Example 4.5 The one-sample t—test again. Let Xi,...,X,, be i.id. F = Fy(- — 6) with
0 = Ep(X). Consider testing H : § < 6y versus K : 6 > 0y using t, = /n(X — 6y)/S. Suppose
that Fyy has an absolutely continuous density fo and that Iy = [(f}/ fo)?fodr < co. Let L, =
[T, (fn/f)(Xi) where fr(z) = fo(x — 60y), On = 6o + ¢/v/n, and f(z) = fo(x — 6p). Thus with
1(z) = —(f'/f)(x), under P, = Py,

log L,, = \F Z — —I (fo) + op(1),

and, hence under P, with p,(z) =[], f(z:),

< 10;”% > —af << —(CZ/S)I(fo) ) 7< UiL 02?2;0) >>
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where

oL = eEfX ; eoi(X) = cEy, {—;ﬁg?% } .

But

1

= = R~ B0y = By {x (VETER )

where the right side converges to Ef{X(—f"/f)(X)}. Thus 1 = E{X(—f'/f)(X)} and oy, = ¢/o.
Hence it follows from Le Cam’s third lemma with g,(z) =[]/, fn(z;) that, under @,

( 10;nLn ) —a M2 (( +(02%()T—7(f0) > ’( UiL 02(;21}0) )) '

Hence the efficacy of the t—test is (again) ¢ = 1/02.

Example 4.6 The one-sample sign test again. Now consider the sign statistic S,, = /n(Y —
1/2) where Y; = 1(g, o0)(X;) and L, is as above. Then under P, with p,(z) = [[;L, f(zi),

( lo?}in > —a (( +(C2/g)f(fo) ) ( a; c;ﬁffo) ))

oo £/
L

0o [

where

51, = Bl g,00) (X)I(X) = — (@) f(x)dx = cf(bo).

Hence, by Le Cam’s third lemma

< lognLn > —a N2 << +(C§];(20)(})(f0) > ’< Cf(leo) Ccsz((efgo)) >>

and it follows that the efficacy of the sign test is eg = 4f2(0y) = 42(0). Combining the two efficacies
€ and eg yields the Pitman efficiency of the sign test relative to the t—test, es; = 402]3(0).



5. CONFIDENCE SETS AND P—VALUES 43

5 Confidence Sets and p—values

The theory of testing that has been developed in the previous sections in this chapter connects
with with estimation theory via the construction of confidence sets. The material outlined in this
section is drawn in large part from Sections 3.5 (pages 72-77) and 5.4 (pages 161-162) of Lehmann
and Romano (2005), and Section 5.8 (pages 257 - 264) of Ferguson (1967).

First, a definition:

Definition 5.1 Let {S(z)} = {S(z) : = € X'} be a family of subsets of the parameter space O for
a given sample space X. Then {S(z)} is said to be a family of confidence sets of confidence level
1—aif

Py(S(X) contains 0) = Pyp(f € S(X))=1— a.

Construction of confidence sets from tests: Let A(6y) denotes the acceptance region of a size
«a nonrandomized test ¢ of the hypothesis Hy : 6 = 6y against any alternative. That is

1 ifx ¢ A(b)
#(x) :{ 0 ifze A(eg)

where Py, (X € A(fy)) = 1 — . If we consider the sets A(f), 6 € ©, we have a family of acceptance
regions, each a subset of X such that

Py(X e A(f) =1-a.
Define S(xz) = {6 : = € A(#)}, so that {# € S(X)} ={X € A(f)}. Then it follows that
P9(9 S S(X)) = P@(X S A(Q)) =1-aq,

so the resulting family {S(x) : = € X'} is a family of confidence sets of level 1 — a.
Here are three examples:

Example 5.1 Suppose that X ~ N(u,1), and consider testing H : pu = po versus K : p > pg.
By the Karlin - Rubin theorem, the UMP test is ¢(X) = 1{X > pg + 2o} with acceptance region
A(po) ={z: = < po + za}. Thus

Alp) ={z: z < p+ 24},
S(z)={p: p>z—z24}.
Thus it follows that
l—a = P(X<p+z)=P(p>X—2)
= Pu(p 2 pa(X)) with o (X) = X — z4
= Pu(p € [pa(X),00)) = Pu(p € S(X))

where S(X) = [pa(X),00) = [X — 24,00), and hence the family S(X) is a family of 1 — « level
confidence sets for p.
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Example 5.2 Suppose that X,..., X,, are i.i.d. with continuous distribution function F' on [0, 1].
Consider testing H : F = Fy (continuous) versus K : F <; Fy (i.e. F(x) > Fy(x) with strict
inequality for some z). One natural test statistic is

F,
R, = sup (x)
o<z<1 Fo()

Now by Theorem 2.3.1 (and the discussion in Section 2.4) F,, 4 Gy (Fp) where G,, is the empirical

distribution function of i.i.d. Uniform(0, 1) random variables &1, ..., &,. Therefore
G (Fo(x)) >
Pr(R,>r) = P sup —————= >r
o ) o (0@21 Fo(z)

= P< sup Gn(w) >T>
O<u<l U

= 1/r for r>1;

this is a result due to Daniels (1945); see e.g. Shorack and Wellner (1986), Theorem 9.1.2, page
345 . Thus the test

