Statistics 581, Problem Set 8 Solutions
Wellner; 11/22/2018

1. (a) Show that if §,, = cn=*/2 and T}, is the Hodges super-efficient estimator discussed
in class, then the sequence {y/n(T,, — 6,)} is uniformly square-integrable.
(b) Let R,(0) = nEy(T, — 0)* where T, is the Hodges superefficient estimator as in
Example 3.3.1 (so T,, = §,, of Example 2.5, Lehmann and Casella pages 440 - 443).
Show that R, (n~/*) — co as n — oo.

Solution: (a) First recall that (with 6, = T,,) since /n(X — ) L7~ N(0,1) we
can write
\/ﬁ(Tn - 9) = \/ﬁ(ynl[lyn‘>n71/4} + aynl[lynlgnfl/ﬂ - 9)
Z1[|Z+9\/ﬁ|>nl/4] + [CLZ + \/ﬁ@(a — 1)]1[‘Z+9\/ﬁ|§n1/4]
= Z + [(CL — 1)Z + (CL - 1)\/50]1[|Z+0\/ﬁ\§n1/4}
= 7 - (1 — CL)[Z + \/ﬁe]l[|z+9\/m§n1/4}.

Thus (as we showed in class) when 6,, = ecn~'/2 we have

IES

d
\/E(Tn — Qn) = Zl[|Z+c|>n1/4] + [CLZ + c(a - 1)]1[|Z+c\§n1/4}
= Z+ [(a — ].)Z + (CL - 1)0]1[|Z+c|§n1/4]

= Z—-({1=a)Z+dlyzyq<nry- (1)
Thus
Y, = {Va(T, -6}

i {Z — (1 — CL)[Z + C]l[|Z+c\§n1/4]}2

< 2(Z2+(1-a)*(Z+0¢)?) =Y
where

E(Y)=2(E(Z*) + (1—a)’E(Z + ¢)*) < .

Thus

lim sup E{Ynl[YnZA]} < E{Yl[yz)\]} — 0
n—oo
as A — oo. Hence {Y,,} is uniformly integrable; that is, {y/n(T,, — 0,)} is uniformly
square-integrable.

(b) (a’) Note that the identity (1) in (a) above holds. Thus

ba(0) = Eo(Tn) -0

— 2 {EZ _ (1 — CL)E[Z + \/59]1[|Z+9\/ﬁ\§n1/4}}
l1—-a
- _ NG ElZ + \/ﬁe]l[|z+9\/ﬁlénl/4l

1_ nl/4
= — \/ﬁa/ 5 r¢(x — /nb)dz




since Z + 0y/n ~ N(0y/n,1).
(b’) Differentiating the result in (a’) gives

1/4

50 = == [ ade - van(-vi) do
nl/4
= —(1- a)/_ » z(x — vnb)p(x — /nb) dv  since ¢'(z) = —z¢(x)

— 0 if #£0

by the dominated convergence theorem since z(x —+/nf)¢(x— \/59)1[_,11/4’”1/4] (x) —
0 for each fixed z and is dominated by the integrable function 4e~'¢(z)/(|0] A 1)
(for n > (3/16])").

Details of this domination: For |z| < n'/* it follows that

[z]|z — /0B < n'/4 — n'/* — \/nb) < n? 4+ n¥40) < 203410 V 1)

while
o~ Vi) = ofax)explyib — nf?/2)
< () expl8ln®* — nf?[2)
= ¢(x)exp(|0]n®/*(1 —n'/"|6]/2))
< () exp(—%|€|n3/4) it 1= 0492 < —1/2

or, equivalently, when n > (3/]0|)*. Combining these two bounds yields

||z — Vnblo(x — nb) < @(x)n®*2(10] V 1) exp(—|0|n** /2)
s 2n3/texp(—|0In3/1/2)  if 9] <1
IV 2n3/4)0] exp(—|0|n®/1/2) if 0] > 1

— b)) (4/16])(n3/416]/2) exp(—|0|n/*/2) if |0] <1
A0l /2) exp(— gl 2) if 6] > 1
4e 1
S At

(b), Second (more elegant) solution: from the lecture notes, 3.3 (3), it follows that
R,(0) = E[n(T,, — 0)%] = nVar[T,] + nb,(0)* > a* + nb,(9)*.

