Statistics 581

Problem Set 5 Solutions
Wellner; 10/31/2018

1. van der Vaart, problem 3.8, page 34, modified. Let X_{1}, \ldots, X_{n} be i.i.d. $\operatorname{Bernoulli}(p)$ with $0<p<1$.
(a) Find the limit distribution of $\sqrt{n}\left(\bar{X}_{n}^{-1}-p^{-1}\right)$.
(b) Show that $E\left|\bar{X}_{n}^{-1}\right|=\infty$ for every n.
(c) Connect the example in (a) to a result in the 581 Course Notes, Section 2.4.

Solution: (a) By the Lindeberg CLT it follows easily that $\sqrt{n}\left(\bar{X}_{n}-p\right) \rightarrow_{d} Z \sim$ $N(0, p(1-p))$. Furthermore, $g(y)=y^{-1}$ is differentiable at $p>0$ with derivative $g^{\prime}(p)=-p^{-2}$. It then follows from the delta-method that

$$
\sqrt{n}\left(g\left(\bar{X}_{n}\right)-g(p)\right) \rightarrow_{d} g^{\prime}(p) Z \sim N\left(0, g^{\prime}(p)^{2} p(1-p)\right)=N\left(0,(1-p) / p^{3}\right)
$$

(b) On the other hand, since $P_{p}\left(n \bar{X}_{n}=0\right)=P_{p}(\operatorname{Bin}(n, p)=0)=(1-p)^{n}>0$, and hence $E_{p}\left\{\bar{X}_{n}^{-1}\right\} \geq(n / 0) \cdot(1-p)^{n}=\infty$.
(c) Letting $Y_{n} \equiv \sqrt{n}\left(\bar{X}_{n}^{-1}-p^{-1}\right)$ we have $Y_{n} \rightarrow_{d} Y_{0} \sim N\left(0,(1-p) / p^{3}\right)$ while from (b)

$$
E\left|Y_{n}\right| \geq E\left|Y_{n}^{+}\right| \geq \sqrt{n} E\left(\bar{X}_{n}^{-1}-p\right)=\infty
$$

so we have $0<E\left|Y_{0}\right|=\sqrt{(1-p) / p^{3}} E|N(0,1)|<\liminf E\left|Y_{n}\right|=\infty$. Thus strict inequality can occur in Proposition 2.4.6 of the Chapter 2 notes, page 25.
2. van der Vaart, problem 3.6, page 34: Let X_{1}, \ldots, X_{n} be i.i.d. with expectation μ and variance 1. Find constants a_{n} and b_{n} such that $a_{n}\left(\bar{X}_{n}^{2}-b_{n}\right)$ converges in distribution when $\mu=0$ or $\mu \neq 0$.

Solution: When $\mu=0$, we can take $b_{n}=0$ for all n and $a_{n}=n$. Then with $Z \sim N(0,1)$,

$$
n\left(\bar{X}_{n}^{2}-0\right)=\left\{\sqrt{n X}_{n}\right\}^{2}=\left\{\sqrt{n}\left(\bar{X}_{n}-0\right)\right\}^{2} \rightarrow_{d} Z^{2}=\chi_{1}^{2}
$$

by the Lindeberg (ordinary) CLT and the continuous mapping theorem. When $\mu \neq 0$, then we can take $a_{n}=\sqrt{n}$ and $b_{n}=\mu^{2}$: then we have

$$
\sqrt{n}\left(\bar{X}_{n}^{2}-\mu^{2}\right) \rightarrow_{d} 2 \mu Z \sim N\left(0,4 \mu^{2}\right)
$$

