
Statistics 581, Problem Set 10 Solutions

Wellner; 12/06/2018

1. Ferguson, ACLST, page 150, problem 3. Does the theory in our Chapter 4 (or
Ferguson’s Chapter 22) apply directly? Does the local asymptotic power of your
test depend on the common value of θj in the null hypothesis?

Solution: The theory in chapter 4 of the course notes does not apply directly since
the data is not i.i.d., at least in the form given in Ferguson. The difficulty is that
the distribution of the data in the general (unconstrained) setting is not that of
i.i.d. random variables from one distribution, but that of k independent samples
from from different distributions, namely Poisson(θi), i = 1, . . . , k. On the other
hand, in this special case with all the sample sizes equal to n we can consider the
data as consisting of the vectors Xj = (X1,j, . . . , Xk,j) for j = 1, . . . , n where the
components Xi,j of Xj are independent Poisson(θi) random variables. Thus the Xj

random vectors are i.i.d. with (joint) probability mass function given by

pθ(x) =
k∏
i=1

exp(−θi)
θxii
xi!
.

In this way the setting in section 4.1 of the course notes does apply. (Note that
this apparently breaks down if the sample sizes n1, . . . , nk in the separate Poisson
populations are possibly different.)

Now we calculate

log pθ(x) =
k∑
i=1

{xi log θi − θi − log(xi!)}

and

l̇θ(x) =

(
x1
θ1
− 1, . . . ,

xk
θk
− 1

)T
,

so that we have, by independence of the coordinates of X,

I(θ) =


θ−11 0 . . . 0
0 θ−12 . . . 0
... 0 . . . 0
0 . . . 0 θ−1k

 = diag(θ−1).

Thus the (unrestricted) MLE of θ = (θ1, . . . , θk) is given by

θ̂ = (X1, . . . , Xk)
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where X i = n−1
∑n

j=1Xi,j for i = 1, . . . , k, and it follows from Theorem 4.1.2 that

√
n(θ̂n − θ)→d Nk(0, I

−1(θ)) = Nk(0, diag(θ)).

Under the null hypothesis that all the θi’s are equal, all the Xi,j’s are i.i.d Poisson(θ)
and the MLE of θ = θ1 is

θ̂
0

=
1

nk

k∑
i=1

n∑
j=1

Xi,j1 ≡ X1.

In this case Theorem 4.1.2 applies directly and we have

√
n
(
θ̂
0
− θ0

)
=
√
n(Xn − θ0)1→ D01 ∼ N1(0, k

−1θ0)1 ∼ Nk(0, k
−1θ011T ).

and

√
n
(
X − θ0

)
=
√
n

(
k−1

k∑
i=1

X i − θ0
)
→ k−1/2D0 ∼ N(0, k−1θ0).

Moreover, under the null hypothesis it is easily seen that

√
n


X1 − θ0

...
Xk − θ0

k−1
∑k

i=1X i − θ0

→d

(
D
D

)
∼ Nk+1

(
0, θ0

(
Ik×k k−11
k−11T k−11

))
,

and, furthermore, that

√
n

 X1 −X
...

Xk −X

→d

 D1 −D
...

Dk −D

 ∼ Nk

(
0, θ0(I − k−111T )

)
, (0.1)

Note that dim(Θ) = k and dim(Θ0) = 1. Since

Ln(θ1, . . . , θk) =
k∏
i=1

exp(−nθi)
θ
∑n

j=1Xij

i∏n
j=1Xi,j!

,

it follows that

ln(θ1, . . . , θk) =
k∑
i=1

{
n∑
j=1

Xi,j log θi − nθi

}
and hence

ln(θ̂1, . . . , θ̂k) = n

k∑
i=1

{
X i logXi −Xi

}
,
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while

ln(θ̂01, . . . , θ̂
0
k) = n

k∑
i=1

{
X logX −X

}
= n

{
kX logX − kX

}
.

Hence the log-likelihood ratio statistic is given by

2 log λn = 2{ln(θ̂1, . . . , θ̂k)− ln(θ̂01, . . . , θ̂
0
k)}

= 2n

{
k∑
i=1

X i logX i − kX logX

}
.

When the null hypothesis holds, our considerations in the i.i.d. case lead to
the conclusion that 2 log λn →d χ2

k−1. It is instructive to consider the natural
Wald statistic Wn in this problem problem starting from (0.1) and see that we
also have Wn →d χ2

k−1 under the null hypothesis. If θn = (θn,1, . . . , θn,k) =
(θ0 + n−1/2t1, . . . , θ

0 + n−1/2tk) where ti 6= ti′ for some i 6= i′, then I claim that
2 log λn →d χ

2
k−1(δ) where δ =

∑k
i=1(ti − t)2/θ0 and similarly for Wn. Thus the

noncentrality parameter δ depends inversely on θ0.