Using the formula for b, (6) from part (a) above, it follows that it is enough to show
that

1/4

/" zé(x —n'Y)dx

_pl/4

— OQ.

But we have, with Z ~ N(0,1) (and hence F|Z| < c0),

nl/4 0
|/ zp(x —n''t)dx :‘/ @+HWM@M4
_nl/4 —2nl/4
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0 0
1/4 _
> | [ o[ [ vt
> nM4®(0) — d(—2n*)) — E|Z]
— 0OQ.

2. (Super-efficiency at two parameter values) Suppose that Xi,..., X, are ii.d.
N(0,1) where 6 € R) Let a,b € [0,1) and define the estimator 7,, as follows:
X, if | X, —1]>n"Y* and |X, + 1| >n~ V4
T,=1{ aX,+ (1 —a) if | X, — 1] <n 14,
bX, + (1 —=b)(—1) if [ X, +1] <n V4
(a) Find the limiting distribution of v/n(T,, — #) when:
(1) 0 # 1 and 0 #£ —1; (i) 6 = 1; (i) 0 = —1.
(b) Find the limiting distribution of \/n(7,, — 6,,) when:
(i) 0, =14+ cen V2% (i) 0, = —1 4+ cn~ /2.
(c) Could we have super-efficiency at a countable collection of parameter values?

Solution: (a) Note that /n(X, — 0) L7~ N(0,1) for all # € R and n € N. Thus

we find that

\/H(Tn - ‘9) = ﬁ(yn - 9)1[|Yn—1|>n1/4] ’ 1[|Yn-s-1|>n1/4]
+ \/ﬁ(Can + (1 — a) — 9)1[‘yn_1|§n1/4}
+ Vn(aX, — (1 =0) = 0)1x, 41j<ni/n

= 2 L%, —oro-1snt/a L[ A%, —010+1501/4)
+ {(I\/ﬁ(Xn — 0) —I— \/E(CLH — 9 + (1 — CL))} 1[\\/H(Yn—0)+\/ﬁ(€—l)\§n1/4]
+ {bVn(X —0) + (b8 — 0 — (1= b)) } 1y mx. o)1 vmer1)|<ni/ ]
Z if0#1, 0#—1,

Sy { aZ if6=1,
bZ it 0= —1,

~  N(0,V*(0))

U

where
V2(9) = 1{_171}(9) + a21{1}(0) -+ 621{_1}<9).

(b)If 0 =6, =1+ cn'/?,

d
V(T —0,) = Zljzigsnm + (aZ + c(a — 1) Ljz4q<nr/a + 0p(1)

—q4 aZ+cla—1)~ N(cla—1),a%).
In the same way, if § = 6, = —1 + cn'/?, we find that
VT, —0,) —q bZ+c(b—1)~ N(c(b—1),b%).

(¢c) A similar construction works to yield superefficiency at all § € Z =
{0,£1,£2,...}.



3. Suppose that X7, ..., X, are i.i.d. with distribution function F' having a continuous
density function f. Let [F,, be the empirical distribution function of the X;’s, suppose
that b,, is a sequence of positive numbers, and let

fola) = LBl )

a) Compute E{f,(z)} and Var(f,(z)).
b) Show that Ef,(z) — f(x) if b, — 0.

(

(

(¢) Show that Var(f,(z)) — 0 if b, — 0 and nb,, — 0.

(d) Use some appropriate central limit theorem to show that (perhaps under some
suitable further conditions that you might need to specify)

V2 (ful) = Efulw)) —a N(O, ().