1, if R, > 1/a
p(X) = { 0, if R, < 1/a,

is a size « test with acceptance region

A(Fy) = {X: 0?;21 I;Zgi < 1/a} ={X: aoF,(z) < Fy(z) forall0 <z <1},

AF) = {X: aF,(z) < F(z) forall0 <z <1},
S(X) = {F: F(zx) > aF,(x) for all 0 < z < 1}.
Thus
Pr{F € S(X)} = Pp(F: F(z)>aF,(x) forall0 <z <1)
= su Fu(2) al=1-«a
= <0<xI§)1 F(z) =1/ ) e

Example 5.3 Suppose that Xi,...,X,, are i.i.d. Weibull (¢, 3) as in Example 3.x.y. Consider
testing H : (o, 3) = (v, Bo) versus K : («, 8) # (ap, Bp). From the theory developed in Chapter
4 we know that the likelihood ratio test based on the statistic

SUPq>0,8>0 Ln(a, )
Ly (a0, Bo)

)\n = )\n(a()v ﬂO)

satisfies
21log \n (a0, Bo) —a X3

when «g, By are true. Therefore the acceptance sets

An(a, Bo) = {X 1 2log An(, Bo) < X34}
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where P(x3 > X%,(s) = J satisfy

Pog, 8o (An(ao, Bo)) — 1 =9, as n — 00,
and, similarly,

Pop(An(e, 8)) =146,  as n— oc.
But then

Pog(An(e, B)) = Pas((a, 8) € Sn(X)) =10

for the associated confidence sets

Sn(X) = {(a, 8) € R*?: 2log \n(a, B) < X35}

How should we choose a family of confidence sets? One natural criterion is to minimize the
probability of covering false values. That is, we should try to make

Py (0 € 5(X))

small if 6 # ¢'. It turns out that optimality properties of tests carry over or translate into optimality
properties of confidence sets. One version of this is given in the following theorem.

Theorem 5.1 Let A(fy) be the acceptance region of a UMP test of size « of the hypothesis
Hy: 0 =0y versus Hy : 6 € ©;. Then {S(z)} defined by

{0 S(x)}={zec A()}

minimizes Py (0 € S(X)) for all ¢ € ©; among all level 1 — « families of confidence sets.

See e.g. Lehmann and Romano (2005), pages 72 - 77 and 164 - 168.
Suppose that § = (v,£) € ©, v € R, £ € R¥ for some k. A lower confidence bound for v is a
function v(x) such that
Pev(X)<v)>21l-a for all v,¢&.

Similarly, a confidence interval for v at confidence level 1 — « is given by v(z), 7(x) satisfying

Pev(X)<v<vX))>21l-a for all v,¢.

Connection with estimation: If v(X) satisfies
Pre(v(X) sv) = Pe(v(X) 2v) =1/2,
then v(X) is a median unbiased estimator of v. For the use of this in developing “R-estimators of

location”, see e.g. Hodges and Lehmann (1963).

p-values:
See Lehmann and Romano, pages 57, 63-65, 97-98, 108-109, and 139.
Consider a family of tests ¢ (X) = 14¢ (X) of H versus K with rejection regions Ag, satisfying

(1)  A¢ C AL if a<d.



46 CHAPTER 6. TESTING

Let

p(X)=inf{a: X € AL}

= smallest significance value for which H

3>

would be rejected for the observed data X
= p-value of the test(s) ¢q,.

Example 5.4 Suppose that X ~ N(u,0?), 0% known. For testing H : pu = 0 versus K : p > 0,
the UMP test is given by

AL, = {z: x>0z}, Za =011 —a)
= {z: ®(x/o) > P(zq) =1—a}
= {z: 1-®(z/0) < a},

so p(X) =1—®(X/o). Alternatively,

PXW)) = Po(X 2 @),y = (1 -2 (E))

g

x:X(w)'
Note that

P(p<u) = PR(l-?(X/o)<u)=PFP(P(X/o)>1—u)=u
for 0 < u < 1 since ®(X /o) ~ Uniform(0,1) under P.

Lemma 5.1 Suppose that X ~ Py for some § € © and H : § € ©p. Suppose that the test ¢ of H

versus K has rejection regions A¢ satisfying the nesting property (1).
(i) If

sup Pp(X € AS) <« forall 0 <a<1,
[USSH

then the distribution of p under 8 € O satisfies
Py(p<u)<u forall 0 <u<1.

(ii) If for 6 € ©g
Py X eAl))=a forall 0 <a <1,

then
Pyp<u)=u forall 0 <u<1.

Proof. (i) If0 € O, then {p <u} C{X € AS} forallu < v. Thus Py(p < u) < Py(X € AS) <w
for all v > u, and hence, letting v \, u, Py(p < u) < u.
(ii) Since {X € A5} C {p <wu},

Py(p <u) > Py(X € AS) = u.

But since also Py(p < u) < u from (i), the claimed equality follows. O
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Example 5.5 (Test for 4 when X ~ N(u,0?), continued.) What is the distribution of p under
u>07

P,(p<u) = P,(1-®(X/o)<u)=P,(X >0 (1—u))
- P, <X;“ 2<I>_1(1—u)—g>

= 1-®(@d 1 —u)— /o).

Note that since
11 —u) —pl/o <711 —w),
it follows that
(@ (1 —u) — plo) <1—u,

and hence
Pp<u)y=1-®@ '1—u)—p/o)>1-(1—-u)=u



