Statistics 581, Problem Set 1 Solutions
Wellner; 10/3/2018

1. (a) The case r = 1 of Chebychev’s Inequality is known as Markov’s In-
equality and is usually written P(|X| > ¢) < FE(]X])/e for an arbitrary
random variable X and € > 0. For every ¢ > 1, find a distribution
for X with E(X) = 0 and E|X| = 1 that gives equality in Markov’s
inequality.

(b) Prove for an arbitrary random variable X and € > 0

P(IX| > ¢) SE{COSh(X)_l}.

cosh(e) — 1

Solution: (a) Given € > 1, let X = +a > 0 with probability 1/(2¢) <
1/2 and let X = 0 with probability 1 — 1/e. Then

E(X) = aP(X=a)+ (-a)P(X =—a)+0-P(X =0)
— 0/2) — a/(26) = 0,
E|X|=aP(X =a)+aP(X =—a)=a/e=1
if we take @ = €. On the other hand
P(IX|>e¢)=P(X>e)+P(—X >¢€)=1/(2¢) +1/(2¢) = 1/,

so equality holds in Markov’s inequality for this fixed € > 1.
(b) Note that g(y) = cosh(y) — 1 satisfies g(0) = 0 and g(—y) = g(y).
Therefore, for any € > 0

P(IX] =€) = P(g9(X) > g(e)) < g(e)

where the inequality is just Markov’s inequality applied to Y = g(X)
and ¢ = g(e).

2. Let X and Y be iid. Uniform(0,1) random variables Define U =
X—Y,V=max(X,Y)= X VY.
(i) What is the range of (U, V)?

(ii) Find the joint density function fy v (u,v) of the pair (U,V). Are
U and V independent?



Solution: (i) The range of (X,Y) is
A={(z,y):0< 2z <1, 0<y<1}. Therange of (U,V) is

B = {(u,v):0<u<liu<v<1}U{(u,v): =1 <u<0,—u<v<1}.
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Figure 1: Range of U,V .



(ii) First solution - via Jacobians: The transformation (X,Y) — (U, V)
is 1-1 and onto from A to B. On the set z < y, its inverse is given
by X =U+V,Y = V; on the set x > vy, its inverse is given by
X =V, Y =V —U. These mappings are continuously differentiable
on B* = B\ {(u,v) : (0,v)} = B\ anull set. On B* the Jacobian of
the transformations are

11 . 0 1 .
det(o 1)—1 if x <y, det(_1 1)—1 if x> y.

(1)
Thus by the usual transformation of densities formula, the joint density
of (U, V) is obtained from fxy(x,y) = Ljo1(x)1j01)(y) as follows:

(z,y)

Jov(u,v) = fxy(z(u,v),y(u,v))|det a(u’v)ﬂ[m(u,vxy(uw)l

Oz, y
+ fxy(@(u,v),y(u,v))| det %Il[azw,vm(u,vn
(Ljo,)(w + v)Li0,1) (0) Ljutv<o) + Lpo,11(0) Lio,1) (0 — 1) Lppsp—v])
= 1B(u, ’U) .
Thus the joint density of (U, V') is uniform on B. The random variables
U and V are clearly not independent since the range of (U, V) is not a
product set in R?; moreover, the joint density of (U, V') does not factor

into the product of its marginal densities. [The marginal densities are
given by

fuldvzl—u, u € [0,1]
[Ldv=1+u, wuel[-1,0)

fu(u) = /fU,V(uaU)dU = {

and .
fvv) = /ny(u,v)du :/ du = 2v1jg1)(v).]

Second solution by direction calculation of the joint distribution func-
tion: Note that we can write
PU <u,V <w)
= PX-Y<uy,XVY<0)=PX-Y<uX<vY <v)
PY >X—u,X<0Y <v)
{ v —Li(v—wu)? if 0<u<wv<l,

2
%(v+u)2, if —1<u<0,0<-u<v<l.
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(This is easy by pictures!) Computing (9?/0udv)P(U < u,V < v) on
each of these pieces separately again yields fy v (u,v) = 15(u,v). Also
note that the marginal distribution functions of U and V' are given by
Fy(u) = (1/2)(14+u)* 1210 (w) + {1 — 3 (1 —w)*} o (u) on =1 <u < 1
and Fy (v) =v? for 0 < v < 1.

