
Statistics 581, Problem Set 4 Solutions

Wellner; 10/25/2018

1. Suppose that Nn = (N11, N12, N21, N22) ∼ Mult4(n, p) where p = (p11, p12, p21, p22)

where
∑2

i=1

∑2
j=1 pij = 1. (Thus Nn is the sum of n independent Mult4(1, p) random

vectors {Y i}ni=1.) Since there are really just three independently varying parameters
for this problem, it is often useful to re-express the cell probabilities in terms of two
marginal probabilities, say p1· = p11 + p12 and p·1 = p11 + p21, and ψ, the log of the
odds-ratio, defined by

ψ ≡ log
p21/p22
p11/p12

= log
p12p21
p11p22

.(1)

You may use the fact that ψ = 0 if and only if independence holds for the 2 × 2
table (i.e. pij = pi·p·j for i, j = 1, 2).

(a) Suggest an estimator of ψ, say ψ̂.
(b) Show that the estimator you proposed in (a) is asymptotically normal and
compute the asymptotic variance of your estimator.

Solution: (a) An obvious estimator of ψ is

ψ̂ = log
p̂12p̂21
p̂11p̂22

where p̂ = N/n.

(b) Now ψ̂ = g(p̂) where g(p) is given in (1) and is differentiable with derivative

∇g(p) = (−1/p11, 1/p12, 1/p21,−1/p22)

and, by the multivariate CLT,

√
n(p̂− p)→d Z ∼ N4(0,Σ)

where Σ = diag(p)− ppT . Thus the delta method (or g′-theorem) yields

√
n(ψ̂ − ψ) =

√
n(g(p̂)− g(p))

→d ∇g(p)Z ∼ N(0,∇gTΣ∇g) = N(0, V 2(p))

where

V 2(p) =
1

p11
+

1

p12
+

1

p21
+

1

p22
.

2. This is a continuation of problem 1. One standard test of independence in the 2× 2
table is the test based on a Pearson-type chi-square statistic.
(a) Write down the chi-square statistic Qn for this problem, state its asymptotic
distribution under the null hypothesis, and explain briefly why the claimed result
holds.
(b) Suppose that the alternative hypothesis holds. Show that under the alternative
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hypothesis n−1Qn →p some constant q and compute q as explicitly as possible.
(c) Find the asymptotic distribution of Qn under local alternatives of the form
ψn = tn−1/2; i.e. p

n
≡ (p11,n, p12,n, p21,n, p22,n) = p

0
+ cn−1/2 where

ψ0 ≡ log

(
p21,0p12,0
p11,0p22,0

)
= 0

and 1′c = 0.
(d) Suppose that n = 40, α = .05, and the true p is p = (.3, .2, .1, .4). Give an
approximation to the power of the chi-square test at this particular alternative.

Solution: (a) The chi-square statistic for testing independence in a 2× 2 table is

Qn =
2∑
i=1

2∑
j=1

(Nij − np̂i·p̂·j)2

np̂i·p̂·j

where

N11 − np̂1·p̂·1 = N11 − n
N11 +N12

n
· N11 +N21

n
= N11 · n− (N11 +N12)(N11 +N21)

= N11 · (N11 +N12 +N21 +N22)− (N11 +N12)(N11 +N21)

= N11N22 −N12N21,

N12 − np̂1·p̂·2 = N12 · n− (N11 +N12)(N12 +N22)

= N12 · (N11 +N12 +N21 +N22)− (N11 +N12)(N12 +N22)

= N12N21 −N11N22,

and similarly for N21 − np̂2·p̂·1 and N22 − np̂2·p̂·2. Therefore

Qn =
(N11N22 −N12N21)

2

n3

∑
i,j

{
1

p̂i·p̂·j

}
=

(N12N21 −N11N22)
2

n3

1

p̂1·(1− p̂1·)p̂·1(1− p̂·1)

=
n{exp(ψ̂n)− 1}2 (p̂11p̂22)

2

p̂1·(1− p̂1·)p̂·1(1− p̂·1)

=
{
√
n[exp(ψ̂n)− 1]}2 (p̂11p̂22)

2

p̂1·(1− p̂1·)p̂·1(1− p̂·1)