2. Ferguson, ACLST, page 149, problem 2 modified as follows:
(a) Find the LR test statistic of the null hypothesis H0 : µ = cθ for any fixed
number c > 0, and find the asymptotic distribution of the LR statistic under H0.
(b) Does the theory of our chapter 4 (or Ferguson’s chapter 22 ) apply directly?
(c) Does the local asymptotic power of your test depend on c?

Solution: (b) First, allow me to slightly re-name the parameters: I will assume
that X1, . . . , Xn are i.i.d. exp(λ) and Y1, . . . , Yn are i.i.d. exp(µ), so that θ = (λ, µ).
Furthermore, we can recast the problem into the context of chapter 4 by considering
the pairs of observations (Xi, Yi), i = 1, . . . , n as i.i.d. with density

pθ(x, y) = p(λ,µ)(x, y) = λe−λx1(0,∞)(x)µe−µy1(0,∞)(y) .

Now we are testing H0 : µ = cλ versus H1 : µ 6= cλ. By a reparametrizaton, we can
put this exactly in the setting of Section 4.2: if the original parameter is θ = (λ, µ),
then the new parameters γ = (γ1, γ2) where γ1 ≡ λ, γ2 ≡ µ − cλ. Then the null
hypothesis H0 becomes H0 : γ2 = 0, γ1 = anything.
(a) The MLE θ̂ of θ = (λ, µ) under H1 is θ̂ = (λ̂, µ̂) where λ̂ = 1/X and µ̂ = 1/Y .

The MLE θ̂0 under H0 is (λ̂0, cλ̂0) where

λ̂0 = 2/(X + cY ) .

Now

ln(θ) = ln(λ, µ) =
n∑
i=1

{log λ− λXi + log µ− µYi} = n log λ+n log µ−nXλ−nY µ .
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Thus the LR statistic for testing H0 versus H1 is given by

2(ln(θ̂)− ln(θ̂0)) = 2n

{
2 log

(
X + cY

2

)
− log(X)− log(cY )

}
→d χ2

1

under H0.
(c) To compute the local asymptotic power of the LR test, we can reparametrize
the problem by γ ≡ (γ1, γ2) where γ1 ≡ λ, γ2 ≡ µ − cλ. Then the null hypothesis
H0 becomes H0 : γ2 = 0, γ1 = anything. Then the problem fits in the context
of Theorem 4.2.7: under Pγn with γn = γ0 + tn−1/2 for γ0 = (γ10, 0) in the null
hypothesis, we have

2 log λn →d χ
2
1(δ)

where the non-centrality parameter δ is given by t22I22·1(γ0), and it remains only
to compute I22·1. By straightforward computation the information matrix for γ is
given by

I(γ) =

(
1
γ21

+ c2

(cγ1+γ2)2
c

(cγ1+γ2)2

c
(cγ1+γ2)2

1
(cγ1+γ2)2

)
.

Thus, under the null hypothesis H0 : γ2 = 0 we find that

I22·1(γ0) = I22(γ0)− I21(γ0)I−111 (γ0)I12(γ0) =
1/2

c2γ21

which does depend on c: the noncentrality power of the limiting distribution
decreases as c−2 as c increases.

3. Ferguson, ACLST, page 118, problem 3. (See also Example 4.3.7, page 21, Chapter
4 notes.) [Neyman and Scott (1948)] Suppose we have a sample of size d from each
of n normal populations with common unknown variance but possibly different
unknown means Xi,j ∼ N(µi, σ

2), i = 1, . . . , n, j = 1, . . . , d where all the Xi,j are
independent.
(a) Find the maximum-likelihood estimate of σ2.
(b) Show that for d fixed the MLE of σ2 is not consistent as n → ∞. Why don’t
either of Theorem 17 (Ferguson) or our Theorem 4.1.2 apply?
(c) Find a consistent estimate of σ2.

Solution: (a) The likelihood is given by

L(µ, σ2) =
d∏
j=1

n∏
i=1

1√
2πσ

exp

(
−(Xij − µi)2

2σ2

)

=

(
1√
2πσ

)nd
exp

(
− 1

2σ2

d∑
j=1

n∑
i=1

(Xij − µi)2
)
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and hence

l(µ, σ2) = −nd
2

log(σ2)− 1

2σ2

d∑
j=1

n∑
i=1

(Xij − µi)2 + constant

= −nd
2

log(σ2)− 1

2σ2

{
d∑
j=1

n∑
i=1

(Xij − µ̂i)2 + d

n∑
i=1

(µ̂i − µi)2
}

+ constant.

where µ̂i = d−1
∑d

j=1Xi,j for i = 1, . . . , n. This is easily seen to be maximized by

µi = µ̂i, i = 1, . . . , n,

σ2 = σ̂2 =
1

nd

d∑
j=1

n∑
i=1

(Xij − µ̂i)2 =
1

n

n∑
i=1

S2
i

where

S2
i =

1

d

d∑
j=1

(Xi,j − µ̂i)2.

