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Summary. We consider a process of two classes of particles jumping on a one dimen-
sional lattice. The marginal system of the first class of particles is the one dimensional
totally asymmetric simple exclusion process. When classes are disregarded the process is
also the totally asymmetric simple exclusion process. The existence of a unique invariant
measure with product marginals with density p and A for the first and first plus second
class particles, respectively, was shown by Ferrari, Kipnis and Saada (1991). Recently Der-
rida, Janowsky, Lebowitz and Speer (1993) and Speer (1994) have computed this invariant
measure for finite boxes and performed the infinite volume limit. Based on this compu-
tation we give a complete description of the measure and derive some of its properties.
In particular we show that the invariant measure for the simple exclusion process as seen
from a second class particle with asymptotic densities p and A is equivalent to the product

measure with densities p to the left of the origin and A to the right of the origin.
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1. Introduction

The simplest way of defining the two species system is by using the basic coupling of the
totally asymmetric simple exclusion process (SEP). We define the simple exclusion process
ne € {0,1} (¢ > 0) as follows. At each site z € we attach a random clock that rings
according to a Poisson process of parameter 1. The clocks are mutually independent.
When the clock of an occupied site z rings, if z 4+ 1 is empty, the particle at x jumps

to x + 1. If x + 1 is occupied, nothing happens. Thus, in this process, the particles are
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generally drifting to the right. If one considers two initial configurations n' and n? € {0, 1}
such that n'(z) < n?(x) for all 2 and uses the same clocks for both realizations, then one
has a coupled process (n},n?) with the property that n}(z) < n?(z) for all z and all
t > 0 (cf. Liggett (1976, 1985)). The two species process (o4,&) (¢ > 0) is defined by
putting oy(z) = n}(z) and &(z) = n?(x) — ni(x). The o particles are the first class
particles and the £ particles are the second class particles. The reason for these terms is
that, when a clock rings for a first class particle at site x and a second class particle is at
site x + 1, the particles interchange positions, whereas if a second class particle is at x and
a first class particle is at = + 1, they do not move. It is easy to see that the two species
process is Markovian.

In this paper we are concerned with the invariant measures for the two species process.
Since the marginal processes o; and o;+&; are simple exclusion processes, the corresponding
marginal measures of any invariant measure for the two species process must be invariant
for the sep. Now, the invariant measures for the SEP are convex combinations of the
product measures v, with density p € [0,1] and the blocking measures concentrated on
the configuration ...000111... and its translates. Let us say that a distribution of (o, &)
has good marginals if, for some p < A, its o marginal is v, and its o + { marginal is vy. It
is easy to construct a product measure 7o for (o, &) with good marginals. Ferrari, Kipnis
and Saada (1991) proved that, for the two species process (oy,&;), there exists a unique
invariant measure po with good marginals, and that the process started with the product
measure 7o converges to us as t — co. Derrida, Janowsky, Lebowitz and Speer (1993) have
recently computed the invariant measure po in finite boxes and, performing the infinite
volume limit, they have investigated ps. In a sequel, Speer (1994) makes this approach
rigorous.

One important fact discovered by Derrida, Janowsky, Lebowitz and Speer (1993) is
that, under the invariant measure o, the distribution to the right of a second class particle
is independent of the distribution to its left. This suggests studying the process ‘as seen
from a second class particle’. To make this precise, assume that at time ¢ = 0 there is
a second class particle at the origin and let X; be its position at time ¢. The process as
seen from this second class particle is (7x,0t,7x,&t), where 7, denotes translation by z.
Thus, (7x,0t(x), 7x,&(x)) = (or(x + Xt), &(x + X)) for all £ € . Now assume that the
initial distribution g of the two species process is translation invariant, and that it has
a positive density of second class particles. Then, at time t, the process as seen from a
second class particle, started with the measure p conditioned to having a second class
particle at the origin, has the same distribution as the two species process started with the

unconditioned measure p, but itself conditioned to having a second class particle at the

2



origin at time ¢. This means that, when the density of second class particles is positive, the
invariant measures for the two species process have a corresponding invariant measure for
the process as seen from a second class particle (see Ferrari, Kipnis and Saada (1991)). But
in fact the process as seen from a second class particle is richer: it has invariant measures
with only a finite number of second class particles with no corresponding measure in the
two species process.

Our main contribution is a complete description of the invariant measures for the
two species process as seen from a fixed second class particle. This description is based on
computations in Derrida, Janowsky, Lebowitz and Speer (1993). We consider two densities
0 < p <A< 1 and construct a measure py = phH(p, A) that is invariant for our process
(see Theorem 1). The parameters correspond to the asymptotic densities (as © — 400)
of the first and the first plus second class particles. The cases p = 0 or A = 1 are easier
and were considered before. In the particular case in which p = 0 or A = 1, either the
o marginal or the o 4+ £ marginal is trivial. Moreover, in this case, the other marginal is
trivial if p = X and it is the SEP if p < A. In the latter case, the process corresponds to
the SEP as seen from a tagged particle, as studied by Ferrari (1986) and De Masi, Kipnis,
Presutti and Saada (1990). An important general property of the measure ) is ‘translation
invariance’, in the sense that it is the same seen from any second class particle. When
p < A this ‘translation invariance’ implies that there exists a unique translation invariant
po such that p) is pg conditioned to having a second class particle at the origin. When
A = p, the average distance between two successive second class particles is infinite. This
implies that there is no translation invariant measure po such that pf is po conditioned to
having a second class particle at the origin.

