
Statistics 581

Problem Set 5 Solutions
Wellner; 10/31/2018

1. van der Vaart, problem 3.8, page 34, modified. Let X1, . . . , Xn be i.i.d. Bernoulli(p)
with 0 < p < 1.

(a) Find the limit distribution of
√
n(X

−1
n − p−1).

(b) Show that E|X−1n | =∞ for every n.
(c) Connect the example in (a) to a result in the 581 Course Notes, Section 2.4.

Solution: (a) By the Lindeberg CLT it follows easily that
√
n(Xn − p) →d Z ∼

N(0, p(1 − p)). Furthermore, g(y) = y−1 is differentiable at p > 0 with derivative
g′(p) = −p−2. It then follows from the delta-method that

√
n(g(Xn)− g(p))→d g

′(p)Z ∼ N(0, g′(p)2p(1− p)) = N(0, (1− p)/p3).

(b) On the other hand, since Pp(nXn = 0) = Pp(Bin(n, p) = 0) = (1− p)n > 0, and

hence Ep{X
−1
n } ≥ (n/0) · (1− p)n =∞.

(c) Letting Yn ≡
√
n(X

−1
n − p−1) we have Yn →d Y0 ∼ N(0, (1 − p)/p3) while from

(b)

E|Yn| ≥ E|Y +
n | ≥

√
nE(X

−1
n − p) =∞,

so we have 0 < E|Y0| =
√

(1− p)/p3E|N(0, 1)| < lim inf E|Yn| = ∞. Thus strict
inequality can occur in Proposition 2.4.6 of the Chapter 2 notes, page 25.

2. van der Vaart, problem 3.6, page 34: Let X1, . . . , Xn be i.i.d. with expectation µ and

variance 1. Find constants an and bnsuch that an(X
2

n−bn) converges in distribution
when µ = 0 or µ 6= 0.

Solution: When µ = 0, we can take bn = 0 for all n and an = n. Then with
Z ∼ N(0, 1),

n(X
2

n − 0) = {
√
nXn}2 = {

√
n(Xn − 0)}2 →d Z

2 = χ2
1

by the Lindeberg (ordinary) CLT and the continuous mapping theorem. When
µ 6= 0, then we can take an =

√
n and bn = µ2: then we have

√
n(X

2

n − µ2)→d 2µZ ∼ N(0, 4µ2)

by the Lindeberg CLT (again) followed by the delta-method.

3. van der Vaart, problem 19.4, page 290: Suppose that X1, . . . , Xm and Y1, . . . , Yn
are independent samples from distribution functions F and G respectively. The
Kolmogorov-Smirnov statistic for testing the null hypothesis H : F = G versus
K : F 6= G is the supremum distance Km,n ≡ ‖Fm −Gn‖∞ between the empirical
distributions of the two samples.
(a) Find the limiting distribution of

√
mn/NKm,n under the null hypothesis. Do

this first assuming that λN ≡ m/N ≡ m/(m+n)→ λ ∈ [0, 1] as m∧n→∞. What
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can you say if the latter hypothesis is dropped?
(b) Show that the Kolmogorov - Smirnov test is asymptotically consistent against
every alternative F 6= G.
(c) Find the asymptotic power function as a function of (∆F ,∆G) for alternatives
(Fm, Gn) where {Fm} and {Gn} satisfy, much as in our discussion in class on 26
October, ‖Fm−F0}∞ → 0, ‖Gn−F0‖∞ → 0 and, for functions ∆F ,∆G : [0, 1]→ R,
‖
√
m(Fm − F0)−∆F (F0)‖∞ → 0 and ‖

√
n(Gn − F0)−∆G(F0)‖∞ → 0.

Solution: (a) If we assume that λN ≡ m/N → λ ∈ [0, 1], then we have√
mn

N
Km,n =

√
mn

N
‖Fm − F − (Gn − F )‖∞

= ‖
√
n

N

√
m(Fm − F )−

√
m

N

√
n(Gn − F )‖∞

d
= ‖

√
n

N
UX
m(F )−

√
n

N
UY
n (F )‖∞

→d ‖
√
λUX(F )−

√
λUY (F )‖∞

d
= ‖U‖∞

where UX and UY are independent Brownian bridge processes on [0, 1] and since

the process U ≡
√
λUX −

√
λUY is again a Brownian bridge process: note that it is

clearly Gaussian and it has

EU(t) =
√
λUX(t)−

√
λUY (t) = 0− 0 = 0, and

EU(s)U(t) = λEUX(s)UX(t) + λEUY (s)UY (t)

= λ(s ∧ t− st) + λ(s ∧ t− st) = s ∧ t− st.