(b) Note that the random variables {S2
i }ni=1 defined in (a) are i.i.d. and dS2

i /σ
2 ∼

χ2
d−1. Therefore

E(S2
1) =

d− 1

d
σ2

It follows from the strong law of large numbers that

σ̂2 =
1

n

n∑
i=1

S2
i →a.s.

d− 1

d
σ2

as n→∞. Our Theorem 4.1.2 on consistent roots of the likelihood equations does
not apply because, in the current problem, the dimension of the parameter space
Θ = Rn × R+ is n+ 1, which grows with the sample size n.
(c) A consistent estimator of σ2 is given by

σ̃2
n ≡

d

d− 1
σ̂2 =

1

(d− 1)n

d∑
j=1

n∑
i=1

(Xi,j − µ̂i)2.

4. Consider the Weibull family of example 3.2.5 and problem set #6, problem 1: P =
{Pθ : θ ∈ Θ} with Θ ⊂ R+2 given by the (Lebesgue) densities

pθ(x) =
β

α

(x
α

)β−1
exp

(
−
(x
α

)β)
1[0,∞)(x)
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where θ ≡ (α, β) ∈ (0,∞) × (0,∞) ⊂ R2. Suppose that X,X1, . . . , Xn are i.i.d.
with density function pθ.
(a) If X ∼ Pθ ∈ P , show that the distributions of logX form a location and scale
family from a Gumbel (extreme value) density on R. (This amounts to a rephrasing
of the statement of a problem in an earlier problem set.)
(b) Use the result of (a) to construct method of moments estimators or quantile
based estimators θn of θ = (α, β).
(c) Show that the method of moments or quantile estimators θn of θ are
asymptotically normal, and find the asymptotic distribution; i.e. show that

√
n(θn − θ)→d N2(0,Σ) for some Σ.

[We will use these estimators as “starting points” approximate (or one-step)
maximum likelihood estimators in the next problem .]

Solution: (a) Recall that Y ≡ (X/α)β ∼ exp(1), and that W ≡ − log(Y ) ∼
Gumbel:

P (W ≤ w) = P (− log(Y ) ≤ w) = P (Y ≥ e−w) = exp(−e−w).

Thus it follows that

W = − log(Y ) = β{− log(X) + log(α)},

or equivalently that

T ≡ − log(X) =
1

β
W − log(α).

Thus the distributions of T ≡ − log(X) form a location - scale family of the Gumbel
(extreme value) distribution with d.f. exp(− exp(−x)).

(b) Now T = − logX has

E(T ) =
γ

β
− logα, V ar(T ) =

1

β2

π2

6

where γ = .577... is Euler’s constant. Since T = −3.0130... and S̃T = 2.0388...
(biased variance estimator) or ST = 2.1295... (unbiased variance estimator), moment
estimators of (α, β) based on (8) are given by

βn ≡
π√
6

1

S̃T
= .6023..., βn ≡

π√
6

1

ST
= .6291...

and for these two estimators of β,

α = exp(−T +
γ

β
) = 53.0588, α = exp(−T +

γ

β
) = 50.9375...
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respectively for the given data in problem 5 below.
(c) Asymptotic normality of (αn, βn) follows from joint asymptotic normality of
(T n, S

2
T ) and the delta method: by the multivariate CLT and Slutsky’s theorem( √

n(T − ET )/σ√
n(S2

T − σ2
T )/(
√

2σ2
T )

)
→d Z ∼ N2(0,Σ)

where, with γ1 ≡ E(T − E(T ))3/σ3
T , γ2 ≡ E(T − ET )4/σ4

T − 3,

Σ =

(
1 γ1/

√
2

γ1/
√

2 1 + γ2/2

)
.

Then since (α, β) = g(T , S2
T ) and (α, β) = g(EθT, V arθ(T )) where g ≡ (g1, g2) :

R2 → R2 is defined by

g1(x, y) = exp(
γ
√

6

π

√
y − x),

g2(x, y) =
π/
√

6
√
y
,

it follows by the delta method with Z̃ ≡ (Z1,
√

2σ2
TZ2) that

√
n
(
(αn, βn)T − (α, β)T

)
→d ∇gZ̃

where

∇g ≡ ∇g(EθT,VarθT ) =

(
−α (3γ/π2)αβ
0 −3β3/π2

)
.