by the Lindeberg CLT (again) followed by the delta-method.
3. van der Vaart, problem 19.4, page 290: Suppose that X_{1}, \ldots, X_{m} and Y_{1}, \ldots, Y_{n} are independent samples from distribution functions F and G respectively. The Kolmogorov-Smirnov statistic for testing the null hypothesis $H: F=G$ versus $K: F \neq G$ is the supremum distance $K_{m, n} \equiv\left\|\mathbb{F}_{m}-\mathbb{G}_{n}\right\|_{\infty}$ between the empirical distributions of the two samples.
(a) Find the limiting distribution of $\sqrt{m n / N} K_{m, n}$ under the null hypothesis. Do this first assuming that $\lambda_{N} \equiv m / N \equiv m /(m+n) \rightarrow \lambda \in[0,1]$ as $m \wedge n \rightarrow \infty$. What
can you say if the latter hypothesis is dropped?
(b) Show that the Kolmogorov - Smirnov test is asymptotically consistent against every alternative $F \neq G$.
(c) Find the asymptotic power function as a function of $\left(\Delta_{F}, \Delta_{G}\right)$ for alternatives $\left(F_{m}, G_{n}\right)$ where $\left\{F_{m}\right\}$ and $\left\{G_{n}\right\}$ satisfy, much as in our discussion in class on 26 October, $\left.\| F_{m}-F_{0}\right\}_{\infty} \rightarrow 0,\left\|G_{n}-F_{0}\right\|_{\infty} \rightarrow 0$ and, for functions $\Delta_{F}, \Delta_{G}:[0,1] \rightarrow \mathbb{R}$, $\left\|\sqrt{m}\left(F_{m}-F_{0}\right)-\Delta_{F}\left(F_{0}\right)\right\|_{\infty} \rightarrow 0$ and $\left\|\sqrt{n}\left(G_{n}-F_{0}\right)-\Delta_{G}\left(F_{0}\right)\right\|_{\infty} \rightarrow 0$.

Solution: (a) If we assume that $\lambda_{N} \equiv m / N \rightarrow \lambda \in[0,1]$, then we have

$$
\begin{aligned}
\sqrt{\frac{m n}{N}} K_{m, n} & =\sqrt{\frac{m n}{N}}\left\|\mathbb{F}_{m}-F-\left(\mathbb{G}_{n}-F\right)\right\|_{\infty} \\
& =\left\|\sqrt{\frac{n}{N}} \sqrt{m}\left(\mathbb{F}_{m}-F\right)-\sqrt{\frac{m}{N}} \sqrt{n}\left(\mathbb{G}_{n}-F\right)\right\|_{\infty} \\
& \stackrel{d}{=}\left\|\sqrt{\frac{n}{N}} \mathbb{U}_{m}^{X}(F)-\sqrt{\frac{n}{N}} \mathbb{U}_{n}^{Y}(F)\right\|_{\infty} \\
& \rightarrow_{d}\left\|\sqrt{\bar{\lambda}} \mathbb{U}^{X}(F)-\sqrt{\lambda} \mathbb{U}^{Y}(F)\right\|_{\infty} \\
& \stackrel{d}{=}\|\mathbb{U}\|_{\infty}
\end{aligned}
$$

where \mathbb{U}^{X} and \mathbb{U}^{Y} are independent Brownian bridge processes on $[0,1]$ and since the process $\mathbb{U} \equiv \sqrt{\bar{\lambda}} \mathbb{U}^{X}-\sqrt{\lambda} \mathbb{U}^{Y}$ is again a Brownian bridge process: note that it is clearly Gaussian and it has

$$
\begin{aligned}
E \mathbb{U}(t) & =\sqrt{\bar{\lambda}} \mathbb{U}^{X}(t)-\sqrt{\lambda} \mathbb{U}^{Y}(t)=0-0=0, \quad \text { and } \\
E \mathbb{U}(s) \mathbb{U}(t) & =\bar{\lambda} E \mathbb{U}^{X}(s) \mathbb{U}^{X}(t)+\lambda E \mathbb{U}^{Y}(s) \mathbb{U}^{Y}(t) \\
& =\bar{\lambda}(s \wedge t-s t)+\lambda(s \wedge t-s t)=s \wedge t-s t
\end{aligned}
$$