Hint: Write fn(a:) in terms of some Bernoulli random variables and identify p = p,,.

Solution: (a) First note that 2nb,, = n(F,(x+b,) —F,(x—b,)) is a Binomial(n, p,)
random variable with p, = F(z +b,) — F(z — b,). Hence if b, — 0

F(z+b,) — F(x—by,) Dn

Efulr) = 2b, " 2nb,
1 [F(z+b,) - F(z) F(x)—F(x—by)
“5{ b * b }

S @)+ @) = f).
(b) Furthermore

npn(l _pn)
(2nb,,)?
1 pn
= S, 2p, L Pe)
— 0-f(x)-1=0

Var(fu(z)) =

if nb,, — 0o and/l\)n — 0.
(¢) Since 2nb,fy(x) = > | Xn; where X,,; ~ Bernoulli(p,), it follows that o2, =
pn(1 — py) so that o2 = Var(d>_!" | X)) = npn(1 — pp), and

=1 =1

= npp(1 = p){(1—pn)* + 0} }
< 2np,(1 —py)
so that

2
3 = -0

2
wfo? <
W/ V(L =pa)  /nba(pafbn) (L — pr)
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if b, — 0 and nb,, — co. Thus, by the Liapunov CLT,

2, (Jul2) — Ef(@))
npy (1 — pn)

N(0,1)

if b, — 0 and nb,, — oco. Thus

IR - Efe)) = Zenn(@) = Bfi() [npa(l=pa)
o ' npn(1 —pn) 2nb,,

SN,V = N(O, f(@))
. Suppose that (T'|Z) ~ Weibull(A™*e™7Z, 3), and Z ~ G, on R with density g, with

respect to some dominating measure p. Thus the conditional cumulative hazard
function A(t|z) is given by

Aap(t]2) = (Ae72t)P = NP1 7yP

and hence
)\77)\’g(t|2) = )\Beﬁ’yzﬁtﬁil .

(Recall that \(t) = f(t)/(1 — F(t)) and

A(t)z/o )\(s)ds:/o (1= F(s))""dF(s) = —log(1 — F(t))

if F'is continuous.) Thus it makes sense to re-parametrize by defining 6; = v (this
is the parameter of interest since it reflects the effect of the covariate Z), 0y = N,
and #3 = (. This yields

Mo (t]2) = 050 exp(hy2)t% !

You may assume that
a(z) = (9/0n)log gn(2)

exists and E{a*(Z)} < oco. Thus Z is a “covariate” or “predictor variable”, 6, is
a “regression parameter” which affects the intensity of the (conditionally) Weibull
variable T', and 0 = (01, 65,05, 0,) where 64 = 7.

(a) Derive the joint density pg(t, z) of (T, Z) for the re-parametrized model.

(b) Find the information matrix for . What does the structure of this matrix
say about the effect of n = 6, being known or unknown about the estimation of
61,062,037

(c¢) Find the information and information bound for 6; if the parameters 6, and 03
are known.

(d) What is the information bound for 6, if just €5 is known to be equal to 17

(e) Find the efficient score function and the efficient influence function for estimation
of 6; when 03 is known.

(f) Find the information /1.2 3) and information bound for ¢, if the parameters 6,
and #3 are unknown. (Here both 5 and 05 are in “the second block”.)

(g) Find the efficient score function and the efficient influence function for estimation
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of #; when 05 and 65 are unknown.
(h) Specialize the calculations in (d) - (g) to the case when Z ~ Bernoulli(6,) and
compare the information bounds.

Solution: (a) Integrating Ag(¢|z) with respect to t gives
Ag(t]|2) = Oy exp(6,2)t%
and hence the conditional survival function 1 — Fy(t|z) is given by
1 — Fy(t]2) = exp(—Ag(t]2)) = exp(—0; exp(6,2)t%). (2)

It follows that
fo(t]2) = 020" 7t% 7 exp(—0,e71%) |

and hence that
po(y,2) = fo(yl2)gy(2) = 0203 7% 7 exp(—0pe71%) g, (2)
= = 0o03" 7% exp(—02e"7%) gy, (2) .