. Ferguson, ACILST, #6, page 7. (a) (This is known as the Pdlya-
Cantelli lemma; see Chapter 2, Proposition 2.11, page 10.)

(b) Give an example of the use of this lemma.

(See Lemma 2.11, p. 12, Asymp. Statist. for a multivariate version of

this.)

Solution. (a) For the proof, see Ferguson, ACILST page 173. See van
der Vaart (1998), page 12, for a sketch of the proof in the multivariate
case.

(b) As an example, suppose that a test statistic T}, is assumed to have
a t,_1 distribution under a null hypothesis, a € (0,1/2) and we reject
the hull hypothesis Hy if T,, > t,-1,. If in fact T, is not exactly
t,—1 distributed, but we do have T,, —4 Z ~ N(0,1) under the null
hypothesis, what is the asymptotic size of the test? That is, find the
limit of P(T,, > t,,—1 ) under these assumptions. Claim: this is exactly
a. Let ®(2) = [7__(2m) "2 exp(—y*/2)dy. Then

P(Tn Z tn—l) - (]- - Hn(tn—l>)
= (1 - Hn(tnfl,a)) - P(Z > tnfl,a) + P(Z > tnfl,a)
= _(Hn<tn—1,o¢) - (I)(tn—l,a)) + (1 - (b(tn—l,a))
= 04+1—-P(2) =

where the convergence in the first term follows from the Pélya- Cantelli

lemma and the convergence in the second term follows from ¢,,_; o — 24
where z, satisfies (z,) =1 — a.

. Suppose that for 0 € R,
Jo(u,v) = {14+ 0(1 — 2u)(1 — 2v) } 10132 (u, v).

(a) For what values of  is fs a density function on [0, 1]*?

(b) For the set of §’s you identified in (a), find the corresponding dis-
tribution function Fy and show that it has Uniform(0, 1) marginal dis-
tributions.



(c¢) If (U,V) ~ Fy, compute the correlation p(U,V) = p. Does this
show any difficulty with this family of distributions as a model of de-
pendence?

Solution: (a) For fj to be a density function, we must have fy(u,v) >0
for all (u,v) € [0,1]* and

/01 /01 fo(u,v)dudv = 1. (2)
/01 /01 fo(u,v)dudv =1+ 9/01 /01(1 —2u)(1 — 2v)dudv = 1

for all 8 € R since

/01/01(1—2u)(1—2v)dudv:/01(1—2u)du/01(1_21))dv:().0:07

and hence (2) holds for all §. The requirement that fy be non-negative
is just
1+60(1—2u)(1—-20) >0  forall (u,v)€0,1),
or equivalently that
0(1 —2u)(1 —2v) > —1  forall (u,v) € [0,1]%.
By monotonicity of 1 — 2u, this holds if and only if it holds for (u,v) €
{(0,0),(0,1),(1,0),(1,1)}; i.e.

f>-1, —6>-1, —0>-1, and 0>—1.

Thus it follows that fp is a density function for 6 € [—1,1], or |f] < 1.
(b) The corresponding distribution function Fj is given by

Fo(u,v) = / / £y (r, s)drds

_ //{He 1= 27)(1 — 25)}drds

= uv—|—9/ 1—2r)d7’/0(1—25)d

uv + Qu(l — u)v(l — v)
= w{l+0(1—-u)(l—v)}.
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Note that
Fy(u,1) =u, and Fy(l,v) =0,

so Fp has Uniform(0, 1) marginal distributions.
(c¢) It follows from part (iv) of Proposition 1.4.1, page 20, Chapter 1,
that (by taking G(x) =z, H(x) = x))

Cov(U,V) = /0 1 /0 1{Fe(u,v)—uv}dudv

_ /01 /01 Ou(l — w)o(1 — v)dudy

_ 9 (/Olu(l—u)du)Q

1

S
36
since .
1 1 .1 1 1 1
1—w)d :—2——3‘ — o=
/0“( wdu=gu =] =5737%

Now since Var(U) = Var(V) = 1/12 (since they are both Uniform(0, 1)),
it follows that

Cov(U,V 0/36 0
o0, V) = wv) ___Y _0
VVar(U)WVar(V)  /(1/12)(1/12) 3
Note that this implies that [p(U, V)| < 1/3, and hence this family of

distributions does not include any distributions on [0, 1]* with correla-
tions larger than 1/3 in absolute value.