→d [N(0, V 2)]2
[p1·(1− p1·)p·1(1− p·1)]2

p1·(1− p1·)p·1(1− p·1)
= [N(0, V 2)]2p1·(1− p1·)p·1(1− p·1) = [N(0, 1)]2

d
= χ2

1

by the delta method or g′ theorem and result of problem 1 where we have repeatedly
used the fact that pij = pi·p·j under the null hypothesis of independence.
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(b) When the alternative hypothesis holds, then the above argument shows that

n−1Qn =
(N12N21 −N11N22)

2

n4

1

p̂1·(1− p̂1·)p̂·1(1− p̂·1)

=
(p̂12p̂21 − p̂11p̂22)2

p̂1·(1− p̂1·)p̂·1(1− p̂·1)

→p
(p12p21 − p11p22)2

p1·(1− p1·)p·1(1− p·1)
> 0

where p1· = p11 + p12 and p·1 = p11 + p21. It follows that Pp(Qn ≥ χ2
1,α) → 1 as

n→∞; i.e. the test is consistent.
(c) Under local alternatives with ψn = tn−1/2 for t 6= 0, the argument in (a) repeated
(but using the Liapunov CLT) yields

√
n(ψ̂n − 0) =

√
n(ψ̂n − ψn) +

√
n(ψn − 0)

=
√
n(g(p̂)− g(p

n
)) + t

→d ∇g(p
0
)Z + t ∼ N(t,∇gTΣ∇g) = N(t, V 2(p

0
))

where

V 2(p
0
) =

1

p11,0
+

1

p12,0
+

1

p21,0
+

1

p22,0
=

1

p1·,0(1− p1·,0)p·1,0(1− p·1,0)
,

and hence, by the delta-method again,

√
n(exp(ψ̂n)− 1) →d ∇g(p

0
)Z + t ∼ N(t,∇gTΣ∇g) = N(t, V 2(p

0
)) .

This implies, via the same development as in (a), that under p
n

we have

Qn =
n{exp(ψ̂n)− 1}2 (p̂11p̂22)

2

p̂1·(1− p̂1·)p̂·1(1− p̂·1)

=
{
√
n[exp(ψ̂n)− 1]}2 (p̂11p̂22)

2

p̂1·(1− p̂1·)p̂·1(1− p̂·1)
→d [N(t, V 2(p

0
)]2p1·,0(1− p1·,0)p·1,0(1− p·1,0)

= [N(t
√
c, 1)]2

d
= χ2

1(δ)

where δ = ct2 and c ≡ p1·,0(1− p1·,0)p·1,0(1− p·1,0).
(d) When n = 40, α = .05, and the true p is p = (.3, .2, .1, .4), we calculate
p1· = 1− p·1 = .5, p·1 = .4 (so that c = p1·(1− p1·)p·1(1− p·1) = (.5)2(.4)(.6) = .06),

tn ≡
√
n log

p12p21
p11p22

= −11.33... .

Thus δ = (11.33 . . .)2(.06) = 7.705...., and an approximation to the power of the
chi-square test is given by

P (χ2
1(7.705...) > χ2

1,.05) = P (χ2
1(7.705...) > 3.841...) = .793... .
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3. Suppose that X1, X2, . . . are i.i.d. positive random variables, and define Xn ≡
n−1

∑n
i=1Xi, Hn ≡ 1/(n−1

∑n
i=1(1/Xi)), and Gn ≡ {

∏n
i=1Xi}1/n to be the

arithmetic, harmonic, and geometric means respectively. We know that Xn →a.s.

E(X1) = µ if and only if E|X1| <∞.
(a) Use the SLLN together with appropriate additional hypotheses to show that
Hn →a.s. 1/{E(1/X1)} ≡ h, and Gn →a.s. exp(E{logX1}) ≡ g.
(c) Use the multivariate CLT and the delta method to find the joint limiting
distribution of

√
n(Xn − µ,Hn − h,Gn − g). You will need to impose or assume

additional moment conditions to be able to prove this. Specify these additional
assumptions carefully.
(d) Suppose that Xi ∼ Gamma(r, λ) with r > 0. For what values of r are the
hypotheses you imposed in (c) satisfied? Compute the covariance of the limiting
distribution in (c) as explicitly as you can in this case.
(e) Use the result in (c) to show that

√
n(Gn/Xn− g/µ)→d N(0, V 2) and compute

V 2 explicitly when Xi ∼ Gamma(r, λ) with r satisfying the conditions you found in
(d).

Solution: (a) If 0 < E(1/X1) <∞, then

1

n

n∑
i=1

(1/Xi)→a.s. E(1/X1) > 0.