Recall that our particles are drifting to +00. The definition of the two species process
is such that a first class particle can overtake a second class one, but the other way
around is prohibited. Let us start the process with a second class particle at the origin,
and, along the evolution of the process, we refer to this particle as the 0-th second class
particle. We consider the second class particles ordered from left to right, so that we
may speak of the i-th second class particle for any ¢ € . If one identifies the two classes
of particles starting from the i-th second class particle (¢ > 0), one has an operator ®;
acting on the configurations (o, ), which commutes with the semigroup corresponding to
the evolution. Similarly, for any fixed 7 < 0, one can identify holes, i.e. empty sites, with
second class particles starting from, and to the left of, the j-th second class particle to
obtain an operator ¥; that also commutes with the semigroup. Hence, applying any (or
both) of these operators to the ‘translation invariant’ stationary measure pf, we obtain

another invariant measure (see Theorem 2). Incidentally, these new measures are clearly
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not ‘translation invariant’. Now, identifying first and second class particles to the right of
the particle at the origin and holes and second class particles to the left of it, we obtain
the invariant measure for the process as seen from a single, isolated second class particle.
When p < A this corresponds to a shock in the SEp (Ferrari, Kipnis and Saada (1991),
Ferrari (1992)). When p = X\ there is a reminiscence of the shock, as the density to
the right of the second class particle is bigger than the density to the left of it and the
approach to the asymptotic density A, which equals p here, is slow (Derrida, Janowsky,
Lebowitz and Speer (1993)). If one makes the identification for all but two second class
particles, one gets that the distance d between the two second class particles is, following
the terminology of Derrida, Janowsky, Lebowitz and Speer (1993), a ‘bounded state’ even
when A = p. Indeed, the distribution of d is the same as the distribution of the distance
between two successive second class particles under py. It turns out that this distance
has the same distribution as the hitting time of 1 for a nearest neighbor random walk
with jumps in {—1,0,1} with probabilities p(1 — X), 1 — A(1 — p) — p(1 — A) and A(1 — p)
respectively (see Lemma 2.5).

Our approach relies on the work of Derrida, Janowsky, Lebowitz and Speer (1993)
and Speer (1994) but we work directly in the infinite volume. In Section 3 we describe
completely the measure p and show that it is invariant for the process as seen from a fixed
second class particle. Derrida, Janowsky, Lebowitz and Speer (1993) state the following
remarkable property of the measure ph: the distribution of first class particles to the right
of the tagged second class particle is the product measure v, with density p while the
distribution of empty sites to the left of the tagged second class particle is the product
measure vq_) with density 1 — A. Speer (1994) proves this statement and here we give an
alternative proof of this fact by showing that one may construct ) as follows. We first
put a second class particle at the origin and distribute the first class particles to the right
of the origin according to the product measure v,. Then we give a recipe for deciding
where to put the second class particles among the unnoccupied sites. To the left of the
second class particle at the origin the positions of the empty sites are chosen according to
the product measure v1_) and a similar recipe is used to decide where to put the second
class particles. (See Proposition 1.)

When X\ > p there exists a unique translation invariant measure us with the property
that it coincides with ph when it is conditioned to having a second class particle at the
origin. As explained above, the invariance of u!, for the process as seen from the second
class particle implies that the measure pgy is invariant for the two species process. Using
the property that the first class particles to the right of the tagged second class particle

are distributed according to a product measure, we show that ps has good marginals
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(cf. Theorem 3). This already followed from the infinite volume limit of Derrida, Janowsky,
Lebowitz and Speer (1993) but in a somewhat indirect way. We also show that it is possible
to construct a coupling jz with marginals u!, and us in such a way that the number of sites
where the two marginals differ is a random variable with a finite exponential moment. (See
Theorem 4.)

Let v, » be the product measure with density p to the left of the origin and density A
to the right of the origin. Using the results of Ferrari, Kipnis and Saada (1991), Ferrari
(1992) proved that the SEP as seen from a second class particle starting with the product
measure v, » presents a shock: uniformly in time the asymptotic densities are p and A to
the left and right of the origin, respectively. Indeed the process with a unique second class
particle, started at the origin, with initial product distribution v, 5 can be coupled to the
two species process with initial product distribution 7y (with marginals v, and v,) in such
a way that at all times the single second class particle of the first process has the same
position as the tagged second class particle in the second process. As mentioned above,
this can be done by identifying first and second class particles to the right of the origin
and empty sites and second class particles to the left of the origin. Applying the results for
the two species process to the shock in the SEp, Derrida, Janowsky, Lebowitz and Speer
(1993) have computed the rate of convergence of the density of the shock to the asymptotic
densities p and A\. We make a further step proving that the invariant measure p’ for the
process as seen from a single second class particle has the following property. One may
construct a coupling between ' and v, x in such a way the the number of sites where the
two marginals differ is a random variable with a finite exponential moment. This implies
in particular that y' is equivalent to v, x. (See Theorem 5 and its corollary.)

Let us now mention some related results. Speer (1994) have described the set of all
invariant measures for the two species process and has shown that the invariant measure po
is not Gibbsian. Ferrari and Fontes (1993) have computed the asymptotic variance of the
position of the second class particle for the process with initial distribution pf, and they
have studied the density fluctuation fields for the exclusion process with a shock initial
condition.

This article is organised as follows. In the next section we prove three basic lemmas
(Lemmas 2.1, 2.2, and 2.3) that are used in later sections. In Section 3 we give our con-
struction of the measure ph, and we prove Theorem 1, which asserts that p) is invariant for
the process (7x,0t, 7x,£t). Also in this section are Theorem 2, concerning other invariant
measures constructed from pf with the aid of the operators ®; and ¥;, and Proposition 1.
In Section 4 we deal with the invariant measure us for the process (o4, &), and prove that it

has good marginals (cf. Theorem 3). In that section we also prove Theorem 4, concerning
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the coupling /i between s and py mentioned above. The last section is devoted to proving

Theorem 5, on the coupling between p’ and v, 5.

2. A distribution on the set of finite configurations

Let Y be the space of finite configurations of 0s and 1s, i.e.

Y = | J{0,1}" = {0,0,1,00,01,10, 11,000, .. }.
n>0

Usually, we think of a sequence ¢ in Y of length n as indexed by {1,...,n}. In this section
we define and study a certain probability distribution p on the space Y. This distribution
will be used in the next section to construct the invariant measure for the system as seen
from a second class particle.

Let ¢ € Y be given. We write N(¢) for the length of ¢, and K(¢) for the number of
Is in ¢. Formally, we have N({) = n if and only if ( € {0,1}", and K(() = Zivz(? (x).
An important definition that we shall need is the following. For ( € Y, let M(() be
the number of distinct configurations that can be obtained from ( by shifting ones to
the right, including ¢ itself. Thus, for example, we have M(100) = 3, M(0011) = 1,
and M (1010) = 5.