5. (Problem 4, continued).
(a) Does a maximum likelihood estimate of θ̂ = (α̂, β̂) exist? Is it unique? (See
Lehmann and Casella, Example 6.1, page 468.)
(b) Compute an approximate (one - step) maximum likelihood estimate θ̌ of θ using
the method of moment (or quantile) estimators θn as the preliminary estimators
based on the following data (with n = 12):

1, 1, 2, 3, 14, 27, 41, 55, 66, 113, 320, 413.

[These are failure times in seconds for “breakdown” of an insulating fluid between
two electrodes subject to a voltage of 40 kV. – from Nelson, Applied Life Data
Analysis, page 252, modified slightly.]
(c) Compute the maximum likelihood estimator θ̂n, and compare it with the one
step estimator computed in (b).

Solution: (a) The maximum likelihood estimator exists and is unique in this
model if not all the Xi’s are equal (which happens with probability 1 if the model
holds). The following solution is from Lehmann, TPE, page 536 (with slightly
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different notation).
We first reparametrize the Weibull model by writing

pθ(x) =
β

α
(
x

α
)β−1 exp(−(

x

α
)β)1(0,∞)(x)

=
β

η
xβ−1 exp(−x

β

η
)

≡ pγ(x)

where η ≡ αβ and γ ≡ (β, η). Then

l(γ|X) = n log β − n log η + (β − 1)
n∑
i=1

logXi −
1

η

n∑
i=1

Xβ
i . (0.2)

Thus, with γ1 ≡ β, γ2 ≡ η, the likelihood equations become

l̇1(γ|X) =
n

β
+

n∑
i=1

logXi −
1

η

n∑
i=1

Xβ
i logXi = 0, (0.3)

and

l̇2(γ|X) = −n
η

+
1

η2

n∑
i=1

Xβ
i = 0, (0.4)

or

η̂n =
1

n

n∑
i=1

X β̂
i (0.5)

from 0.4. Note that for each fixed β the maximizer of the log-likelihood over η > 0 is
achieved at η̂(β) ≡ n−1

∑n
i=1X

β
i , and plugging this back into l(γ|X) in (0.2) yields

the profile log-likelihood

lprofn (β|X) = l((β, η̂(β))|X)

= n log β − n log η̂(β) + (β − 1)
n∑
i=1

logXi − n.

Substitution of 0.5 into 0.3 yields the equation∑
iX

β̂
i logXi∑
iX

β̂
i

− 1

β̂
=

1

n

n∑
i=1

logXi , (0.6)

or

h(β̂) =
1

n

n∑
i=1

logXi (0.7)
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where

h(β) ≡
∑

iX
β
i logXi∑
iX

β
i

− 1

β
<

∑
iX

β
i logXi∑
iX

β
i

since β > 0. Now

h′(β) =

∑
iX

η
i (logXi)

2∑
iX

β
i

− (

∑
iX

β
i logXi∑
iX

β
i

)2 +
1

β2

≡ I + II

> I,

and furthermore,

I =
∑

a2i pi − (
∑

aipi)
2 = Varp(a)

since, with ai ≡ logXi, pi ≡ Xβ
i /
∑

j X
β
j ≥ 0,

∑
i pi = 1. Thus I > 0 and hence

h′(β) > 0 from (0.8) while

−∞ = lim
β→0

h(β) <
1

n

n∑
i=1

logXi < logX(n) = lim
β→∞

h(β).

[Draw the picture!] (To see this last limit, note that with p(i) ≡ Xβ
(i)/
∑

j X
β
j ,

p(i) =
1

(
X(1)

X(i)
)β + . . .+ (

X(n)

X(i)
)β

→
{

0, i < n (so X(n)/X(i) > 1)
1, i = n (so X(j)/X(n) < 1, j < n)

as β →∞.) Thus (0.7) has a unique solution β̂. By taking this value of β̂ in (0.5),
we see that the MLE γ̂ of γ exists and is unique. Thus the unique MLE of θ = (α, β)

is θ̂ = (α̂, β̂) with α̂ = η̂1/β̂.
(b) The method of moment estimators were computed in 4(b) above. The one step
estimator using Î(θn) = I(θn) is

θ̌n ≡ θn + Î−1n (θn)(
1

n
l̇(θn)) = (55.1538 . . . , 0.5648 . . .).

The one - step estimator using În(θn) = (−n−1l̈n(θn) gives the result

θ̌n = (54.2266 . . . , 0.5669 . . .),

(c) The maximum likelihood estimate θ̂n = (α̂n, β̂n) = (54.1705... , 0.5645...), but
note that the likelihood surface is quite flat as a function of α as shown in the plots
on the following pages.
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Figure 1: Weibull Likelihood
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Figure 2: Contour plot Weibull Likelihood
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Figure 3: Weibull profile likelihood.
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