If E| log(X1)| <∞, then

logGn =
1

n

n∑
i=1

log(Xi)→a.s. E logX1.

Thus by the continuous mapping theorem if both E(1/X1) <∞ and E| logX1| <∞,
it follows that

(Hn, Gn)→a.s. (1/E(1/X1), exp(E logX1)) ≡ (h, g).

(c) By the multivariate CLT, if EX2
1 <∞, E(1/X1)

2 <∞, and E(logX1)
2 <∞,

then

√
n

 Xn − µ
X−1n − E(1/X1)

logXn − E logX1

→d Z ∼ N3(0,Σ)

where

Σ =

 V ar(X1) Cov(X1, 1/X1) Cov(X1, log(X1))
Cov(X1, 1/X1) V ar(1/X1) Cov(1/X1, logX1)
Cov(X1, log(X1)) Cov(1/X1, logX1) V ar(log(X1))

 .

Hence by the delta method with g(x, y, z) = (x, 1/y, exp(z)) so that ∇g(x, y, z) =
diag(1,−y−2, exp(z)) and ∇g(µ,E(1/X1), E(logX1)) = diag(1,−h2, g), it follows
that

√
n

 Xn − µ
Hn − h
Gn − g

→d ∇g · Z ∼ N3(0,∇gΣ∇gT ) ≡ N3(0, Σ̃) .
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(d) When X ≡ X1 ∼ Gamma(r, λ), then Y ≡ λX ∼ Gamma(r, 1), and it is easily
seen that

E(X2) <∞ if r > 0

E((λX)−2) =

∫ ∞
0

y−2
yr−1

Γ(r)
e−ydy =

1

Γ(r)

∫ ∞
0

yr−3e−ydy <∞

if r > 2, and

E((log λX)2) =

∫ ∞
0

(log y)2yr−1e−ydy/Γ(r) <∞

for all r > 0. Thus the covariance matrix Σ exists for r > 2; we now calculate it
explicitly in this case. First,

E(X) =
r

λ
E(1/X) = E(λ/(λX) = λE(1/Y )

= λ

∫ ∞
0

y−1yr−1e−ydy/Γ(r)

= λ

∫ ∞
0

yr−2e−ydy/Γ(r)

= λΓ(r − 1)/Γ(r) = λ/(r − 1) ,

E(logX) = E(log(λX/λ))) = E(log Y )− log λ

=

∫ ∞
0

(log y)yr−1e−ydy/Γ(r)− log λ

=
Γ′(r)

Γ(r)
− log λ ≡ ψ(r)− log λ .

Next we calculate Σ:

V ar(X) = V ar(λX/λ) = V ar(Y )/λ2 =
r

λ
,

V ar(1/X) = λ2V ar(1/Y ) = λ2{E(1/Y 2)− [E(1/Y )]2}

= λ2{ 1

(r − 1)(r − 2)
− 1

(r − 1)2
}

= λ2
1

(r − 1)2(r − 2)

V ar(logX) = V ar(log(λX/λ)) = V ar(log(Y )) =
Γ′′(r)

Γ(r)
−
(

Γ′(r)

Γ(r)

)2

≡ Cr

Cov(X, 1/X) = Cov(Y, 1/Y ) = 1− E(Y )E(1/Y ) = 1− r

r − 1
=
−1

r − 1

Cov(X, logX) = λ−1Cov(Y, log Y ) = λ−1{E(Y log Y )− E(Y )E(log Y )}

= λ−1{rψ(r + 1)− rψ(r)} =
1

λ
,

Cov(1/X, logX) = λCov(1/Y, log Y ) = λ{E((1/Y ) log Y )− E(1/Y )E(log Y )}

= λ{ψ(r − 1)

r − 1
− ψ(r)

r − 1
}

=
λ

r − 1
{ψ(r − 1)− ψ(r)} ≡ −λ

(r − 1)2
,
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where we have used

Ar ≡ ψ(r + 1)− ψ(r) = (log Γ(r + 1)− log Γ(r))′ = (log r)′ = 1/r ,

Br ≡ ψ(r − 1)− ψ(r) = (log Γ(r − 1)− log Γ(r))′ = (− log(r − 1))′ =
−1

r − 1
.

Hence

Σ =

 r/λ2 −1/(r − 1) 1/λ
−1/(r − 1) λ2/(r − 1)2(r − 2) −λ/(r − 1)2

1/λ −λ/(r − 1)2 Cr

 .