We may now define the distribution p on Y. In fact, we shall define a distribution p =
Pp,x for each 0 < p < A < 1. Let p and A as above be fixed. Given ( € Y, we put

p(Q) = Ppa(Q) = A1 = p)M(O)(Ap) KO (1 = ) (1 = p))VOHO, (2.1)

We show in Lemma 2.1(i) below that p does indeed define a probability distribution over Y.
It is with the aid of p = p, » that we shall construct the invariant measure for the two
species process as seen from a second class particle, when the asymptotic densities of the
first class particles and the first plus second class particles are respectively p and .

The rest of this section is devoted to proving that p gives a probability measure over Y
and to the study of some simple properties of the space (Y, p) and of the function M (()
(¢ € Y). In particular, we shall consider the random variable N = N((), that is, the
random length of a sequence ¢ drawn from Y according to p. The main results of this
section are given in Lemmas 2.1, 2.2 and 2.3, which we now state.

Lemma 2.1. Let p, A € (0,1) be fixed. Then (i) > .cyp(¢) = 1 if and only if p < A.
Assuming that p < X and, writing = , » for the expectation in (Y, p), we have: (i) if p < A
then (N+1) =1/(A— p), and (iii) if p = X then (N + 1) = oo. Finally, (iv) if p < A, then

N has a finite exponential moment. In other words, there exists § > 0 such that

e’ < oo. (2.2)



The distribution of the random variable IV is given in Lemma 2.5 below. The gener-

ating function of N is given in the following lemma.

Lemma 2.2. Let p < A. The generating function of N is given by

sN = ! {1—05—\/(1—05)2—4ab32}, (2.3)

-1
where a = p(1—A), b = A(1—p) and ¢ = 1—a—b. The closed disc |s| < {1 (V- \/5)2}

is its domain of convergence.

Our next lemma, Lemma 2.3, is inspired by Derrida, Janowsky, Lebowitz and Speer
(1993).

Lemma 2.3. For all {, v € Y, we have M ({10y) = M ({1v) + M ({07).

We now define a random walk on the integers that will be important in the sequel.
Let Xy, Xa,...,Y7,Ys, ... beindependent 0-1 random variables with (X;) = A and (Y;) = p
(i>1). Put Z; = X;—Y; (i > 1), and let Z, = >, <,<, Zi (n > 0). Note that then (Z,)
is a random walk on , and let T = inf{n > 0 :_Z_n = 1} be the hitting time of the
event {Z, = 1}.

The rest of this section is devoted to prove the lemmas above. The other sections of
this note may be read independently from what follows. Our first auxiliary lemma is the

following

Lemma 2.4. For all integers n, k > 0, we have

S uo= () (") (2.4)

where the sum ranges over all ( € Y with N({) =n and K({) = k.

We defer the proof of Lemma 2.4 until later, and pass on to a result that is crucial in
the proof of Lemma 2.1(3).

For a finite configuration ¢ € Y, recall that N({) denotes its length and K(() its
number of 1s. For integers n and k, set p, j = ZC p(¢), where the sum ranges over all { € Y
with N({) = n and K({) = k. Note that once we know that p is a probability measure
on Y, the quantity py, j is simply the probability that a random configuration { € Y has
length n and k elements equal to 1. In particular, the lemma below in this case simply
states that P{N =n} = P{T =n + 1}.



Lemma 2.5. Let A, p € (0,1) be fixed. Then, for any n > 0, we have
Y par={T=n+1} (2.5)
k

Proof. By Lemma 2.4, we have

1 n+1 n+1
— Ak—}-l 1—\ n—k k 1— n+l-k
Dk n+1<k+1) ( ) p )P (1—p)

1
n+1(wl +1)(Wy = k),

where W7 and W5 are two independent binomial random variables with parameters n + 1

and A and n + 1 and p, respectively. Now, summing over all k£, for n > 0 we have

1

1 ~
szpn,k = n——l-l{Wl —Wy=1} = T Znt1 =1}, (2.6)

where (Z,)$ is the random walk introduced above. On the other hand, recalling that T

is the hitting time of 1 for that walk, we have
{(T=n+1} ! {Z 1} (2.7)
=N = — n = .
n+1 +

for all integers n > 0. Identity (2.7) is Exercise (IV.12) of Spitzer (1976), but for complete-
ness we give a combinatorial proof for it in Lemma 2.6 below. Lemma 2.5 follows from

(2.6) and (2.7). [

Remark 2.1. The Local Central Limit Theorem (or direct calculations) and (2.7) imply
that, when 0 < p= A < 1, we have (T =n) = (c+0(1))n"%/? as n — oo, where ¢ = c(p) >
0 depends only on p. For the case in which p < A, see Remark 2.2.

Let us now prove (2.7). The proof below is entirely combinatorial and more elementary

than the one suggested in Spitzer (1976), which is based on Lagrange’s inversion formula.

Lemma 2.6. Let (V;)° be a family of iid. {+1,0}-random variables and let V,, =
> i<i<n Vi (n = 0) be the associated random walk on . Let T = inf{n : V,, = 1} be the
hitting time of {V,, = 1}. Then {T =n} = n={W,, = 1} for all integers n > 1.

Proof. We deduce this result from a lemma of Raney (1960) (see also Example 4 in
Section 7.5 of Graham, Knuth, and Patashnik (1989)): if x = (21,...,2,) IS a se-

quence of integers with ), .., x; = 1, then there is a unique cyclic permutation of x,
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say (j,Zj41,---,%Tn, 1, .., %j—1), all of whose proper initial partial sums are non-positive,

i.e. such that xj, x; + Tjqy1,...,0j+ -+ xj_2 <0,
Let x = (z1,...,2,) be a {£1,0}-sequence with ), ... z; = 1, and let Ex be the
event that (V1,...,V,) is a cyclic permutation of x. It is simple to check, and in fact it

follows from Raney’s lemma, that all the n cyclic permutations of x are distinct. Also,
clearly, the probability that (V;)T is any of these n permutations is (1/n)(Fx). Now, by
Raney’s lemma, exactly one of these permutations corresponds to the event {T' = n}, and

hence Lemma 2.6 follows. []
We may now prove Lemma 2.1, the first main result of this section.