. (a) Lehmann & Casella, TPE, problem 3.5, page 64.

Let S be the support of a distribution on a Euclidean space (X, .A).
Then, (i) S is closed; (ii) P(S) = 1; (iii) S is the intersection of all
closed sets C' with P(C') = 1. (The support S of a distribution P
on (X, A) is the set of all points = for which P(A) > 0 for all open
rectangles A = {(z1,...,2,) : a; <x <b;, i =1,...,n} for numbers
a; < b; in R)

(b) Lehmann & Casella, TPE, problem 3.6, page 64.

Show that if P and ) are two probability measures over the same
Euclidean space which are equivalent (i.e. P is absolutely continuous
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with respect to () and @) is absolutely continuous with respect to P),
then they have the same support.

(c) Lehmann & Casella, TPE, problem 3.7, page 64.

Let P and () assign probabilities

P: P(X=1/n)=p,>0, n=1,2,... (anzl),

Q: P(X=0)=1/2;, P(X=1/n)=¢, >0, n= an_1/2

Then, show that P and () have the same support but are not equivalent.

Solution: (a) (i) Suppose that S is not closed. Then there exists a
sequence {x,} C S such that z,, = xq € S°. But then, for every ¢ > 0
there is an open ball B(zo, €) such that z, € B(xg,¢€) for n > N.. Since
each z, is a support point, P(B(zg,€)) > 0 for each ¢ > 0. But for
any open set A with zg € A, B(zg,€) C A for some € > 0, and hence
P(A) > P(B(xzg,€) > 0. But this implies zy € S. Contradiction. Thus
S is closed.

(ii) P(S) = 1. From (i) S is closed, so S¢ is open. Since z € S€ if
and only if z € A, with A, an open rectangle satisfying P(A,) = 0.
Thus S¢ C U, A,. By the Lindelof theorem, for any such open covering
{A,}pese of S¢ C R? there is a countable subcollection {A,, } which
covers S S¢ C U,A,,. Then we have

P(5°) < P(U,A,, <ZP 2) = 0=0.

Hence P(S) = 1.

(iii) We want to show that S = N{C : C closed, P(C') = 1}. From
(i) and (ii) we know that S is in the collection of sets on the right
side, so it follows that S D N{C : C closed, P(C') = 1}. Thus it
remains to show that S € N{C : C closed, P(C) = 1}. Equivalently,
it remains to show that S¢ > U{C° : C° open, P(C°) = 0}. But if
x € U{C°: C° open, P(C¢) =0}, then x € C° for some C° open with
P(C¢) = 0, and hence also x € A C C° for some open rectangle A

(an open ball centered at x for the metric |ly|| = maxj<;<q4|x;|) with
P(A) < P(C°) =0. Hence x € 5°.
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(b) Suppose that P and @) are equivalent: i.e. ) << P and P << Q.
Then for any open set A, P(A) = 0 if and only if Q(A) = 0. This
implies that for any closed set A€,

P(A%) =1 if and only if ~ Q(A°) =1.

This implies that the minimal closed set Sp with P(Sp) = 1 is also
the minimal closed set Sp with Q(Sg) = 1; i.e. Sp = supp(P) =
supp(Q) = Sq.

(c) Since P(X =1/n) =p, >0forn=1,2,... with > {"p, = 1, it
follows that supp(P) = {0,...,1/n,...,1/2,1}, which is closed. Simi-
larly, Since Q(X =1/n) = ¢, > 0 for n = 1,2,... with >~ ¢, = 1/2,
and Q(X = 0) = 1/2, it follows that supp(Q) = {0,...,1/n,...,1/2,1} =
supp(P). But P({0}) = 0 while Q({0}) = 1/2, so @ << P fails. Thus

() and P are not equivalent.