For the gradient ∇g we get diag(1,−h2, g) = diag(1,−(r − 1)2/λ2, eψ(r)/λ), so it
follows by direct calculation that

∇gΣ(∇g)′ = λ−2

 r r − 1 eψ(r)

r − 1 (r − 1)2/(r − 2) −eψ(r)
eψ(r) −eψ(r) e2ψ(r)Cr

 .

(e) Let g2(x, y, z) ≡ z/x. Then ∇g2(x, y, z) = (−z/x2, 0, 1/x) = (−z/x, 0, 1)/x.
when we evaluate this at (µ, h, g) = (r/λ, (r − 1)/λ, eψ(r)/λ), we find that

∇g2 = (λ/r)(−r−1eψ(r), 0, 1) .

Hence by the delta - method again we find that

√
n(
Gn

Xn

− g/µ)→d N(0,∇g2Σ̃(∇g2)′) = N(0, e2ψ(r){Cr − (1/r)}) .

Note that the scale factor λ washes out completely here, as we expect.

4. Suppose that Yi = α + θ′(xi − x) + εi, i = 1, . . . , n, where εi ∼ (0, σ2) are i.i.d. and
the xi’s are known vectors in Rk. Equivalently, Y = Xβ + ε where

XT =

(
1 1 · · · 1

x1 − x x2 − x · · · xn − x

)
so that X is an n × (k + 1) matrix. Let β̂ be the least squares estimator of β =

(α, θ′)′; i.e. β̂ = (XTX)−1XTY . Suppose that n−1(XTX)→ D where D is positive
definite.
(a) What additional condition(s) do you need to impose to prove that

√
n(β̂n − β)→d Nk+1(0, “something”) ?

(b) Find “something” in part (a).

Solution: (a) Let a ∈ Rk+1. Now

β̂ = (XTX)−1XTY

= (XTX)−1XT (Xβ + ε)

= β + (XTX)−1XT ε ,
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so √
n(β̂ − β) =

√
n(XTX)−1XT ε ≡ Bnε

where Bn ≡
√
n(XTX)−1XT is a (k + 1)× n matrix. Thus

aT (
√
n(β̂ − β)) = aTBnε ≡ bTn ε

=
n∑
i=1

bniεi ≡
n∑
i=1

Xni

where bTn ≡ aTBn is an 1× n vector. Now we compute

µni = E(Xni) = bni · 0, σ2
ni = V ar(Xni) = b2niσ

2 ,

and hence, using the hypothesized convergence of n−1XTX → D in the last line,

σ2
n = σ2

n∑
i=1

b2ni = σ2bTnbn

= σ2aTBnB
T
n a = nσ2aT (XTX)−1(XTX)(XTX)−1a

= σ2aT (n−1XTX)−1a→ σ2aTD−1a ≡ V 2(a) > 0

since D is nonsingular. To establish asymptotic normality of aT (
√
n(β̂ − β))/σn, it

remains to verify the Lindeberg condition: namely

1

σ2
n

n∑
i=1

E
{
|Xni|21[|Xni|>δσn]

}
→ 0(2)

for every δ > 0. But, as we have seen before, this holds if

max
1≤i≤n

|bni| → 0 as n→∞ :(3)

the left side of (2) is bounded as follows:

1

σ2
n

n∑
i=1

b2niE
{
ε211[|ε1|>δσn/|bni|]

}
≤ 1

σ2
E
{
ε211[|ε1|>δσn/max1≤i≤n |bni|]

}
→ 1

σ2
· 0 = 0

by (3), E(ε21) < ∞, and the dominated convergence theorem. Thus it follows from
the Lindeberg-Feller CLT that

aT (
√
n(β̂ − β))/σn →d N(0, 1),

and since σ2
n → σ2aTD−1a, this implies that

aT (
√
n(β̂ − β))→d N(0, aT (σ2D−1)a) ,

which in turn, via the Cramér-Wold device, implies
√
n(β̂ − β)→d Nk+1(0, σ

2D−1) .
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5. Suppose the same set-up as in the chi-square testing situation considered in lecture
in class but now, for testing H0 : p = p

0
versus K0 : p 6= p

0
, instead of the chi-square

statistic Qn, consider the test statistic given by

H2
n ≡ 4n

k∑
i=1

(
√
p̂i −
√
pi0)

2.

The statistic H2
n is 4n times the square of the Hellinger distance between p̂ and p

0
.