Proof of Lemma 2.1. (i) We need to prove that an Pnk = 1 if and only if p < A. In
view of (2.5), we have >, ; pni = >, (' =n+1) = (T < o0), where T is the hitting time

of 1 for the walk (Z,)$° defined just after Lemma 2.3. It now suffices to notice that T' < oo
almost surely if and only if the walk (Z,)$ has non-negative drift. This proves (i).

We assume from now on that p < A, and rewrite (2.5) as {N =n} = {T =n+ 1}
(n € ). Let us now prove (4i). Suppose that p < A. Then, again considering the random
walk Z, = Y 1<i<n Zi and the hitting time T, by Wald’s identity we obtain 1 = (Z_F) =
(Z)(T) = (A —_p)_(T), and hence (N +1) = (T) =1/(A — p), as required.

To see (iii), note that for A = p the expected hitting time 7 is infinite. Finally,
to prove (iv), we prove that {N = n} decays exponentially with n. By (2.5) and (2.7),
we have {N = n} = {T = n+1} = (n+1)"YZpyy = 1} < {Zpy1 = 1} for all
integers n > 0. But then it suffices to notice that this last probability is exponentially
small, since (Z;) = A — p > 0. Indeed, if n is large enough with respect to A — p, we have

that

(Zoi1 = 1) < exp {—%n} (2.8)

by Hoeffding’s inequality. (See Hoeffding (1963) or McDiarmid (1989).) O

Proof of Lemma 2.2. The result is obtained by a standard application of Wald’s identity
to the stopping time 7" (see Breiman (1968)) and standard analytic continuation arguments.
L

Remark 2.2. It follows from Lemma 2.2 that {N = n} decays a little faster than it is
suggested in (2.8) in the proof of Lemma 2.1(iv). The rate of exponential decay of the
distribution of N when A > p is given by

limsup {N = n}¥/" =1 — {\/)\(1 —p) —+/p(1 —)\)}2.

n—00
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We now turn to the proof of Lemma 2.3. Let ( € Y be given. Write M(() for the set
of configurations that can be obtained from ({ by translating ones to the right. Thus M ()
is simply the cardinality |[M({)| of M(¢). If n € Y then n¢ will denote the sequence in Y
obtained by the concatenation of n and . Finally, if X C Y, we let X{ = {n( : n € X}.

Proof of Lemma 2.3. We fix ( € Y, and use induction on N(v). If N(y) = 0, that is,
if v is the empty sequence, then it suffices to notice that M({10) = M({1)0 U M(C0)1,
where the union is clearly disjoint. Thus the result follows in this case. Assume now
that N () > 1, and that the result holds for smaller values of N(y). We now analyse two
cases.

Case 1. The sequence vy does not contain the segment 10.

In this case we clearly have that v = 0%1¢ for some k, £ > 0. If £ > 1, using the fact
that M(nl) = M(n)1 for any n € Y and the induction hypothesis, we are home. Thus we

may assume that v = 0% for some k£ > 1. Now note that
M(C100%) = M(¢)10%+1 U M(C0)10F U - - - U M(COFT1)1, (2.9)
where clearly the sets on the right-hand side are pairwise disjoint. Similarly, we have
M(C10%) = M()10% U M(C0)10F~ L U - - - U M(COF)1, (2.10)

with all the unions disjoint. We now observe that, by (2.10), the elements in all but the
last set on the right-hand side of (2.9) are in natural one-to-one correspondence with the
elements in M(¢10%). Moreover, since the elements in the last set on the right-hand side
of (2.9) correspond to the elements in M (¢0*+1) = M(¢07) in an obvious way, we have
that

M(C107) = [M(CL10%F)| = IM(C10%)| + [M(COFHY)| = M (¢C1y) + M (C0y),

as required.

Case 2. The sequence v contains the segment 10.

In this case let us write v = v110y,. Using the induction hypothesis, we have that

M(C10y) = M(C10v110v2) = M (¢107y117v2) + M (¢10v1072)
= M(Cly1lv2) + M(COy1lv2) + M (C17y10v2) + M (¢07y1072)
= M((171107v2) + M (¢0y1107v2) = M ({ly) + M (¢0y),
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completing the induction step, and hence the proof. []

To close this section, we need to prove Lemma 2.4. To this end, we consider a func-
tion R(¢) (¢ € Y), implicit in Derrida, Janowsky, Lebowitz and Speer (1993), which will
turn out to give an alternative combinatorial description of the quantity M (). It is using
this description that we shall prove Lemma 2.4.

Let W = (W;)? be a {£+1,0}-sequence and L = (L;)} a 0-1 sequence. We say
that (W, L) is a labelled closed walk of length n if (i) W is a closed walk on 1 starting at 0,
that is, if all initial partial sums 3, ., .. W; (0 < j < n) are non-negative and >, ., ., Wi =
0, and (i7) L is such that, for all 1 < ¢ < mn, if W; = 1 then L; = 1, if W; = —1 then L; = 0,
and if W; = 0 then L; € {0,1}. For brevity, we refer to a closed walk on , starting at 0
simply as a closed walk. Given ¢ € Y, let R(() be the set of all labelled closed walks (W, L)
with L = ¢, and put R(¢) = |R(C)|-

Proof of Lemma 2.4. We start by proving the following claim.
Claim. For all {, v € Y, we have R((10v) = R(C1y) + R(¢0v).

