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Wellner; 11/22/2018

1. (a) Show that if θn = cn−1/2 and Tn is the Hodges super-efficient estimator discussed
in class, then the sequence {

√
n(Tn − θn)} is uniformly square-integrable.

(b) Let Rn(θ) ≡ nEθ(Tn− θ)2 where Tn is the Hodges superefficient estimator as in
Example 3.3.1 (so Tn = δn of Example 2.5, Lehmann and Casella pages 440 - 443).
Show that Rn(n−1/4)→∞ as n→∞.

Solution: (a) First recall that (with δn = Tn) since
√
n(X − θ) d

= Z ∼ N(0, 1) we
can write

√
n(Tn − θ) =

√
n(Xn1[|Xn|>n−1/4] + aXn1[|Xn|≤n−1/4] − θ)

d
= Z1[|Z+θ

√
n|>n1/4] + [aZ +

√
nθ(a− 1)]1[|Z+θ

√
n|≤n1/4]

= Z + [(a− 1)Z + (a− 1)
√
nθ]1[|Z+θ

√
n|≤n1/4]

= Z − (1− a)[Z +
√
nθ]1[|Z+θ

√
n|≤n1/4].

Thus (as we showed in class) when θn = cn−1/2 we have

√
n(Tn − θn)

d
= Z1[|Z+c|>n1/4] + [aZ + c(a− 1)]1[|Z+c|≤n1/4]

= Z + [(a− 1)Z + (a− 1)c]1[|Z+c|≤n1/4]

= Z − (1− a)[Z + c]1[|Z+c|≤n1/4]. (1)

Thus

Yn ≡
{√

n(Tn − θn)
}2

d
=

{
Z − (1− a)[Z + c]1[|Z+c|≤n1/4]

}2
≤ 2

(
Z2 + (1− a)2(Z + c)2

)
≡ Y

where
E(Y ) = 2

(
E(Z2) + (1− a)2E(Z + c)2

)
<∞.

Thus

lim sup
n→∞

E{Yn1[Yn≥λ]} ≤ E{Y 1[Y≥λ]} → 0

as λ→∞. Hence {Yn} is uniformly integrable; that is, {
√
n(Tn− θn)} is uniformly

square-integrable.

(b) (a’) Note that the identity (1) in (a) above holds. Thus

bn(θ) = Eθ(Tn)− θ
= n−1/2

{
EZ − (1− a)E[Z +

√
nθ]1[|Z+θ

√
n|≤n1/4]

}
= − 1− a√

n
E[Z +

√
nθ]1[|Z+θ

√
n|≤n1/4]

= − 1− a√
n

∫ n1/4

−n1/4

xφ(x−
√
nθ)dx
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since Z + θ
√
n ∼ N(θ

√
n, 1).

(b’) Differentiating the result in (a’) gives

b′n(θ) = − 1− a√
n

∫ n1/4

−n1/4

xφ′(x−
√
nθ)(−

√
n) dx

= − (1− a)

∫ n1/4

−n1/4

x(x−
√
nθ)φ(x−

√
nθ) dx since φ′(x) = −xφ(x)

→ 0 if θ 6= 0

by the dominated convergence theorem since x(x−
√
nθ)φ(x−

√
nθ)1[−n1/4,n1/4](x)→

0 for each fixed x and is dominated by the integrable function 4e−1φ(x)/(|θ| ∧ 1)
(for n ≥ (3/|θ|)4).
Details of this domination: For |x| ≤ n1/4 it follows that

|x||x−
√
nθ| ≤ n1/4| − n1/4 −

√
nθ| ≤ n1/2 + n3/4|θ| ≤ 2n3/4(|θ| ∨ 1)

while

φ(x−
√
nθ) = φ(x) exp(

√
nθx− nθ2/2)

≤ φ(x) exp(|θ|n3/4 − nθ2/2)

= φ(x) exp(|θ|n3/4(1− n1/4|θ|/2))