Thus under the null hypothesis the limiting distribution of the two sample statistic is just $\|\mathbb{U}\|_{\infty}$, the same limiting distribution as for the one-sample K-S statistic as in Example 2.5.1 in Chapter 2 of the course notes. If $\lambda_{N}=m / N$ does not converge to a fixed $\lambda \in[0,1]$ as $m \wedge n \rightarrow \infty$, then since λ_{N} takes values in the compact set $[0,1]$, starting with an arbitrary subsequence $\left\{\lambda_{N^{\prime}}\right\}$ we can always find a further subsequence $\left\{\lambda_{N^{\prime \prime}}\right\}$ such that $\lambda_{N^{\prime \prime}}$ converges to some $\lambda \in[0,1]$. Then the preceding argument shows that along this subsequence we have $\sqrt{m n / N} K_{m, n} \rightarrow_{d}\|\mathbb{U}\|_{\infty}$. Since this limit is the same for any initial subsequence $\left\{N^{\prime}\right\}$, we conclude that the convergence holds for the full sequence $\sqrt{m n / N} K_{m, n}$ and that the limit distribution is just $\|\mathbb{U}\|$ for all $m \wedge n \rightarrow \infty$.
(b) When the alternative hypothesis holds, i.e. $F \neq G$, then the Glivenko-Cantelli theorem implies that

$$
\left\|\mathbb{F}_{m}-F\right\|_{\infty} \rightarrow_{\text {a.s. }} 0 \quad \text { and } \quad\left\|\mathbb{G}_{n}-G\right\|_{\infty} \rightarrow_{\text {a.s. }} 0
$$

Then we have

$$
\left\|\mathbb{F}_{m}-\mathbb{G}_{n}\right\|_{\infty} \rightarrow_{a . s .}\|F-G\|_{\infty}>0
$$

Thus we can write

$$
\begin{aligned}
& \sqrt{\frac{m n}{N}} K_{m, n}= \sqrt{\frac{m n}{N}}\left\|\mathbb{F}_{m}-\mathbb{G}_{n}\right\|_{\infty} \\
&=\left\|\sqrt{\overline{\lambda_{N}}} \sqrt{m}\left(\mathbb{F}_{m}-F\right)-\sqrt{\lambda_{N}} \sqrt{n}\left(\mathbb{G}_{n}-G\right)+\sqrt{\frac{m n}{N}}(F-G)\right\|_{\infty} \\
& \geq \sqrt{\frac{m n}{N}}\|(F-G)\|_{\infty}-\sqrt{\bar{\lambda}_{N}}\left\|\sqrt{m}\left(\mathbb{F}_{m}-F\right)\right\|_{\infty}-\sqrt{\lambda_{N}}\left\|\sqrt{n}\left(\mathbb{G}_{n}-G\right)\right\|_{\infty} \\
& \quad \text { by the triangle inequality } \\
&= \sqrt{N \lambda_{N} \cdot \bar{\lambda}_{N}(F-G) \|_{\infty}-O_{p}(1)} \\
& \rightarrow_{p} \quad \infty \quad \text { if } m \wedge n \rightarrow \infty \\
& \quad \text { and either } \limsup _{N} \lambda_{N}<1 \text { or } \liminf _{N} \lambda_{N}>0 .
\end{aligned}
$$

Thus when $F \neq G$ and either $\lim \sup _{N} \lambda_{N}<1$ or $\liminf _{N} \lambda_{N}>0$ we have

$$
P_{F, G}\left(\sqrt{\frac{m n}{N}} K_{m, n}>\lambda_{\alpha}\right) \rightarrow 1
$$

(c) Under local alternatives $\left\{F_{m}\right\}$ and $\left\{G_{n}\right\}$ satisfying the hypotheses of the problem statement and assuming that $\lambda_{N} \rightarrow \lambda$, we have, by an argument similar to that of (a),

$$
\begin{aligned}
& \sqrt{\frac{m n}{N}}\left(\mathbb{F}_{m}-\mathbb{G}_{n}\right)= \sqrt{\bar{\lambda}_{N}}\left(\sqrt{m}\left(\mathbb{F}_{m}-F_{m}\right)+\sqrt{m}\left(F_{m}-F_{0}\right)\right) \\
&-\sqrt{\lambda_{N}}\left(\sqrt{n}\left(\mathbb{G}_{n}-G_{n}\right)+\sqrt{n}\left(G_{n}-F_{0}\right)\right) \\
& \Rightarrow \sqrt{\bar{\lambda}}\left\{\mathbb{U}^{X}\left(F_{0}\right)+\Delta_{X}\left(F_{0}\right)\right\}-\sqrt{\lambda}\left\{\mathbb{U}^{Y}\left(F_{0}\right)+\Delta_{Y}\left(F_{0}\right)\right\} \\
& \stackrel{d}{=} \mathbb{U}\left(F_{0}\right)+\sqrt{\bar{\lambda}} \Delta_{X}\left(F_{0}\right)-\sqrt{\lambda} \Delta_{Y}\left(F_{0}\right),
\end{aligned}
$$