Proof of the Claim. Let (, v € Y be fixed. Suppose W = (W;)? is a closed walk
for which (W, (10y) is a labelled closed walk. Assume W = WM wjw, WM where W)
and W@ are {+1,0}-sequences of length N(¢) and N(v) respectively, and wy, wy €
{£1,0}. We put

wMow ), (1) ( )= (0
WOoW ), Coy) if (w1, w2) = (1,-1)
WOIW 3, (1y) ( )=1(1

( )=(0

(
©(W,¢10v) = E
(WO (=W C0y) if (wy,ws) =

Then it is straightforward to check that ¢ defines a bijection between R({107y) and R({1vy)U
R(¢0y), proving the claim. []

Putting together the claim above and Lemma 2.3, we deduce that R(¢) = M (() for
all ¢ €Y, since R(0F1%) = M(0¥1%) = 1 for all k, £ > 0. We are now ready to start the
proof of Lemma 2.4 proper. The calculations below, which are included for completeness,
appear in the Appendix of Derrida, Janowsky, Lebowitz and Speer (1993) in a slightly
different form.

Let a and b > 0 be integers. For convenience, let us say that a 0-1 sequence L is of

type (a,b) if L has a elements equal to 1 and b elements equal to 0. Let r, 5 be the number
of labelled closed walks (W, L) with L of type (a,b). Thus rqp = > . R(() = > . M (),
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where the sum ranges over all ¢ with N(¢) = a+ b and K({) = a. Moreover, if W is a
given closed walk, let ry, o be the number of labelled closed walks (W, L) with W = W,
and L a sequence of type (a,b). Clearly 745 = D 1y "w,a,p, Where the sum ranges over all
closed walks W of length a + b.

The easiest way of handling the numbers 7, and rw 4 is by using generating func-
tions. In the sequel, we shall consider bivariate formal power series with formal variables x
and y. Let n > 0 be an integer. We put ¢y, (z,y) = >_,, Tap2?y’, where the sum ranges
over all pairs (a,b) with a, b > 0 and a + b = n. Moreover, for a closed walk W, we
put Yw (z,y) = >, >0 rw,a,5x%y". Then clearly ¢y, (z,y) = > i, ¥w (2, y), where the sum
is over all closed walks W of length n.

Now, if a closed walk W = (W;)7 has 2¢ non-zero entries, it is immediate that we
have w (z,y) = (x + y)" 292%9. Now note that the number of closed walks W = (W;)7
of length n with 2¢ non-zero entries is (q + 1)_1(2qq) (2'; ) Indeed, to each such walk W,
associate the walk W' = (W/)71" with W/ = W; for 1 <i <n and W), = —1. Then all

proper partial initial sums of W' are non-negative and ), ., .,,.; W{ = —1. The number of

2q;—1) (277(,1—:_11

and then Raney’s lemma (cf. the proof of Lemma 2.6) tells us that a fraction of 1/(n+1) of

such sequences W' is (n+1)7}( ): choose where to have the +1 in W’ randomly,

such choices will do for W’. Thus the number of closed walks of length n and 2¢ non-zero

)G = () G) = (D) 6)
n+1\ ¢ 20+1)  2q+1\ ¢ 2¢)  q+1\q/)\2¢)

as claimed. (Here and in the sequel, the reader is referred to Chapter 5 of Graham, Knuth,

entries is

and Patashnik (1989) for identities involving binomial coefficients.) Therefore

1 2q n _9
n s = _ _|_ n 9,9,,9
wnen) =3 1 (M) (50 )@+t
L () () ()i
q/)\2q J
@) ()
= - "y
q,kq+1<q 2q)\k—q
ol



Therefore we have that rg ,_r = (K + 1)_1(2) (”;CH), and hence Lemma 2.4 follows. [

We close this section with the following remark. Recall that M ({) appears in the
definition of the probability measure p = p, » on Y, and that we shall use p to construct
invariant measures for our two species asymmetric processes. We feel that the definition
of M(¢) makes it natural that this quantity should be involved in our construction. The
alternative description of M (¢) as a certain number of labelled walks on ,, given in the
proof of Lemma 2.4 above, allows us to perform some calculations, and in particular to

prove Lemma 2.4.

3. Invariant measures for the process as seen from a second class particle

In the sequel, we shall always have p < A. Given 0 < p < A < 1 we construct here a
‘translation invariant’ measure pj, in the sense this measure is invariant under translations
that leave a second class particle at the origin. The parameter p corresponds to the
asymptotic density of the first class particles, and A corresponds to the asymptotic density
of all the particles, with classes disregarded. In Proposition 1 we show that under uf
the distribution of first class particles to the right of the origin and the distribution of
empty sites to the left of it are product measures with densities p and 1 — X respectively.
Another important and nice property of the measure u) is that the distribution of the
distance between two successive second class particles is the same as the distribution of
the hitting time of 1 for the random walk Z,, introduced after Lemma 2.3. This observation
and Proposition 1 give an alternative way of computing the decay of densities found by
Derrida, Janowsky, Lebowitz and Speer (see Remark 3.2 below).

In Theorem 1 we show that ! is invariant for the process. We then construct other
invariant measures for the process as seen from a second class particle randomly drawing a
configuration according to u5 and identifying first and second class particles to the right of
the origin and empty sites and second class particles to the left of it. In particular, we get
the shocks when A > p: the invariant measure as seen from a single, isolated second class
particle. We may also obtain an invariant measure with only two second class particles. If
A = p the distance between these two particles is a non-degenerate random variable with
an infinite first moment. In this case the corresponding random walk Z, is symmetric and
the hitting time of 1 is finite with probability one but has an infinite mean.

Let {(;}ic C Y be a doubly infinite i.i.d. sequence of finite configurations with distri-
bution (¢; = ¢) = p(¢), where p({) is given in (2.1). A configuration (o, £) with distribution
5 is obtained by displaying the (; on the integers separated by second class particles. More

rigorously, for i > 0, let N; = N(¢;) + 1 and S; = Y0_( N;. Let I(z) =i if and only if

13



Si <x < 8Sip1 (1 €). Set 0(0) =0, £(0) =1 and for z > 0 put

_ CI(:c) ('7" - SI(:I:)) if SI(.’L‘) <r< SI(:I))+1
0($)_{0 ifJ?:S[(a,),

£(z) = {1 if z = Sz

0 otherwise.
Define o(z) and &(z) for z < 0 analogously. The resulting distribution of (o, &) is the

measure 4, that we seek.

Theorem 1. Let 0 < p < A < 1. The measure pf is invariant for (7x,0¢, 7x,6t), the

process as seen from a second class particle.