≤ φ(x) exp(−1

2
|θ|n3/4) if 1− n1/4|θ|/2 < −1/2

or, equivalently, when n > (3/|θ|)4. Combining these two bounds yields

|x||x−
√
nθ|φ(x−

√
nθ) ≤ φ(x)n3/42(|θ| ∨ 1) exp(−|θ|n3/4/2)

= φ(x)

{
2n3/4 exp(−|θ|n3/4/2) if |θ| < 1
2n3/4|θ| exp(−|θ|n3/4/2) if |θ| ≥ 1

= φ(x)

{
(4/|θ|)(n3/4|θ|/2) exp(−|θ|n3/4/2) if |θ| < 1
4(n3/4|θ|/2) exp(−|θ|n3/4/2) if |θ| ≥ 1

≤ 4e−1

|θ| ∧ 1
φ(x).

(b), Second (more elegant) solution: from the lecture notes, 3.3 (3), it follows that

Rn(θ) = E[n(Tn − θ)2] = nV ar[Tn] + nbn(θ)2 ≥ a2 + nbn(θ)2.

Using the formula for bn(θ) from part (a) above, it follows that it is enough to show
that ∣∣∣∣∣

∫ n1/4

−n1/4

xφ(x− n1/4)dx

∣∣∣∣∣→∞.
But we have, with Z ∼ N(0, 1) (and hence E|Z| <∞),∣∣∣∣∣

∫ n1/4

−n1/4

xφ(x− n1/4)dx

∣∣∣∣∣ =

∣∣∣∣∫ 0

−2n1/4

(y + n1/4)φ(y)dy

∣∣∣∣
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≥
∣∣∣∣n1/4

∫ 0

−2n1/4

φ(y)dy

∣∣∣∣− ∣∣∣∣∫ 0

−2n1/4

yφ(y)dy

∣∣∣∣
≥ n1/4(Φ(0)− Φ(−2n1/4))− E|Z|
→ ∞.

2. (Super-efficiency at two parameter values) Suppose that X1, . . . , Xn are i.i.d.
N(θ, 1) where θ ∈ R) Let a, b ∈ [0, 1) and define the estimator Tn as follows:

Tn =


Xn if |Xn − 1| > n−1/4 and |Xn + 1| > n−1/4,
aXn + (1− a) if |Xn − 1| ≤ n−1/4,
bXn + (1− b)(−1) if |Xn + 1| ≤ n−1/4.

(a) Find the limiting distribution of
√
n(Tn − θ) when:

(i) θ 6= 1 and θ 6= −1; (ii) θ = 1; (iii) θ = −1.
(b) Find the limiting distribution of

√
n(Tn − θn) when:

(i) θn = 1 + cn−1/2; (ii) θn = −1 + cn−1/2.
(c) Could we have super-efficiency at a countable collection of parameter values?

Solution: (a) Note that
√
n(Xn− θ)

d
= Z ∼ N(0, 1) for all θ ∈ R and n ∈ N. Thus

we find that
√
n(Tn − θ) =

√
n(Xn − θ)1[|Xn−1|>n1/4] · 1[|Xn+1|>n1/4]

+
√
n(aXn + (1− a)− θ)1[|Xn−1|≤n1/4]

+
√
n(aXn − (1− b)− θ)1[|Xn+1|≤n1/4]

d
= Z · 1[

√
n|Xn−θ+θ−1|>n1/4]1[

√
n|Xn−θ+θ+1|>n1/4]

+
{
a
√
n(Xn − θ) +

√
n(aθ − θ + (1− a))

}
1[|
√
n(Xn−θ)+

√
n(θ−1)|≤n1/4]

+
{
b
√
n(Xn − θ) +

√
n(bθ − θ − (1− b))

}
1[|
√
n(Xn−θ)+

√
n(θ+1)|≤n1/4]

→d


Z if θ 6= 1, θ 6= −1,
aZ if θ = 1,
bZ if θ = −1,


∼ N(0, V 2(θ))

where

V 2(θ) = 1{−1,1}(θ) + a21{1}(θ) + b21{−1}(θ).