(b) We first calculate the scores for ¢. Note that the random variable W =
0y exp(60:Z)Y? has, conditionally on Z, a standard Exponential(1) distribution:

Py(W > w|Z) = P02 exp(h 2)Y™ > w|Z) = e
by (2). We calculate

1Ol Z) = logpy(Y,2)
= logfy +logfs + 0,7 + (05 — 1) log Y — 02" 2Y % +log g, (Z) ,
L(Y,2) = Z—26,"%Y% = z(1-W),
1 Gye?Y?s 1

L(Y,2) = 7 92(1—W),

: 1

(Y, 2) = 9—+logY 0,¢"12Y % 1og Y
3

1
= +log Y{1 — 0,12y %}
3

62 601 ZY95

= %{1+1gw{1 }}
- 6_13{1+{logW log(foe” ) H{1 — W}}

1
= & 11— (W —=1)logW]+ (W —1) log(92€elz)}
14(Y, Z) = a(Z> = CL(Z, 77) :
Moreover,
) 1 12y 93
(V. 2) = ~Z0."7Y P l0gY = —Z o 7Y P log ( Y )

Z
= —Q—W{log W — log(fye%)}
3



= —giW{log W —log(6s) — 0,7}
3

Is(Y,Z2) = —e"%y%logy = —ﬁ&ze@lzy@s log (%)
= —#%W{logw — log(6,¢"%)}
= —%Q?)W{logw —log(6y) — 012},

(Y. Z) = —0%{1 - Wllog W — log (0,672}

Thus we calculate easily:

In(0) = Es(L(Y,2)%) = Eo{E[Z°(1 - W)*|Z]}
= E{Z’E[1-W)|2]} = B(Z%),
Ey(1,(Y, Z)%) = Eg{E[6;°(1 = W)?|Z]} = 657,
052 {1+ E[W (log W)?] — 2E(W log W){log 6 + 6, E(Z)}
+ E{(log b, + 6:2)*}}
= 0;° {1+ B*—2A{logb, + L E(Z)} + E{(logb, + 6,2)*}}
Is(0) = E(L(Y,2)(Y, 2)) = E{E[Z0; (1 - W)?|Z]} = 0, E(Z),

w [N}
w [\
/N N
<
S—
Il

L3(0) = —Ep{lis(Y,2)}
= 97U E(Z)[A — log ] — 0. E(Z%)},
In(0) = —Fp{ln(Y,2)}

= (0o03) ' {A —logb, — 6, E(Z)}

A=E{WlogW} = /Ooo(wlog w) exp(—w)dw =1 — 7,
B*= E{W(logW)*} =7*/6+ (1 —v)* — 1.

Note that since 14(%2) = a(z) is just a function of Z, it follows easily that for
j=1,2,3 we also have

Lu(0) = Eo{L(Y,2)lu(Y, Z)}
= E{g;(W, 2)a(2)} = EXElg;(W, Z)a(Z)|Z]}
= E{a(2)Elg;(W, 2)|Z]} = E{a(Z) - 0} = 0,

Because of this orthogonality, the information bounds for (61,05, 63) are the same
when 6, = n is unknown as when it is known.

(c) If #y and 3 are known, then the information bound for estimation of 6; is just
I;1(0) = 1/E(Z?). Tt follows that the information matrix for 6 is of the following
form:

E(Z%)  6;'E(Z) 051C 0
1(6) = 0, E(2) 052 (0203)"'D 0
- 0;'C (0.05)7'D  0;°FE 0

0 0 0 Ea*(Z)

7



where

C = E(Z)(A—1logy) —6,E(Z?)
D = A—10g02—91E<Z)
E 1+ B? —2A(logfy + 0, E(Z)) + E(log 0y + 0, 2)*.