Before proving the theorem above, we construct other invariant measures using u’
and identification operators. Let & = {z;};c be the set of occupied sites of a configuration
¢ of second class particles with the origin occupied, where ¢y = 0 and z; < z;41 for all
integers i. Let ®; and ¥; (i € ) be operators on configurations (o, &) defined by setting,
for all z €,

) +&(x),0) ifz >

x),&(x)) otherwise,

),0) if z <z

o(x),&(x)) otherwise.

In words, ®; identifies first and second class particles to the right of the i-th second class
particle and ¥, identifies empty sites and second class particles to the left of the ¢-th second
class particle. The next lemma, which is a straightforward generalization of an observation
in Ferrari, Kipnis and Saada (1991), says that the identification operators commute with
the process as seen from a second class particle. The reason is that, owing to the nearest
neighbour interaction rules, namely, the total asymmetry of the jumps and the exclusion
interaction, the second class particles to the right of a given second class particle behave
as though they were first class particles. For the same reason, second class particles to the

left of a given second class particle are just like empty sites.

Lemma 3.1. For any 1 > 0 and j < 0, the operators ®; and V; commute with the

generator LY of the process as seen from the second class particle:
O, L, = Ly, U,;L, = Ly0,.

An immediate corollary of Lemma 3.1 is the following. Let ®,, = ¥_,, = I, the

identity operator.

14



Theorem 2. For any 0 < p< A <1 and any 0 <1 < 0o and —oo < j < 0 the measures
/ !
P25 = PiVjpy

are invariant for the process as seen from a second class particle.

Remark 3.1. For all 0 < p < A < 1, the measure p5; _; is the measure as seen from an
isolated second class particle. Moreover, the measure p5 , _; is a measure with only two

second class particles.

Proof of Theorem 1. By a standard construction of the process (Liggett (1985), And-
jel (1982)), it is sufficient to verify the equality

/ L f(0,€)diy(0,€) = 0 (3.1)

for f = 1r{(0,&)a}, where A is a finite subset of containing the origin, (o,£) is the

projection of the configuration (0,&) in A and T is an arbitrary configuration of the form

29 k29 _g412.. . 2712712 .. 22,

with arbitrary k and arbitrary v; € Y (1 = —k,—k + 1,...,—-1,1,...,k). Put l_ =
- Zz_:l_k(N(%) +1) and I} = Zle(N(’yi) + 1). Then, here, we have A = {z € :1[_

x <14}. Moreover 1. { -} is the usual indicator function and

IN

Lyf(0,8) = {o@)l - oz + D][f(e™* ") = f(0,€)]
T#0

+&(@)[1-o(z+ D)1 =&+ 1)][f(0,€>7") = f(0,6)]}
o(=1)[f(ro10™ 0, 706710) = f(0,€)]
+[1 = oL - Ef (ro™h, 7™ — f(o,€)].

Let pf, p4’ and py'” be the projections of p, on A, {I_—1}UA and AU{l, +1}, respectively.
1y, Jy 2 2 +

Then verifying (3.1) amounts to verifying the equality of the following two expressions:

/// 1F Z ,LL //// FO) (3-2)
$€A1
and
py' (20T2) + > Ty pyr) + py" (T712), (3.3)
TEAs
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where

AM={zeA:T(x)=1,T(x+1)=00r2}U{z € A~ : T'(z) =2,T(z + 1) =0},

Ao={zeA:T(x)=00r2, T(z+1)=1}U{z e A:T(z) =0,T(z+1) =2},
AT = A\{l+}a
' =9 29y g412...29_12712. .. 27,2, T =29y 2y _g+12...2v_12v12... 2y,
Loor1 ={T'(),y €Ay <z}l(z+ Il (a){T(y),y € A,y >z + 1}
We first show ph’(1T") = pgy”(T'~12). Notice that
py' (IF) = py (o (—1) = 1)y () = pApy (T).

On the other hand

k—1 k-1
u"(0712) = [ p(w) x p(w1) = [T p(w) x p()pd = pAus (L),
i=—Fk i=—k

where p is the probability measure given by (2.1). Similarly, u5"(I'0) = p4'(20I'_), so we
only need to show that the two central sums in (3.2) and (3.3) are equal. The first thing

to notice is that pf (') factors in the following way.
w3 (T) = m(T) x A(L = p)(Ap)* D (1 = A)(1 = p))™ DI =HD), (3.4)

where m(I') = Hf:_k M(v;), k(T) = Ef:_k K(v;) and n(T') = Ef:_k N(%;). The mea-
sure p4(I'z z+1) factors in a similar way when z € A‘\{Ei_:l_k(N(’yi) + 1)}. If moreover
z € Ay, then k(I') = k(I'y z41) and n(I') = n(I'z z+1). So the last factor in the product
(3.4) for p4(I') equals the corresponding one in p4(L'y g41)-

When I_ € Ay, we have
(T e41) = (1) X AL = p) A ET=0) (1 = N)(1 = ) Feee) Ko
X py(o(—1) = 1).

Since in this case k(I'z z4+1) = k(') — 1, n(Tz z41) = n(I') — 1 and p5H(c(—1) = 1) = Ap,
the product of the last two terms in the above expression equals the last term in (3.4). A
similar thing happens when /[, € Ay. Hence the factors dependent on A and p in the terms

of both central sums in (3.2) and (3.3) are the same and so it is sufficient to verify

Y omT) =" m(Teut1). (3.5)

TzEA TEA>
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This is proven in exactly the same way as (3.5) in Derrida, Janowsky, Lebowitz and Speer
(indeed, m here is the same object as w in that paper), by observing the following properties

of m, which are inherited from M:
m(T'10T") = m(T'1T"") + m(T'0T"),

m(['12I"") = m(I'2r") and  m(I'201") = m(I'2I").

The conclusion is that both sides in (3.5) equal

k1 k;—1 K
> omydt .y k),
Jyj=1)0

where y¥ (i = 1,...,m) are the maximal blocks of y; (y; € {0,1,2}) constituting I, that
is, [ = yb y;cj coykm O

The next result was announced by Derrida, Janowsky, Lebowitz and Speer (1993) and
proved by Speer (1994) through direct computations. Our proof is based on constructing
the measure ), by first displaying the first class particles to the right of the origin according
to a product measure and then specifying the positions of the second class particles. The

same is done to the left of the origin with the empty sites.