(b) If θ = θn = 1 + cn1/2,

√
n(Tn − θn)

d
= Z1[|Z+c|>n1/4] + (aZ + c(a− 1))1[|Z+c|≤n1/4] + op(1)

→d aZ + c(a− 1) ∼ N(c(a− 1), a2).

In the same way, if θ = θn = −1 + cn1/2, we find that
√
n(Tn − θn) →d bZ + c(b− 1) ∼ N(c(b− 1), b2).

(c) A similar construction works to yield superefficiency at all θ ∈ Z =
{0,±1,±2, . . .}.
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3. Suppose that X1, . . . , Xn are i.i.d. with distribution function F having a continuous
density function f . Let Fn be the empirical distribution function of the Xi’s, suppose
that bn is a sequence of positive numbers, and let

f̂n(x) =
Fn(x+ bn)− Fn(x− bn)

2bn
.

(a) Compute E{f̂n(x)} and V ar(f̂n(x)).
(b) Show that Ef̂n(x)→ f(x) if bn → 0.
(c) Show that V ar(f̂n(x))→ 0 if bn → 0 and nbn →∞.
(d) Use some appropriate central limit theorem to show that (perhaps under some
suitable further conditions that you might need to specify)√

2nbn(f̂n(x)− Ef̂n(x))→d N(0, f(x)).

Hint: Write f̂n(x) in terms of some Bernoulli random variables and identify p = pn.

Solution: (a) First note that 2nbn = n(Fn(x+bn)−Fn(x−bn)) is a Binomial(n, pn)
random variable with pn = F (x+ bn)− F (x− bn). Hence if bn → 0

Ef̂n(x) =
F (x+ bn)− F (x− bn)

2bn
=

pn
2nbn

=
1

2

{
F (x+ bn)− F (x)

bn
+
F (x)− F (x− bn)

bn

}
→ 1

2
{f(x) + f(x)} = f(x).

(b) Furthermore

V ar(f̂n(x)) =
npn(1− pn)

(2nbn)2

=
1

2nbn

pn
2bn

(1− pn)

→ 0 · f(x) · 1 = 0

if nbn →∞ and bn → 0.
(c) Since 2nbnf̂n(x) =

∑n
i=1Xni where Xni ∼ Bernoulli(pn), it follows that σ2

ni =
pn(1− pn) so that σ2

n = Var(
∑n

i=1Xni) = npn(1− pn), and

γn ≡
n∑
i=1

γni =
n∑
i=1

E|Xni − µni|3

= npn(1− pn){(1− pn)2 + p2n}
≤ 2npn(1− pn)

so that

γn/σ
3 ≤ 2√

npn(1− pn)
=

2√
nbn(pn/bn)(1− pn)

→ 0
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if bn → 0 and nbn →∞. Thus, by the Liapunov CLT,

2nbn(f̂n(x)− Ef̂(x))√
npn(1− pn)

→ N(0, 1)

if bn → 0 and nbn →∞. Thus

√
2nbn(f̂n(x)− Ef̂n(x)) =

2nbn(f̂n(x)− Ef̂n(x))√
npn(1− pn)

√
npn(1− pn)

2nbn

→ N(0, 1)
√
f(x) = N(0, f(x)).

4. Suppose that (T |Z) ∼Weibull(λ−1e−γZ , β), and Z ∼ Gη on R with density gη with
respect to some dominating measure µ. Thus the conditional cumulative hazard
function Λ(t|z) is given by

Λγ,λ,β(t|z) = (λeγZt)β = λβeβγZtβ

and hence
λγ,λ,β(t|z) = λβeβγZβtβ−1 .

