Statistics 593A, Problem Set 4

Wellner; 5/15/2014

Due: Thursday, May 29, 2014

1. BLM, page 336, problem 11.1: Show that it is not necessarily true that the variance of the supremum of an empirical process is upper bounded by the wimpy variance. Hint: consider $n=1, \mathcal{T}=\{1,2\}$, and binary-valued random variables.
2. BLM, page 337, problem 11.8: (Nemirovski's inequality in the non-symmetric case) Using the notation of Theorem 11.2, prove that even if the X_{i} 's are not assumed to be symmetric but centered,

$$
E\left\|S_{n}\right\|_{\infty}^{2} \leq 2(1+4 \log (2 d)) \Sigma^{2}
$$

3. (a) Suppose that X_{1}, \ldots, X_{n} are i.i.d. P on \mathbb{R} with $E\left|X_{1}\right|<\infty$. Consider the measure of dispersion $D_{n} \equiv n^{-1} \sum_{i=1}^{n}\left|X_{i}-\bar{X}_{n}\right|$ Use a Glivenko-Cantelli theorem to show that $D_{n} \rightarrow_{\text {a.s. }} E\left|X_{1}-\mu\right| \equiv d$ where $\mu=E\left(X_{1}\right)$.
(b) Now suppose that the X_{i} 's and D_{n} are as defined in (a), but now assume that $E\left(X_{1}^{2}\right)<\infty$. Use a Donsker theorem to show that $\sqrt{n}\left(D_{n}-d\right) \rightarrow_{d}$ something and identify "something". Hint: This is from Pollard (1989), Statistical Science 4, 341-366.
4. BLM, page 212, problem 6.11: (A log-Sobolev inequality for the exponential distribution) Assume that X is exponentially distributed; i.e. X has density $\exp (-x)$ for $x>0$. Prove that if $f:[0, \infty) \rightarrow \mathbb{R}$ is differentiable, then

$$
\operatorname{Ent}\left(f(X)^{2}\right) \leq 4 E\left\{x\left(f^{\prime}(X)\right)^{2}\right\}
$$

Hint: Use the fact that if X_{1} and X_{2} are independent $N(0,1)$ random variables, $\left(X_{1}^{2}+X_{2}^{2}\right) 2$ is exponentially distributed, and use the Gaussian log-Sobolev inequality.
5. Bonus problem: BLM, page 213, problem 6.12 (Square root of a Poisson random variable). Let X be a Poisson random variable (with parameter ν). Prove that for $0 \leq \lambda<1 / 2$

$$
\log E \exp (\lambda(\sqrt{X}-E \sqrt{X})) \leq \frac{\lambda^{2}}{1-2 \lambda}
$$