Thus with $\Delta \equiv \sqrt{\bar{\lambda}} \Delta_{X}-\sqrt{\lambda} \Delta_{Y}$, the power of the two - sample K-S test under these local alternative satisfies

$$
P_{F_{n}, G_{n}}\left(\sqrt{m n / N}\left\|\mathbb{F}_{m}-\mathbb{G}_{n}\right\|_{\infty}>\lambda_{\alpha}\right) \rightarrow P\left(\|\mathbb{U}+\Delta\|_{\infty}>\lambda_{\alpha}\right)
$$

4. Suppose that X_{1}, \ldots, X_{n} are i.i.d. Cauchy $(0,1)$; so the density of each X_{i} with respect to Lebesgue measure on R is $f(x)=\pi^{-1}\left(1+x^{2}\right)^{-1}, x \in R$.
(a) Compute the distribution function F of the X_{i} 's.
(b) Compute and plot the inverse distribution function F^{-1} corresponding to F.
(c) For what values of $r>0$ is $E\left|X_{1}\right|^{r}<\infty$?
(d) Find the distribution function of $M_{n} \equiv \max _{1 \leq i \leq n} X_{i}$.
(e) For what values of r is $E\left|M_{n}\right|^{r}<\infty$?
(f) Find a sequence of constants b_{n} so that $M_{n} / b_{n} \rightarrow_{d}$ and find the limiting distribution. [Hint: see Ferguson, ACLST, Theorem 14, page 95.]
(g) Find the densities of M_{n} / b_{n} with b_{n} as in (f). Do these densities converge pointwise to a limit density? If so, what can you conclude from Scheffé's theorem?

Solution: (a) $F(x)=(1 / \pi) \int_{-\infty}^{x}\left(1+t^{2}\right)^{-1} d t=(1 / \pi)\{\arctan (x)+\pi / 2\}$.
(b) Setting $F(x)=u$ and solving for $x=F^{-1}(u)$ yields $F^{-1}(u)=\tan (\pi(u-$ $1 / 2)$). Note that $F^{-1}(1 / 2)=\tan (0)=0 ; F^{-1}(1)=\tan (\pi / 2)=\infty$, and $F^{-1}(0)=$ $\tan (-\pi / 2)=-\infty$.
(c) We compute

$$
\begin{aligned}
E\left|X_{1}\right|^{r} & =\frac{1}{\pi} \int_{-\infty}^{\infty}|x|^{r} \frac{1}{1+x^{2}} d x \\
& =\frac{2}{\pi}\left\{\int_{0}^{1} \frac{x^{r}}{1+x^{2}} d x+\int_{1}^{\infty} \frac{x^{r}}{1+x^{2}} d x\right\} \\
& \leq \frac{2}{\pi}\left\{\int_{0}^{1} \frac{x^{r}}{1+x^{2}} d x+\int_{1}^{\infty} \frac{x^{r}}{x^{2}} d x\right\} \\
& =\frac{2}{\pi}\left\{\int_{0}^{1} \frac{x^{r}}{1+x^{2}} d x+\frac{1}{1-r}\right\}<\infty
\end{aligned}
$$

if $r<1$. Since

$$
E\left|X_{1}\right|=\frac{2}{\pi} \int_{0}^{\infty} \frac{x}{1+x^{2}} d x=\infty
$$

$E\left|X_{1}\right|^{r}<\infty$ if and only if $r<1$.
(d) Since the X_{i} 's are i.i.d. with distribution function F,

$$
F_{M_{n}}(x)=P\left(M_{n} \leq x\right)=P\left(X_{1} \leq x, \ldots, X_{n} \leq x\right)=F(x)^{n}
$$