(Recall that λ(t) = f(t)/(1− F (t)) and

Λ(t) ≡
∫ t

0

λ(s)ds =

∫ t

0

(1− F (s))−1dF (s) = − log(1− F (t))

if F is continuous.) Thus it makes sense to re-parametrize by defining θ1 ≡ βγ (this
is the parameter of interest since it reflects the effect of the covariate Z), θ2 ≡ λβ,
and θ3 ≡ β. This yields

λθ(t|z) = θ3θ2 exp(θ1z)tθ3−1

You may assume that
a(z) ≡ (∂/∂η) log gη(z)

exists and E{a2(Z)} < ∞. Thus Z is a “covariate” or “predictor variable”, θ1 is
a “regression parameter” which affects the intensity of the (conditionally) Weibull
variable T , and θ = (θ1, θ2, θ3, θ4) where θ4 ≡ η.
(a) Derive the joint density pθ(t, z) of (T, Z) for the re-parametrized model.
(b) Find the information matrix for θ. What does the structure of this matrix
say about the effect of η = θ4 being known or unknown about the estimation of
θ1, θ2, θ3?
(c) Find the information and information bound for θ1 if the parameters θ2 and θ3
are known.
(d) What is the information bound for θ1 if just θ3 is known to be equal to 1?
(e) Find the efficient score function and the efficient influence function for estimation
of θ1 when θ3 is known.
(f) Find the information I11·(2,3) and information bound for θ1 if the parameters θ2
and θ3 are unknown. (Here both θ2 and θ3 are in “the second block”.)
(g) Find the efficient score function and the efficient influence function for estimation
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of θ1 when θ2 and θ3 are unknown.
(h) Specialize the calculations in (d) - (g) to the case when Z ∼ Bernoulli(θ4) and
compare the information bounds.

Solution: (a) Integrating λθ(t|z) with respect to t gives

Λθ(t|z) = θ2 exp(θ1z)tθ3 ,

and hence the conditional survival function 1− Fθ(t|z) is given by

1− Fθ(t|z) = exp(−Λθ(t|z)) = exp(−θ2 exp(θ1z)tθ3) . (2)

It follows that
fθ(t|z) = θ2θ3e

θ1ztθ3−1 exp(−θ2eθ1ztθ3) ,
and hence that

pθ(y, z) = fθ(y|z)gη(z) = θ2θ3e
θ1ztθ3−1 exp(−θ2eθ1ztθ3)gη(z)

= = θ2θ3e
θ1ztθ3−1 exp(−θ2eθ1ztθ3)gθ4(z) .

(b) We first calculate the scores for θ. Note that the random variable W ≡
θ2 exp(θ1Z)Y θ3 has, conditionally on Z, a standard Exponential(1) distribution:

Pθ(W > w|Z) = Pθ(θ2 exp(θ1Z)Y θ3 > w|Z) = e−w

by (2). We calculate

l(θ|Y, Z) = log pθ(Y, Z)

= log θ2 + log θ3 + θ1Z + (θ3 − 1) log Y − θ2eθ1ZY θ3 + log gθ4(Z) ,

l̇1(Y, Z) = Z − Zθ2eθ1ZY θ3 = Z(1−W ) ,

l̇2(Y, Z) =
1

θ2
− θ2e

θ1ZY θ3

θ2
=

1

θ2
(1−W ) ,

l̇3(Y, Z) =
1

θ3
+ log Y − θ2eθ1ZY θ3 log Y

=
1

θ3
+ log Y {1− θ2eθ1ZY θ3}

=
1

θ3

{
1 + log

θ2e
θ1ZY θ3

θ2eθ1Z
{1−W}

}
=

1

θ3

{
1 + {logW − log(θ2e

θ1Z)}{1−W}
}

=
1

θ3

{
[1− (W − 1) logW ] + (W − 1) log(θ2e

θ1Z)
}

l̇4(Y, Z) = a(Z) = a(Z, η) .