(a) Find the limiting distribution of H2
n under the null hypothesis H0.

(b) Find the limit of n−1H2
n under fixed alternatives p 6= p

0
in K0, and use this to

show that the test based on H2
n is consistent against K0.

(c) Find the limiting distribution of H2
n under local alternatives p

n
= p

0
+ c/
√
n,

and use this to approximate the power of this test. Compare the (local asymptotic)
power of this test to the chi-square test.

Solution: (a) Let Zn ≡
√
n(p̂

n
−p

0
) Then Zn →d Z ∼ Nk(0,Σ) with Σ = diag(p

0
)−

p
0
pT
0

. Thus, by the delta - method,

Y n ≡ 2
√
n(
√
p̂
n
−√p

0
)

→d diag(1/
√
p
0
)Z ≡ Y ∼ Nk(0, I −

√
p
0

√
pT
0

)

Hence, by the continuous mapping theorem,

H2
n = Y T

nY n →d Y
TY .

It remains to answer the question: what is the distribution of Y TY ? This goes
just exactly as in the case of the limit for the chi-square statistic Qn. Let Γ be an
orthogonal matrix with first row

√
p
0
. Then

ΓY ∼ Nk(0,

(
0 0
0 I

)
),

which has first coordinate 0, and the remaining k − 1 coordinates are iid N(0, 1).
Further, ΓTΓ = I and hence

Y TY = Y TΓTΓY = (ΓY )T (ΓY ) ∼ χ2
k−1.

Thus H2
n →d Y

TY ∼ χ2
k−1.

(b) Under fixed p 6= p
0
, p̂n →a.s. p. Hence by the continuous mapping theorem

n−1H2
n = 4

k∑
j=1

{√
p̂j −

√
pj0

}2

→a.s. 4
k∑
j=1

(
√
pj −

√
pj0)

2

= 4d2H(p, p0) > 0.
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Therefore, under p 6= p0, H
2
n →a.s. ∞, and hence

Pp(H
2
n ≥ χ2

k−1,α)→ 1.

(c) Under local alternatives, Liapunov’s CLT, the Cramér - Wold device, and the
delta method, yield

Y n = 2
√
n(
√
p̂
n
−√p

n
) + 2

√
n(
√
p
n
−√p

0
)

→d Y + diag(1/
√
p)c

≡ Y + µ

∼ Nk(µ, I −
√
p0
√
p0
T ).

Now with Γ as in part (a)

Γ(Y + µ) = ΓY + Γµ) = ΓY + b

where the first coordinate of b is 0. Thus ΓY + b has first coordinate 0, and the
remaining k − 1 coordinates are independent N(bi, 1). Hence

(Y + µ)T (Y + µ) = (ΓY + b)T (ΓY + b)

∼ χ2
k−1(b

T b) = χ2
k−1(

k∑
j=1

c2i /pi0)

Thus the local asymptotic power of the test based on the Hellinger statistics H2
n is

the same as that of the chi-square statistic Qn.

6. Optional bonus problem 1: Ferguson, ACILST, problem 5, page 50. Ferguson,
ACILST, problem 5, page 50: (The Poisson dispersion test). A standard test of the
hypothesis H0 that a distribution is Poisson(λ) for some λ is to reject H0 if the ratio
of the sample variance to the sample mean, S2

n/Xn, is too large. This test is good
against alternatives whose variance is greater than the mean, such as the negative
binomial distribution or any other mixture of Poisson distributions.
(a) Find the asymptotic distribution of S2

n/Xn for general distributions.
(b) Find the asymptotic distribution of S2

n/Xn under H0 and show that it is
independent of λ.

7. Optional bonus problem 2: Ferguson, ACILST, problem 4, page 55. Suppose
that (Xi − µ)/σ, i = 1, . . . ,m and (Yj − ν)/τ , j = 1, . . . , n are i.i.d. (0, 1, µ4) <∞;
thus γ2 is the same for the two populations. Let S2

X and S2
Y denote the sample

variances of the X’s and Y ’s respectively. The classical F− test based on the
assumption that all the standardized X’s and Y ’s are N(0, 1) rejects H0 : τ ≤ σ in
favor of H1 : τ > σ if F ≡ S2

Y /S
2
X > Fn−1,m−1,α. Assuming that m/N → λ ∈ [0, 1]

as m ∧ n → ∞ where N ≡ m + n, find the true asymptotic size of this test for
non-normal X’s and Y ’s as above.
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