(d) If 3 = 1 is known, then the information bound for 6, is I;;', where

L12(0) = I — 1oLy Iy
= E(Z%) - (E(2)]0,)%; = E(Z*) — (EZ)* = Var(Z).

Thus I}, = 1/Var(Z).
(e) When 63 is known, the efficient score function and the efficient influence function
for estimation of #; are given by

(Y, 2) = 1 — LI,
= Z(1-W) - eglE(Z)egel(l - W)
= Z(1=-W)=-EZ)1-W)=(Z-E(Z)1-W),

and

L(Y,Z2) = I;LI(Y,2)
1
= Vol (Z —EZ)1-W).

(f) When both the parameters ¢, and 3 are unknown, the information I1q.(23) is
given by

Loz = Ia where the “second block” contains both 6, 03
= Iy — I1s13 Iy (3)
where
Ly = (6, E(2),65'0),

i ( BE 66D 1
= —0,0sD 62 E— D2’

Thus the second term in (3 ) is
{[E(Z)?E —2E(Z)CD +C*} /(E — D?). (4)
Now the denominator is
E—D* = 1+ B*>—2A(logf, + 0,E(Z)) + E(log s + 0, 2)>
—(A —loghy, — 6, E(2))?
= 1+ B*>-2A(logby +0,E(Z)) + E(log by + 6, 2)*
—[A? —2A(log 0y + 61 E(Z)) + (log 0, + 0, E(Z))?
= 1+ B?— A?+Var[logf, + 6, 7]
= 7°/6+0iVar(Z),
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and, upon noting that

C—B(Z)D = E(Z)(A—loghy) — 0,E(Z%) — {E(Z)(A —loghs) — 6,[E(Z)P)
= —0Var(Z),

it follows that the numerator of (4) is

C? —2E(Z)CD + [E(Z)’E = C?—-2E(Z)CD + [E(2)]*D*+ [E(Z2)]*(E — D?)
= (C—E(Z)D)* +[E(Z)*{n*/6 + 61Var(Z)}
92[Var( )P+ [E(Z){7*/6 + 67Var(Z)} .

It follows that the information for 6; when 6y and 63 are unknown is equal to

[E(Z)]*{7*/6 + 61V ar(Z)}
72/6 4+ 03V ar(Z)

[11-(2,3) = E<Z2>_

e —|—7r9%/‘6/a7“ g Varl2) < Var(z) < E(2?)

with equality in the first inequality if and only if 8 = 0. Note that the information
decreases as 6 increases, and it converges to 72/(66%) as Var(Z) — oc.

(g) When 6y and 63 are unknown the efficient score function for 6, is, with the
“second block” containing both 65 and 65,

I = 1 — 15,
= 11 = (B(E(2)E — CD),05(C — DE(Z))L,/(E — D*)

_ z0-w)- BDE-CD

ﬁz/ngQSiLZ) {I1 = (W = Dlog W] + (W — 1) log(6,¢"*)}
_ E(Z)E — CD + log(69e"%)
a {Z_ 72/6 + 03V ar(Z) }(1_W)
02Var(Z)
26+ var(Z)

(1-Ww)

W —1)logW}.

(h) When Z ~ Bernoulli(n), then

Iy = E(ZZ) =1 =04,
]11.2 == V(IT’(Z) == 77(1 — ’I]) == 04(1 — 04) s

72/6
N1 = Var(Z
e = 361 gvar(z) )
72 /6
= 1-7).
7T2/6+9%77(1—77)77( ")

The corresponding information bounds are given by the reciprocals of these
quantities. See the following figures for comparisons of the information and
information bounds.
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Figure 1: Plots of Iy, I11.2, and I11.(23) as a function of n = 64, and for 6, = .5, 1.0,1.5
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Figure 2: Plots of I;;', I;;,, and Ilil?(2,3) as a function of n = 6,, and for #; = .5, 1.0, 1.5
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