Thus under the null hypothesis the limiting distribution of the two sample statistic
is just ‖U‖∞, the same limiting distribution as for the one-sample K-S statistic as
in Example 2.5.1 in Chapter 2 of the course notes. If λN = m/N does not converge
to a fixed λ ∈ [0, 1] as m ∧ n → ∞, then since λN takes values in the compact set
[0, 1], starting with an arbitrary subsequence {λN ′} we can always find a further
subsequence {λN ′′} such that λN ′′ converges to some λ ∈ [0, 1]. Then the preceding
argument shows that along this subsequence we have

√
mn/NKm,n →d ‖U‖∞.

Since this limit is the same for any initial subsequence {N ′}, we conclude that the
convergence holds for the full sequence

√
mn/NKm,n and that the limit distribution

is just ‖U‖ for all m ∧ n→∞.
(b) When the alternative hypothesis holds, i.e. F 6= G, then the Glivenko-Cantelli
theorem implies that

‖Fm − F‖∞ →a.s. 0 and ‖Gn −G‖∞ →a.s. 0.

Then we have

‖Fm −Gn‖∞ →a.s. ‖F −G‖∞ > 0.
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Thus we can write√
mn

N
Km,n =

√
mn

N
‖Fm −Gn‖∞

= ‖
√
λN
√
m(Fm − F )−

√
λN
√
n(Gn −G) +

√
mn

N
(F −G)‖∞

≥
√
mn

N

∥∥∥(F −G)
∥∥∥
∞
−
√
λN

∥∥∥√m(Fm − F )
∥∥∥
∞
−
√
λN‖
√
n(Gn −G)‖∞

by the triangle inequality

=

√
NλN · λN(F −G)‖∞ −Op(1)

→p ∞ if m ∧ n→∞
and either lim sup

N
λN < 1 or lim inf

N
λN > 0.

Thus when F 6= G and either lim supN λN < 1 or lim infN λN > 0 we have

PF,G

(√
mn

N
Km,n > λα

)
→ 1.

(c) Under local alternatives {Fm} and {Gn} satisfying the hypotheses of the problem
statement and assuming that λN → λ, we have, by an argument similar to that of
(a), √

mn

N
(Fm −Gn) =

√
λN
(√

m(Fm − Fm) +
√
m(Fm − F0)

)
−
√
λN
(√

n(Gn −Gn) +
√
n(Gn − F0)

)
⇒

√
λ{UX(F0) + ∆X(F0)} −

√
λ{UY (F0) + ∆Y (F0)}

d
= U(F0) +

√
λ∆X(F0)−

√
λ∆Y (F0),

Thus with ∆ ≡
√
λ∆X−

√
λ∆Y , the power of the two - sample K-S test under these

local alternative satisfies

PFn,Gn

(√
mn/N‖Fm −Gn‖∞ > λα

)
→ P (‖U + ∆‖∞ > λα)

4. Suppose that X1, . . . , Xn are i.i.d. Cauchy(0, 1); so the density of each Xi with
respect to Lebesgue measure on R is f(x) = π−1(1 + x2)−1, x ∈ R.
(a) Compute the distribution function F of the Xi’s.
(b) Compute and plot the inverse distribution function F−1 corresponding to F .
(c) For what values of r > 0 is E|X1|r <∞?
(d) Find the distribution function of Mn ≡ max1≤i≤nXi.
(e) For what values of r is E|Mn|r <∞?
(f) Find a sequence of constants bn so that Mn/bn →d and find the limiting
distribution. [Hint: see Ferguson, ACLST, Theorem 14, page 95.]
(g) Find the densities of Mn/bn with bn as in (f). Do these densities converge
pointwise to a limit density? If so, what can you conclude from Scheffé’s theorem?
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Solution: (a) F (x) = (1/π)
∫ x
−∞(1 + t2)−1dt = (1/π){arctan(x) + π/2}.

(b) Setting F (x) = u and solving for x = F−1(u) yields F−1(u) = tan(π(u −
1/2)). Note that F−1(1/2) = tan(0) = 0; F−1(1) = tan(π/2) = ∞, and F−1(0) =
tan(−π/2) = −∞.
(c) We compute

E|X1|r =
1

π

∫ ∞
−∞
|x|r 1

1 + x2
dx

=
2

π

{∫ 1

0

xr

1 + x2
dx+

∫ ∞
1

xr

1 + x2
dx

}
≤ 2

π

{∫ 1

0

xr

1 + x2
dx+

∫ ∞
1

xr

x2
dx

}
=

2

π

{∫ 1

0

xr

1 + x2
dx+

1

1− r

}
<∞

if r < 1. Since

E|X1| =
2

π

∫ ∞
0

x

1 + x2
dx =∞ ,

E|X1|r <∞ if and only if r < 1.
(d) Since the Xi’s are i.i.d. with distribution function F ,

FMn(x) = P (Mn ≤ x) = P (X1 ≤ x, . . . , Xn ≤ x) = F (x)n.