(e) First, note that

$$
1-F_{\left|M_{n}\right|}(x)=P\left(\left|M_{n}\right|>x\right)=P\left(\cup_{i=1}^{n}\left[\left|X_{i}\right|>x\right]\right) \leq \sum_{i=1}^{n} P\left(\left|X_{i}\right|>x\right)=n\left(1-F_{\left|X_{1}\right|}(x)\right)
$$

where $F_{\left|X_{1}\right|}(x)=P\left(\left|X_{1}\right| \leq x\right)=F(x)-F(-x)$. Hence

$$
\begin{aligned}
E\left|M_{n}\right|^{r} & =\int_{0}^{\infty} r t^{r-1}\left(1-F_{\left|M_{n}\right|}(t)\right) d t \\
& \leq \int_{0}^{\infty} r t^{r-1} n\left(1-F_{|X|}(t)\right) d t \\
& =n E\left|X_{1}\right|^{r}<\infty
\end{aligned}
$$

if $r<1$ by part (d). But since $E\left|M_{n}\right|^{r} \geq E\left|X_{1}\right|^{r}=\infty$ if $r \geq 1$, we conclude that $E\left|M_{n}\right|^{r}<\infty$ if and only if $r<1$.
(f) Note that $1-F(x)=\pi^{-1} \int_{x}^{\infty}\left(1+t^{2}\right)^{-1} d t \sim 1 /(\pi x)$ in the sense that $x(1-F(x)) \rightarrow$ $1 / \pi$ as $x \rightarrow \infty$. [This follows easily by writing the left side as $(1-F(x)) /\left(x^{-1}\right)$ and using L'Hopital's rule.] Hence for $b_{n} \rightarrow \infty$ and $x>0$

$$
F_{M_{n} / b_{n}}(x)=P\left(M_{n} \leq x b_{n}\right)=F\left(x b_{n}\right)^{n} \quad \text { by part } \mathrm{d}
$$

and, with $c_{n} \equiv x b_{n}\left(1-F\left(x b_{n}\right)\right) \rightarrow 1 / \pi$,

$$
\begin{aligned}
F_{M_{n} / b_{n}}(x) & =F\left(x b_{n}\right)^{n}=\left(1-\left(1-F\left(x b_{n}\right)\right)\right)^{n} \\
& =\left(1-\left[x b_{n}\left(1-F\left(x b_{n}\right)\right)\right] /\left(x b_{n}\right)\right)^{n} \\
& =\left(1-c_{n} / x b_{n}\right)^{n} .
\end{aligned}
$$

From this last expression it becomes clear that the choice $b_{n}=n$ yields,

$$
F_{M_{n} / b_{n}}(x) \rightarrow \exp (-1 / \pi x) \equiv G(x), \quad \text { for } x>0
$$

while for $x \leq 0$

$$
F_{M_{n} / b_{n}}(x) \rightarrow 0
$$

since $F\left(x b_{n}\right) \leq 1 / 2$ for $x \leq 0$. Note that $G(0)=\exp (-\infty)=0, G$ is monotone increasing, and $G(\infty)=\exp (0)=1$. In fact, G is a member of the Weibull family with shape parameter -1 , and is one of the three different families that can arise as limit distributions of maxima of independent rv's; see e.g. Ferguson (1996), A Course in Large Sample Theory, page 95.
(g) The density of $F_{M_{n} / b_{n}}=F\left(x b_{n}\right)^{n}$ is given by

$$
\begin{aligned}
f_{M_{n} / b_{n}}(x) & =n F\left(x b_{n}\right)^{n-1} f\left(x b_{n}\right) b_{n} \\
& =\left(1-\frac{c_{n}}{x b_{n}}\right)^{n-1} \frac{1}{\pi\left(1+\left(x b_{n}\right)^{2}\right)} \cdot n b_{n} \\
& \rightarrow \exp (-1 /(\pi x)) \frac{1}{\pi x^{2}} \equiv g(x) \quad \text { when } b_{n}=n .
\end{aligned}
$$