Moreover,

l̈13(Y, Z) = −Zθ2eθ1ZY θ3 log Y = −Z 1

θ3
θ2e

θ1ZY θ3 log

(
θ2e

θ1ZY θ3

θ2eθ1Z

)
= −Z

θ3
W{logW − log(θ2e

θ1Z)}
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= − z

θ3
W{logW − log(θ2)− θ1Z}

l̈23(Y, Z) = −eθ1ZY θ3 log Y = − 1

θ2θ3
θ2e

θ1ZY θ3 log

(
θ2e

θ1ZY θ3

θ2eθ1Z

)
= − 1

θ2θ3
W{logW − log(θ2e

θ1Z)}

= − 1

θ2θ3
W{logW − log(θ2)− θ1Z} ,

l̈33(Y, Z) = − 1

θ23
{1 +W [logW − log(θ2e

θ1Z ]2} .

Thus we calculate easily:

I11(θ) = Eθ(l̇1(Y, Z)2) = Eθ{E[Z2(1−W )2|Z]}
= E{Z2E[(1−W )2|Z]} = E(Z2) ,

I22(θ) = Eθ(l̇2(Y, Z)2) = Eθ{E[θ−22 (1−W )2|Z]} = θ−22 ,

I33(θ) = θ−23

{
1 + E[W (logW )2]− 2E(W logW ){log θ2 + θ1E(Z)}
+ E{(log θ2 + θ1Z)2}

}
= θ−23

{
1 +B2 − 2A{log θ2 + θ1E(Z)}+ E{(log θ2 + θ1Z)2}

}
I12(θ) = Eθ(l̇1(Y, Z)l̇2(Y, Z)) = Eθ{E[Zθ−12 (1−W )2|Z]} = θ−12 E(Z) ,

I13(θ) = −Eθ{̈l13(Y, Z)}
= θ−13 {E(Z)[A− log θ2]− θ1E(Z2)} ,

I23(θ) = −Eθ{̈l23(Y, Z)}
= (θ2θ3)

−1{A− log θ2 − θ1E(Z)}

where

A ≡ E{W logW} =

∫ ∞
0

(w logw) exp(−w)dw = 1− γ ,

B2 ≡ E{W (logW )2} = π2/6 + (1− γ)2 − 1 .

Note that since l̇4(y, z) = a(z) is just a function of Z, it follows easily that for
j = 1, 2, 3 we also have

Ij4(θ) = Eθ{l̇j(Y, Z)l̇4(Y, Z)}
= E{gj(W,Z)a(Z)} = E{E[gj(W,Z)a(Z)|Z]}
= E{a(Z)E[gj(W,Z)|Z]} = E{a(Z) · 0} = 0 ,

Because of this orthogonality, the information bounds for (θ1, θ2, θ3) are the same
when θ4 = η is unknown as when it is known.
(c) If θ2 and θ3 are known, then the information bound for estimation of θ1 is just
I−111 (θ) = 1/E(Z2). It follows that the information matrix for θ is of the following
form:

I(θ) =


E(Z2) θ−12 E(Z) θ−13 C 0
θ−12 E(Z) θ−22 (θ2θ3)

−1D 0
θ−13 C (θ2θ3)

−1D θ−23 E 0
0 0 0 Ea2(Z)


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where

C = E(Z)(A− log θ2)− θ1E(Z2)

D = A− log θ2 − θ1E(Z)

E = 1 +B2 − 2A(log θ2 + θ1E(Z)) + E(log θ2 + θ1Z)2 .

(d) If θ3 = 1 is known, then the information bound for θ1 is I−111·2 where

I11·2(θ) = I11 − I12I−122 I21

= E(Z2)− (E(Z)/θ2)
2θ22 = E(Z2)− (EZ)2 = V ar(Z) .

Thus I−111·2 = 1/V ar(Z).
(e) When θ3 is known, the efficient score function and the efficient influence function
for estimation of θ1 are given by

l̇∗1(Y, Z) = l̇1 − I12I−122 l̇2

= Z(1−W )− θ−12 E(Z)θ22
1

θ2
(1−W )

= Z(1−W )− E(Z)(1−W ) = (Z − E(Z))(1−W ) ,

and

l̃1(Y, Z) = I−111·2l̇
∗
1(Y, Z)

=
1

V ar(Z)
(Z − E(Z))(1−W ) .