Proposition 1. Under i}, the distribution of first class particles to the right of the origin
is the product measure v, of parameter p. Similarly, the distribution of holes to the left

of the origin is the product measure vy_» with parameter 1 — \.

Proof. Let a configuration n € {0,1} be given. For z > 1, let 5|, € Y be the fi-
nite configuration 7(1)n(2)...n(x — 1) of length = — 1 determined by 7. For all z > 1,
put M(n,z) = M(n|,) and similarly put K(n,z) = K(n|,). For z > 1, let

0 if n(x)

3.6
AM (n, ) AEM:2) (1 — N)=z=Km2)=1if () (3.6)

1
0.

plaln) = {

Notice that p(x | n) depends on 7 only through sites 1,...,z. To prove our result it suffices
to prove that

Y plzln)=1 (3.7)

x>0
v, almost surely, which is proven in Lemma 3.2 below. The reason is that we can in-
terpret p(x|n) as the probability of the leftmost second class particle to the right of the

origin be at site z given that the first class particles are at the sites occupied by 5. To
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see this compute for instance the probability that the configuration ¢ = 11010 appears
between the second class particle at the origin and the next second class particle (at site
6). According to our construction, first ditribute three first class particles and two holes at
sites {1,...,5} with probability p3(1—p)2. Then put a hole at site 6 with probability 1— p.
Finally, the conditional probability of putting a second class particle at site 6 given the
configuration 110100... is

p(6/110100...) = AM(11010)A3(1 — ).

The resulting distribution is exactly the one given by (2.1). This argument can be applied
to an arbitrary configuration but the the notation is too heavy, and hence we omit the
details. [

Lemma 3.2. Let p(z|n) be defined as in (3.6). Then for all p € [0, )]
> _plz|n) =1 (3.8)
x>0

v, almost surely. Furthermore (3.8) holds for all configurations n € {0,1} with a finite

number of particles.

Proof. We first prove the identity (3.8) for configurations n € {0,1} with a finite number
of particles. Observe that if n(x) = 0 for all z > 0, then

dop@m) =AY (1-1)""=1

>0 z>0
Assume that the identity holds for any configuration with n particles. Let n be a config-
uration with n + 1 particles, whose rightmost particle is located at z > 0. Let n* be the
configuration n modified only at site z. Hence n* has n particles. From Lemma 2.3, for

T > z+ 2, we have

Divide the sum in (3.8) in two parts:
z+1 oo
S op(in) =) pn+ > p|n). (3.10)
x>0 z=1 r=z+2

Apply identity (3.9) to all terms of the second sum of the right-hand side of (3.10) to

obtain
o0 o0

Y op@n)= Y 1-n@)M@n?,z— HAKDITL(L - y)7-1-K0)
r=2z+2 r=2z+2
+ Z (1 —n(z))M(n, z — )AEM2)FL(1 _ )\yz—1-Kn.2)
r=2z+2

18



Since for x > z2+2, K(n,z) = K(n,z—1) = K(n*,z—1)+1land 1—n(z) = 1—-n(z—1) = 1,
we obtain

oo

= Z (1 _ 77(:1; _ 1))(’)72,.73 _ 1))\K(nz,x—1)+1(1 _ )\)(m—l)—l—K(nz,m—l)
r=z+2
FAX) Y (Ul — )Mz~ DXEOED I y) e K e,
r=z+2
Hence -~ -
> pla|n) = Z (@|n?)+(1=X) Y pl=z|n). (3.11)
Tz=z+2 z=z+1 z=z+1

Observe that for z < z, M (n,z) = M(n*,x), K(n,z) = K(n?,z) while 1 —n(x) = 1—n*(z)
for z < z and 1 — n(z) = 0. Hence multiplying by (1 — A) 4+ A the first z terms of the first
sum in the right hand side of (3.10),

z+1

Y op@n)=0-X) p=|n

. . 3.12
+A) (1= (@) M(n?, 2) KOS F (1 — y)em 1=K e) (3.12)

+(1—nz+1)M(n,z+ 1))\K(n,z+1)+1(1 _ )\)(Z+1)—K(n,Z)—1_

Now M(n,z+ 1) = M(n*,z2), K(n,z+1) = K(n*,z) + 1 and 1 —n(z+1) = 1 —
n*(z) = 1. Hence the last line equals Ap(n? | z) and the second plus the third line equal
MY _ p(z|n?). So, putting together (3.11) and (3.12) we get

D op@n)=0=X0> p[n)+2r)_ ). (3.13)
>0 >0 z>0
Since the second sum in the right-hand side of (3.13) above is one by inductive hypothesis,
this complete the induction step. Thus the result holds for finite . Since the sum of the
first n terms in (3.8) depends only on 7(1),...,n(n), the validity of (3.8) for finite 1 implies
that for any n and n > 1, we have >_"'_, p(z|n) < 1, which in turns implies that for any 7

> p(x|n) =c(n) < 1. (3.14)

Assume that there exists a set X with positive v, probability such that if n € Xg, then
c(n) < ¢ < 1. This and (3.14) imply that

oo

1> [dn,)Y sl = (V<o) =1, forp <

=1
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where N is the random variable whose distribution is given by (2.1) and (2.3). The
contradiction above proves that (3.8) holds v, almost surely for any p € [0,A]. [

Remark 3.2. Using the generating function of N given in (2.3), one can estimate precisely
the rate of convergence of the densities of the particles computed by Derrida, Janowsky,
Lebowitz and Speer (1993). Let (Z,)$° be the random walk on defined after Lemma 2.3.
We say that there is a record at time n > 1 if En > Zj for all 0 < 7 < n. Hence the
probability that under pf a second class particle is present at site n > 1 is the probability
that the random walk (Z,,)S° establishes a record at time n. Put ug = 1, and for n > 1
let u, = (A=p)+p(1=A)(T > n), where T is the time of the first record or, in other words,
the hitting time of 1. Now (2.3), the relation between N and T and the renewal equation
(see Feller (1968)) imply that u,, is precisely the probability that a record is established at
time n. From the rate of convergence of the distribution of T' (see remarks to the proofs
of Lemmas 2.2 and 2.5) it is clear that u,, goes exponentially fast to A — p when A > p and
like n~1/2 when A = p. Since the density of first class particles to the right of the origin is
a product measure with constant density p, this gives also the asymptotic density of holes
to the right of the origin. Analogous arguments work to the left of the origin by observing

that the density of holes is 1 — A.