Thus Scheffé's theorem yields

$$
d_{T V}\left(P_{M_{n} / n}, P_{G}\right)=\frac{1}{2} \int_{-\infty}^{\infty}\left|f_{M_{n} / n}(x)-g(x)\right| d x \rightarrow 0
$$

as $n \rightarrow \infty$. It would be interesting to know more about the rates of convergence in theorems of this type.
5. Suppose that X_{1}, \ldots, X_{n} are i.i.d. with the Weibull distribution F_{θ} given by

$$
1-F_{\theta}(x)=\exp \left(-(x / \alpha)^{\beta}\right), \quad x \geq 0
$$

where $\theta=(\alpha, \beta) \in(0, \infty) \times(0, \infty)$.
(a) Find the inverse (or quantile function) $F_{\theta}^{-1}(u)$ corresponding to F_{θ} in terms of α, β, and $u \in(0,1)$, and show that

$$
\log F_{\theta}^{-1}(u)=\log \alpha+\frac{1}{\beta} \log \log \left(\frac{1}{1-u}\right) .
$$

(b) Fix $t \in(0,1 / 2)$. Use the $t-$ th and $(1-t)-$ th quantiles of the X_{i} 's, namely $\mathbb{F}_{n}^{-1}(t)$ and $\mathbb{F}_{n}^{-1}(1-t)$, to obtain simple consistent estimators $\hat{\alpha}_{n}$ and $\hat{\beta}_{n}$ of α and β. Prove that your estimators are consistent.
(c) Prove that your estimators $\hat{\alpha}_{n}$ and $\hat{\beta}_{n}$ satisfy

$$
\sqrt{n}\binom{\hat{\alpha}_{n}-\alpha}{\hat{\beta}_{n}-\beta} \rightarrow_{d} N_{2}(0, \Sigma)
$$

and identify Σ as a function of α, β, and t.
(d) How would you choose t to minimize the asymptotic variance of $\hat{\beta}_{n}$?

Solution: (a) Since $1-F_{\theta}(x)=\exp \left(-(x / \alpha)^{\beta}\right)$, it follows we can solve $F_{\theta}(x)=u$ for $x=F_{\theta}^{-1}(u)$. This yields

$$
F_{\theta}^{-1}(u)=\alpha(-\log (1-u))^{1 / \beta}
$$

or

$$
\begin{equation*}
\log F_{\theta}^{-1}(u)=\log \alpha+\frac{1}{\beta} \log \log \left(\frac{1}{1-u}\right) \tag{1}
\end{equation*}
$$

(b) Since we can estimate $F_{\theta}^{-1}(t)$ and $F_{\theta}^{-1}(1-t)$ respectively by $\mathbb{F}_{n}^{-1}(t)$ and $\mathbb{F}_{n}^{-1}(1-$ t) respectively, the relationship in (1) suggests that we estimate α and β as the solutions $\hat{\alpha}$ and $\hat{\beta}$ of the pair of equations

$$
\begin{gather*}
\log \mathbb{F}_{n}^{-1}(t)=\log \hat{\alpha}+\frac{1}{\hat{\beta}} \log \log 1 /(1-t) \tag{2}\\
\log \mathbb{F}_{n}^{-1}(1-t)=\log \hat{\alpha}+\frac{1}{\hat{\beta}} \log \log 1 / t \tag{3}
\end{gather*}
$$

Letting $A_{t} \equiv \log \log 1 /(1-t)$, and $B_{t} \equiv \log \log 1 / t$, we find that

$$
\begin{aligned}
1 / \hat{\beta} & =\frac{1}{B_{t}-A_{t}}\left(\log \mathbb{F}_{n}^{-1}(1-t)-\log \mathbb{F}_{n}^{-1}(t)\right) \\
& \equiv a_{t} \log \mathbb{F}_{n}^{-1}(1-t)+b_{t} \log \mathbb{F}_{n}^{-1}(t)
\end{aligned}
$$

and

$$
\begin{aligned}
\log \hat{\alpha} & \left.=\frac{-A_{t}}{B_{t}-A_{t}} \log \mathbb{F}_{n}^{-1}(1-t)+\frac{B_{t}}{B_{t}-A_{t}} \log \mathbb{F}_{n}^{-1}(t)\right) \\
& \equiv c_{t} \log \mathbb{F}_{n}^{-1}(t)+d_{t} \log \mathbb{F}_{n}^{-1}(1-t)
\end{aligned}
$$

where

$$
a_{t} \equiv \frac{1}{B_{t}-A_{t}}, \quad b_{t}=-a_{t}, \quad c_{t} \equiv-A_{t} a_{t} \quad d_{t} \equiv B_{t} a_{t}
$$