(f) When both the parameters θ2 and θ3 are unknown, the information I11·(2,3) is
given by

I1·(2,3) ≡ I11·2 where the “second block” contains both θ2, θ3

= I11 − I12I−122 I21 (3)

where

I12 = (θ−12 E(Z), θ−13 C) ,

I−122 =

(
θ22E −θ2θ3D
−θ2θ3D θ23

)
1

E −D2
.

Thus the second term in (3 ) is{
[E(Z)]2E − 2E(Z)CD + C2

}
/(E −D2) . (4)

Now the denominator is

E −D2 = 1 +B2 − 2A(log θ2 + θ1E(Z)) + E(log θ2 + θ1Z)2

−(A− log θ2 − θ1E(Z))2

= 1 +B2 − 2A(log θ2 + θ1E(Z)) + E(log θ2 + θ1Z)2

−[A2 − 2A(log θ2 + θ1E(Z)) + (log θ2 + θ1E(Z))2

= 1 +B2 − A2 + V ar[log θ2 + θ1Z]

= π2/6 + θ21V ar(Z) ,
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and, upon noting that

C − E(Z)D = E(Z)(A− log θ2)− θ1E(Z2)− {E(Z)(A− log θ2)− θ1[E(Z)]2}
= −θ1V ar(Z) ,

it follows that the numerator of (4) is

C2 − 2E(Z)CD + [E(Z)]2E = C2 − 2E(Z)CD + [E(Z)]2D2 + [E(Z)]2(E −D2)

= (C − E(Z)D)2 + [E(Z)]2{π2/6 + θ21V ar(Z)}
= θ21[V ar(Z)]2 + [E(Z)]2{π2/6 + θ21V ar(Z)} .

It follows that the information for θ1 when θ2 and θ3 are unknown is equal to

I11·(2,3) = E(Z2)− [E(Z)]2{π2/6 + θ21V ar(Z)}
π2/6 + θ21V ar(Z)

=
π2/6

π2/6 + θ21V ar(Z)
V ar(Z) ≤ V ar(Z) ≤ E(Z2)

with equality in the first inequality if and only if θ1 = 0. Note that the information
decreases as θ1 increases, and it converges to π2/(6θ21) as V ar(Z)→∞.
(g) When θ2 and θ3 are unknown the efficient score function for θ1 is, with the
“second block” containing both θ2 and θ3,

l∗1 = l̇1 − I12I−122 l̇2

= l̇1 − (θ2(E(Z)E − CD), θ3(C −DE(Z))l̇2/(E −D2)

= Z(1−W )− E(Z)E − CD
E −D2

(1−W )

+
θ1V ar(Z)

π2/6 + θ21V ar(Z)

{
[1− (W − 1) logW ] + (W − 1) log(θ2e

θ1Z)
}

=

{
Z − E(Z)E − CD + log(θ2e

θ1Z)

π2/6 + θ21V ar(Z)

}
(1−W )

+
θ21V ar(Z)

π2/6 + θ21V ar(Z)
{1− (W − 1) logW} .

(h) When Z ∼ Bernoulli(η), then

I11 = E(Z2) = η = θ4 ,

I11·2 = V ar(Z) = η(1− η) = θ4(1− θ4) ,

I11·(2,3) =
π2/6

π2/6 + θ21V ar(Z)
V ar(Z)

=
π2/6

π2/6 + θ21η(1− η)
η(1− η) .

The corresponding information bounds are given by the reciprocals of these
quantities. See the following figures for comparisons of the information and
information bounds.
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Figure 1: Plots of I11, I11·2, and I11·(2,3) as a function of η = θ4, and for θ1 = .5, 1.0, 1.5
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Figure 2: Plots of I−111 , I−111·2, and I−111·(2,3) as a function of η = θ4, and for θ1 = .5, 1.0, 1.5
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