(e) First, note that

1−F|Mn|(x) = P (|Mn| > x) = P (∪ni=1[|Xi| > x]) ≤
n∑
i=1

P (|Xi| > x) = n(1−F|X1|(x))

where F|X1|(x) = P (|X1| ≤ x) = F (x)− F (−x). Hence

E|Mn|r =

∫ ∞
0

rtr−1(1− F|Mn|(t))dt

≤
∫ ∞
0

rtr−1n(1− F|X|(t))dt

= nE|X1|r <∞

if r < 1 by part (d). But since E|Mn|r ≥ E|X1|r = ∞ if r ≥ 1, we conclude that
E|Mn|r <∞ if and only if r < 1.
(f) Note that 1−F (x) = π−1

∫∞
x

(1+t2)−1dt ∼ 1/(πx) in the sense that x(1−F (x))→
1/π as x→∞. [This follows easily by writing the left side as (1−F (x))/(x−1) and
using L’Hopital’s rule.] Hence for bn →∞ and x > 0

FMn/bn(x) = P (Mn ≤ xbn) = F (xbn)n by part d

and, with cn ≡ xbn(1− F (xbn))→ 1/π,

FMn/bn(x) = F (xbn)n = (1− (1− F (xbn)))n

= (1− [xbn(1− F (xbn))]/(xbn))n

= (1− cn/xbn)n.
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From this last expression it becomes clear that the choice bn = n yields,

FMn/bn(x)→ exp(−1/πx) ≡ G(x), for x > 0,

while for x ≤ 0
FMn/bn(x)→ 0

since F (xbn) ≤ 1/2 for x ≤ 0. Note that G(0) = exp(−∞) = 0, G is monotone
increasing, and G(∞) = exp(0) = 1. In fact, G is a member of the Weibull family
with shape parameter −1, and is one of the three different families that can arise
as limit distributions of maxima of independent rv’s; see e.g. Ferguson (1996), A
Course in Large Sample Theory, page 95.
(g) The density of FMn/bn = F (xbn)n is given by

fMn/bn(x) = nF (xbn)n−1f(xbn)bn

=

(
1− cn

xbn

)n−1
1

π(1 + (xbn)2)
· nbn

→ exp(−1/(πx))
1

πx2
≡ g(x) when bn = n.

Thus Scheffé’s theorem yields

dTV (PMn/n, PG) =
1

2

∫ ∞
−∞
|fMn/n(x)− g(x)|dx→ 0

as n→∞. It would be interesting to know more about the rates of convergence in
theorems of this type.

5. Suppose that X1, . . . , Xn are i.i.d. with the Weibull distribution Fθ given by

1− Fθ(x) = exp(−(x/α)β), x ≥ 0

where θ = (α, β) ∈ (0,∞)× (0,∞).
(a) Find the inverse (or quantile function) F−1θ (u) corresponding to Fθ in terms of
α, β, and u ∈ (0, 1), and show that

logF−1θ (u) = logα +
1

β
log log

(
1

1− u

)
.

(b) Fix t ∈ (0, 1/2). Use the t−th and (1 − t)−th quantiles of the Xi’s, namely
F−1n (t) and F−1n (1− t), to obtain simple consistent estimators α̂n and β̂n of α and β.
Prove that your estimators are consistent.
(c) Prove that your estimators α̂n and β̂n satisfy

√
n

(
α̂n − α
β̂n − β

)
→d N2(0,Σ)

and identify Σ as a function of α, β, and t.
(d) How would you choose t to minimize the asymptotic variance of β̂n?
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Solution: (a) Since 1 − Fθ(x) = exp(−(x/α)β), it follows we can solve Fθ(x) = u
for x = F−1θ (u). This yields

F−1θ (u) = α(− log(1− u))1/β ,

or

logF−1θ (u) = logα +
1

β
log log

(
1

1− u

)
.(1)

(b) Since we can estimate F−1θ (t) and F−1θ (1−t) respectively by F−1n (t) and F−1n (1−
t) respectively, the relationship in (1) suggests that we estimate α and β as the
solutions α̂ and β̂ of the pair of equations

logF−1n (t) = log α̂ +
1

β̂
log log 1/(1− t) ,(2)

logF−1n (1− t) = log α̂ +
1

β̂
log log 1/t .(3)

Letting At ≡ log log 1/(1− t), and Bt ≡ log log 1/t, we find that

1/β̂ =
1

Bt − At
(logF−1n (1− t)− logF−1n (t))

≡ at logF−1n (1− t) + bt logF−1n (t)

and

log α̂ =
−At

Bt − At
logF−1n (1− t) +

Bt

Bt − At
logF−1n (t))

≡ ct logF−1n (t) + dt logF−1n (1− t)

where

at ≡
1

Bt − At
, bt = −at, ct ≡ −Atat dt ≡ Btat .