Since $\left(\mathbb{F}_{n}^{-1}(t), \mathbb{F}_{n}^{-1}(1-t)\right) \rightarrow_{a . s .}\left(F_{\theta}^{-1}(t), F_{\theta}^{-1}(1-t)\right)$, It follows easily by the continuous mapping theorem that

$$
\frac{1}{\hat{\beta}} \rightarrow_{a . s .} a_{t} \log F_{\theta}^{-1}(1-t)+b_{t} \log F_{\theta}^{-1}(t)=\frac{1}{\beta}
$$

and

$$
\log \hat{\alpha} \rightarrow_{a . s .} c_{t} \log F_{\theta}^{-1}(1-t)+d_{t} \log F_{\theta}^{-1}(t)=\log \alpha
$$

and hence by the continuous mapping theorem, $(\hat{\alpha}, \hat{\beta}) \rightarrow_{\text {a.s. }}(\alpha, \beta)$.
(c) First, we know that

$$
\sqrt{n}\binom{\mathbb{F}_{n}^{-1}(1-t)-F^{-1}(1-t)}{\mathbb{F}_{n}^{-1}(t)-F^{-1}(t)} \rightarrow_{d} \underline{Z} \sim N_{2}(0, \Sigma)
$$

where

$$
\Sigma=\left(\begin{array}{cc}
\frac{t(1-t)}{f^{2}\left(F^{-1}(1-t)\right)} & \frac{t^{2}}{f\left(F^{-1}(t)\right) f\left(F^{-1}(1-t)\right)} \\
\frac{t^{2}}{f\left(F^{-1}(t)\right) f\left(F^{-1}(1-t)\right)} & \frac{t(1-t)}{f^{2}\left(F^{-1}(t)\right)}
\end{array}\right) .
$$

This implies that

$$
\sqrt{n}\binom{\log \mathbb{F}_{n}^{-1}(1-t)-\log F^{-1}(1-t)}{\log \mathbb{F}_{n}^{-1}(t)-\log F^{-1}(t)} \rightarrow_{d} D \underline{Z} \sim N_{2}\left(0, D \Sigma D^{T}\right)
$$

where

$$
D=\left(\begin{array}{cc}
1 / F^{-1}(1-t) & 0 \\
0 & 1 / F^{-1}(t)
\end{array}\right)
$$

Hence it follows that

$$
\begin{aligned}
& \sqrt{n}\binom{1 / \hat{\beta}-1 / \beta}{\log \hat{\alpha}-\log \alpha} \\
& \quad=\quad M \sqrt{n}\binom{\log \mathbb{F}_{n}^{-1}(1-t)-\log F^{-1}(1-t)}{\log \mathbb{F}_{n}^{-1}(t)-\log F^{-1}(t)} \\
& \rightarrow_{d} \quad M D \underline{Z} \sim N_{2}\left(0, M D \Sigma D^{T} M^{T}\right)
\end{aligned}
$$

where

$$
M=\left(\begin{array}{cc}
a_{t} & b_{t} \\
c_{t} & d_{t}
\end{array}\right)=a_{t}\left(\begin{array}{cc}
1 & -1 \\
-A_{t} & B_{t}
\end{array}\right) .
$$

Finally, with $g(x, y)=\left(g_{1}(x), g_{2}(y)\right), g_{1}(x)=1 / x, g_{2}(y)=\exp y$, we find, by the delta-method, that

$$
\begin{aligned}
& \sqrt{n}\binom{\hat{\beta}-\beta}{\hat{\alpha}-\alpha} \\
& \rightarrow_{d} \nabla g M D \underline{Z} \sim N_{2}\left(0, \nabla g M D \Sigma D^{T} M^{T} \nabla g^{T}\right)
\end{aligned}
$$

where

$$
\nabla g=\left(\begin{array}{cc}
\beta^{2} & 0 \\
0 & \alpha
\end{array}\right)
$$