4. The invariant measure for the translation invariant process

In this section we assume 0 < p < A < 1. Let ps be the unique translation invariant
measure satisfying ps( - |£(0) = 1) = pb( - ). As mentioned in the introduction, ps must
be invariant for the two species process. We show next that the measure ps has good

marginals.
Theorem 3. The o marginal of uy is v, while the o + £ marginal of ji3 is vy.

Proof. To construct the measure u), we started by assigning the positions of the second
class particles and then we gave the distribution of the first class particles, given the
position of the second class particles. The positions of the second class particles form
a (discrete time) renewal process with finite interarrival time, being the first renewal at
time 0. When p < ) the average distance between two renewals is (A — p)~! < oo. Hence
we can use the key renewal theorem to construct pg in the following way:

where 7, is the translation by x operator. To show the theorem take a cylinder function

f(o,&) depending only on o. Take a negative z such that the support of f is contained in
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(z,00). By Proposition 1,
/1,’27'zf = fo-

This and (4.1) implies that pof = v,f. To show that the o + { marginal is vy apply the

same reasoning for a positive z and show that usf = vy if f depends only on o+ &. [

Our next result exploits the embedded renewal process in both us and ub.

Theorem 4. It is possible to construct a coupling ji2 with marginals us and ph such that
if (0,&,0',¢') has distribution fi, and H(0,§,0',¢') =3, |o(x) — o' (z)| + |{(z) — &' (z)]
is the number of sites where (0,&) is different from (o’,¢’) then, under iy, the random

variable H has a finite exponential moment. In other words, there exists @ > 0 such that
/dﬂgeeﬂ < 00. (4.2)

Proof. Let (0,&) be a realization of the translation invariant point process related to the
point process with distribution p, and T; the stationary process related to £&. Thus T;
denotes the position of the i-th £ particle, where Ty < 0 is the position of the rightmost &
particle to the left of the origin. Let (7', ¢ ) be a realization of the process with distribution
ph and let S; be the renewal process associated to &', with S = 0 and S; denoting the
position of the i-th & particle. The random variables T; — T;_; are independent and have
the same distribution as S; — S;_1 for ¢ # 1, while (Tp, T1) has the limiting distribution

P(Ty > u,—Ty >v) = tliglo P(Sl(t)+1 > u, S[(t) > ).

Similarly, for all cylinder f, we have usf = limg_ oo uh72f- Now we construct a coupling
(0,€,0',¢") with the property that the two first marginals have distribution ps and the
two last marginals have distribution uh. If Tp = 0, put &'(z) = &(z) and o' (z) = o(z). If
To#0,let J*T =min{i >0:5; €} and J- =max{i <0:5; € £}, and let

(o(x),€(x)) fx>JTorz<J-

(7'(z), €'@) = {(&'@)’, () if I <z < It

It is clear that the resulting distribution of (o, ¢, 0’,¢’) has marginals pe and pf. To show
(4.2) notice that under fip, we have H < JT—J~. Since Ty and T} have a finite exponential
moment, it follows from Lindvall (1992), pp. 30-31, that both J* and |J~| have a finite

exponential moment. [
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5. Shocks in the simple exclusion process

If we take the process as seen from a second class particle and identify particles of both
classes to the right of the origin and second class particles with holes to the left of it, we get
n;, the simple exclusion process as seen from an isolated second class particle. Rigorously,
Lemma 3.1 says that the process n; := 7x,m = ®1V_17x, (0¢ + &) is the SEP as seen from
a second class particle. We consider the shock measure constructed in the remark after
Theorem 2 of Section 3. Let p/ = ®;¥_1pub. For 0 < p < X\ < 1, it follows from Theorem
2 that p’ is invariant for the process n;. Notice that X; can be seen as either a tagged
second class particle for the (oy, &) process or as an isolated second class particle for the
7 process. Our next result implies in particular that, for 0 < p < A < 1, the measure y’ is
equivalent to v, » the product measure with densities p and A to the left and right of the

origin respectively.

Theorem 5. If 0 < p < A < 1, it is possible to construct jointly the invariant mea-
sure p and the product measure v, in such a way that the number of sites where the

configurations differ has a finite exponential moment.

Proof. First we construct a configuration with distribution v,y using two independent
configurations with distribution uy. Let (¢, £7) and (67, &™) be two independent realiza-
tions of g and (o', ¢’) a realization of yf, independent of the other two. Define n € {0, 1}

by letting
ot (z)+&H(z) ifz>0
() = {J_(x) if £ <0
for all x € . Then, by the marginal properties of us given by Theorem 3, it is easy to
see that n constructed above has distribution v, y. Here it is important that we take
independent realizations of us to the right and left of the origin. Now couple (o, &™)
with (0/,¢’) as in the proof of Theorem 4, letting J4 be the leftmost positive site where
(oT,&T) is different from (o”,&’). Similarly, couple to the left of the origin letting J~ be
the rightmost negative site where (07, &™) differs from (¢/,¢’). By the same argument as
before J* and J~ have a finite exponential moment. Hence, setting ' = ®;¥_;(o’,¢’),

we get
doln'@) —n@)| < It —J
The result now follows again from Lindvall (1992).
An immediate consequence of the result above is the following.

Corollary. The measures ' and v, 5 are equivalent, i.e. one is absolutely continuous with

respect to the other.
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Proof. Since under both measures all non-empty cylinder sets have positive probability,
and non-empty sets of measure zero depend on infinitely many coordinates, the corollary

follows from Theorem 4. []
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