Since (F−1n (t),F−1n (1 − t)) →a.s. (F−1θ (t), F−1θ (1 − t)), It follows easily by the
continuous mapping theorem that

1

β̂
→a.s. at logF−1θ (1− t) + bt logF−1θ (t) =

1

β
,

and

log α̂→a.s. ct logF−1θ (1− t) + dt logF−1θ (t) = logα ,

and hence by the continuous mapping theorem, (α̂, β̂)→a.s. (α, β).
(c) First, we know that

√
n

(
F−1n (1− t)− F−1(1− t)

F−1n (t)− F−1(t)

)
→d Z ∼ N2(0,Σ)

where

Σ =

(
t(1−t)

f2(F−1(1−t))
t2

f(F−1(t))f(F−1(1−t))
t2

f(F−1(t))f(F−1(1−t))
t(1−t)

f2(F−1(t))

)
.
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This implies that

√
n

(
logF−1n (1− t)− logF−1(1− t)

logF−1n (t)− logF−1(t)

)
→d DZ ∼ N2(0, DΣDT )

where

D =

(
1/F−1(1− t) 0

0 1/F−1(t)

)
.

Hence it follows that

√
n

(
1/β̂ − 1/β

log α̂− logα

)
= M

√
n

(
logF−1n (1− t)− logF−1(1− t)

logF−1n (t)− logF−1(t)

)
→d MDZ ∼ N2(0,MDΣDTMT ) .

where

M =

(
at bt
ct dt

)
= at

(
1 −1
−At Bt

)
.

Finally, with g(x, y) = (g1(x), g2(y)), g1(x) = 1/x, g2(y) = exp y, we find, by the
delta-method, that

√
n

(
β̂ − β
α̂− α

)
→d ∇gMDZ ∼ N2(0,∇gMDΣDTMT∇gT )

where

∇g =

(
β2 0
0 α

)
.

We begin combining all this by noting that DΣDT involves the function

F−1(u)f(F−1(u)) = α

(
log

(
1

1− u

))1/β
β

α

(
log

(
1

1− u

))(β−1)/β

(1− u)

= β(1− u) log

(
1

1− u

)
at the points u = t and u = 1− t. Computing DΣDT yields

DΣDT = β−2

(
1−t

t(log(1/t))2
t

(1−t) log(1/t) log(1/(1−t))
t

(1−t) log(1/t) log(1/(1−t))
t

(1−t)(log(1/(1−t)))2

)

≡ β−2
(
s11(t) s12(t)
s12(t) s22(t)

)
.

Since the matrix M just depends on t, we find that the matrix

MDΣDTMT = β−2a2t

(
r11(t) r12(t)
r12(t) r22(t)

)
,
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where

r11(t) = s11(t)− 2s12(t) + s22(t)

r12(t) = Bt(s12(t)− s22(t))− At(s11(t)− s12(t))
r22(t) = A2

t s11(t)− 2AtBts12(t) +B2
t s22(t) .

Thus we conclude that the asymptotic covariance matrix of (β̂, α̂) is given by

∇gMDΣDTMT∇gT = a2t

(
β2r11(t) αr12(t)
αr12(t) (α/β)2r22(t)

)
.

(d) The asymptotic variance of β̂ is

β2a2t r11(t) = β2 (s11(t)− 2s12(t) + s22(t)) a
2
t .

This is minimized by t = t0 ≈ .10725, and the minimum value is β2(1.13264) >
β2(6/π2) see Figures 1 and 2 below. This ad-hoc estimator β̂ based on quantiles is
inefficient; its asymptotic variance (for any value of t, including the minimizing t0)
is larger than the best possible asymptotic variance, which is β2(6/π2) as we will
see in Chapter 3.)

The asymptotic variance of α̂ is

(α/β)2a2t r22(t) = (α/β)2
(
A2
t s11(t)− 2AtBts12(t) +B2

t s22(t)
)
.

This is minimized by t = t0 ≈ .2295, and the minimum value is (α/β)2(1.423) >
(α/β)2(1.11) see Figures 3 and 4 below. This ad-hoc estimator β̂ based on
quantiles is also inefficient; its asymptotic variance (for any value of t, including
the minimizing t0) is larger than the best possible asymptotic variance, which is
about (α/β)2(1.11) as we will see in Chapter 3.

8