We begin combining all this by noting that $D \Sigma D^{T}$ involves the function

$$
\begin{aligned}
F^{-1}(u) f\left(F^{-1}(u)\right) & =\alpha\left(\log \left(\frac{1}{1-u}\right)\right)^{1 / \beta} \frac{\beta}{\alpha}\left(\log \left(\frac{1}{1-u}\right)\right)^{(\beta-1) / \beta}(1-u) \\
& =\beta(1-u) \log \left(\frac{1}{1-u}\right)
\end{aligned}
$$

at the points $u=t$ and $u=1-t$. Computing $D \Sigma D^{T}$ yields

$$
\begin{aligned}
D \Sigma D^{T} & =\beta^{-2}\left(\begin{array}{cc}
\frac{1-t}{t(\log (1 / t))^{2}} & \frac{t}{(1-t) \log (1 / t) \log (1 /(1-t))} \\
\frac{t}{(1-t) \log (1 / t) \log (1 /(1-t))} & \frac{t}{(1-t)\left(\log (1 /(1-t))^{2}\right.}
\end{array}\right) \\
& \equiv \beta^{-2}\left(\begin{array}{cc}
s_{11}(t) & s_{12}(t) \\
s_{12}(t) & s_{22}(t)
\end{array}\right) .
\end{aligned}
$$

Since the matrix M just depends on t, we find that the matrix

$$
M D \Sigma D^{T} M^{T}=\beta^{-2} a_{t}^{2}\left(\begin{array}{ll}
r_{11}(t) & r_{12}(t) \\
r_{12}(t) & r_{22}(t)
\end{array}\right)
$$

where

$$
\begin{aligned}
r_{11}(t) & =s_{11}(t)-2 s_{12}(t)+s_{22}(t) \\
r_{12}(t) & =B_{t}\left(s_{12}(t)-s_{22}(t)\right)-A_{t}\left(s_{11}(t)-s_{12}(t)\right) \\
r_{22}(t) & =A_{t}^{2} s_{11}(t)-2 A_{t} B_{t} s_{12}(t)+B_{t}^{2} s_{22}(t)
\end{aligned}
$$

Thus we conclude that the asymptotic covariance matrix of $(\hat{\beta}, \hat{\alpha})$ is given by

$$
\nabla g M D \Sigma D^{T} M^{T} \nabla g^{T}=a_{t}^{2}\left(\begin{array}{cc}
\beta^{2} r_{11}(t) & \alpha r_{12}(t) \\
\alpha r_{12}(t) & (\alpha / \beta)^{2} r_{22}(t)
\end{array}\right)
$$

(d) The asymptotic variance of $\hat{\beta}$ is

$$
\beta^{2} a_{t}^{2} r_{11}(t)=\beta^{2}\left(s_{11}(t)-2 s_{12}(t)+s_{22}(t)\right) a_{t}^{2} .
$$

This is minimized by $t=t_{0} \approx .10725$, and the minimum value is $\beta^{2}(1.13264)>$ $\beta^{2}\left(6 / \pi^{2}\right)$ see Figures 1 and 2 below. This ad-hoc estimator $\hat{\beta}$ based on quantiles is inefficient; its asymptotic variance (for any value of t, including the minimizing t_{0}) is larger than the best possible asymptotic variance, which is $\beta^{2}\left(6 / \pi^{2}\right)$ as we will see in Chapter 3.)

The asymptotic variance of $\hat{\alpha}$ is

$$
(\alpha / \beta)^{2} a_{t}^{2} r_{22}(t)=(\alpha / \beta)^{2}\left(A_{t}^{2} s_{11}(t)-2 A_{t} B_{t} s_{12}(t)+B_{t}^{2} s_{22}(t)\right)
$$

This is minimized by $t=t_{0} \approx .2295$, and the minimum value is $(\alpha / \beta)^{2}(1.423)>$ $(\alpha / \beta)^{2}(1.11)$ see Figures 3 and 4 below. This ad-hoc estimator $\hat{\beta}$ based on quantiles is also inefficient; its asymptotic variance (for any value of t, including the minimizing t_{0}) is larger than the best possible asymptotic variance, which is about $(\alpha / \beta)^{2}(1.11)$ as we will see in Chapter 3.

