Empirical Processes Working Group Spring 2002 Three Problems

Jon A. Wellner

1 Problem 1

Example 1. (L_p deviations about the sample mean). Let X, X_1, X_2, \ldots, X_n be i.i.d. P on R and let \mathbb{P}_n denote the *empirical measure* of the X_i 's:

Let $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$, and, for $p \ge 1$ consider the L_p deviations about \overline{X}_n :

$$A_n(p) = \frac{1}{n} \sum_{i=1}^n |X_i - \overline{X}|^p = \mathbb{P}_n |X - \overline{X}_n|^p.$$

Questions:

(i) Does $A_n(p) \to_p E|X - E(X)|^p \equiv a(p)$?

(ii) Does $\sqrt{n}(A_n(p) - a(p)) \rightarrow_d N(0, V^2(p))$? And what is $V^2(p)$?

As will become clear, to answer question (i) we will proceed by showing that the class of functions $\mathcal{G}_{\delta} \equiv \{x \mapsto |x - t|^p : |t - \mu| \leq \delta\}$ is a *P*-Glivenko-Cantelli class, and to answer question (ii) we will show that \mathcal{G}_{δ} is a *P*-Donsker class.

Example 1p. $(L_p$ -deviations about the sample mean considered as a process in p. Suppose we want to study $A_n(p)$ as a stochastic process indexed by $p \in [a, b]$ for some $0 < a \le 1 \le b < \infty$. Can we prove that

$$\sup_{a \le p \le b} |A_n(p) - a(p)| \to_{a.s.} 0?$$

Can we prove that

$$\sqrt{n}(A_n - a) \Rightarrow \mathbb{A}$$
 in $D[a, b]$

as a process in $p \in [a, b]$? This will require study of the empirical measure \mathbb{P}_n and empirical process \mathbb{G}_n indexed by the class of functions

$$\mathcal{F}_{\delta} = \{ f_{t,p} : |t - \mu| \le \delta, a \le p \le b \}$$

where $f_{t,p}(x) = |x - t|^p$ for $x \in R, t \in R, p > 0$.

Example 1d. (*p*-th power of L_q deviations about the sample mean). Let X, X_1, X_2, \ldots, X_n be i.i.d. P on \mathbb{R}^d and let \mathbb{P}_n denote the *empirical measure* of the X_i 's:

Let $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$, and, for $p, q \ge 1$ consider the deviations about \overline{X}_n measured in the L_q -metric on \mathbb{R}^d :

$$A_{n}(p,q) = \frac{1}{n} \sum_{i=1}^{n} \|X_{i} - \overline{X}\|_{q}^{p} = \mathbb{P}_{n} \|X - \overline{X}_{n}\|_{q}^{p}$$

where

$$||x||_q = (|x_1|^q + \dots + |x_d|^q)^{1/q}$$

Questions:

(i) Does $A_n(p) \rightarrow_p E ||X - E(X)||_q^p \equiv a(p,q)$? (ii) Does $\sqrt{n}(A_n(p,q) - a(p,q)) \rightarrow_d N(0, V^2(p,q))$? And what is $V^2(p,q)$?

2 Problem 2.

Example 2. Least L_p -estimates of location. Now suppose that we want to consider the measure of location corresponding to minimum L_p -deviation:

$$\hat{\mu}_n(p) \equiv \operatorname{argmin}_t \mathbb{P}_n |X - t|^p$$

for $1 \leq p < \infty$. Of course $\hat{\mu}_n(2) = \overline{X}_n$ while $\hat{\mu}_n(1) =$ any median of X_1, \ldots, X_n . The asymptotic behavior of $\hat{\mu}_n(p)$ is well-known for p = 1 or p = 2, but for $p \neq 1, 2$ it is perhaps not so well-known. Consistency and asymptotic normality for any fixed p can be treated as a special case of the argmax (or argmin) continuous mapping theorem – which we will introduce as an important tool in chapter/lecture 2. The analysis in this case will again depend on various (Glivenko-Cantelli, Donsker) properties of the class of functions $\mathcal{F} = \{f_t(x): t \in R\}$ with $f_t(x) = |x - t|^p$.

Example 2p. Least L_p estimates of location as a process in p. What can be said about the estimators $\hat{\mu}_n(p)$ considered as a process in p, say for $1 \le p \le b$ for some finite b? (Probably b = 2 would usually give the range of interest.)

Example 2d. Least *p*-th power of L_q - deviation estimates of location in \mathbb{R}^d . Now suppose that X_1, \ldots, X_n are i.i.d. P in \mathbb{R}^d . Suppose that we want to consider the measure of location corresponding to minimum L_q -deviation raised to the *p*-th power:

$$\hat{\mu}_n(p,q) \equiv \operatorname{argmin}_t \mathbb{P}_n \|X - t\|_q^p$$

for $1 \leq p, q < \infty$.

3 Problem 3.

Example 9.B. (Kendall's process). Suppose that $X \sim P$ on \mathbb{R}^2 with distribution function H and marginal distributions F_1 and F_2 . Then there is always a distribution function C on $[0, 1]^2$ with uniform marginal distributions (a copula function) such that

$$H(x_1, x_2) = C(F_1(x_1), F_2(x_2))$$

Suppose that X, X_1, \ldots, X_n are i.i.d. with distribution function H, let $\epsilon = H(X)$, $\epsilon_i = H(X_i)$, and let Q denote the distribution function of the ϵ 's:

$$Q(t) = P(H(X) \le t), \quad 0 \le t \le 1.$$

A natural estimator of H is the empirical distribution function \mathbb{H}_n of the X_i 's, and hence the pseudo observations are

$$\hat{\epsilon}_{n,i} = \mathbb{H}_n(X_i) = \frac{1}{n} \# \{ j \le n : X_j \le X_i \},\$$

and the empirical distribution function of the $\hat{\epsilon}_{n,i}$'s is

$$\widehat{Q}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{[0,t]}(\widehat{\epsilon}_{n,i}),$$

the empirical measure of the $\hat{\epsilon}_{n,i}$'s indexed by the class of indicator functions $\mathcal{G} = \{1_{[0,t]} : t \in [0,1]\}$. In this case it is easily seen that Q and \hat{Q}_n do not depend on the marginal distributions F_1, F_2 of H, but only on the copula function C. This example has been considered in detail in BARBE, GENEST, GHOUDI, AND RÉMILLARD (1996) and GHOUDI AND RÉMILLARD (1998). Questions:

(i) Does $Q_n(t) \rightarrow_p Q(t)$ uniformly in $t \in [0, 1]$?

(ii) Does $\sqrt{n}(Q_n(t)-Q(t))) \Rightarrow \mathbb{Q}(t)$ for some Gaussian process \mathbb{Q} ? [Yes! See BARBE, GENEST, GHOUDI, AND RÉMILLARD (1996). But what is going on? Can the proof be simplified? What is the relationship to the class of "lower-layers"?]

References

- Barbe, P., Genest, C., Ghoudi, K. Rémillard, B. (1996). On Kendall's process. J. Multivariate Anal. 58, 197-229.
- Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. J. Amer. Statist. Assoc. 88, 1034-1043.
- Ghoudi, K. and Rémillard, B. (1998). Empirical processes based on pseudo-observations. In Asymptotic Methods in Probability and Statistics, 171-197, North-Holland, Amsterdam.

- Ghoudi, K. and Rémillard, B. (2000). Empirical processes based on pseudo-observations, II. Preprint.
- Van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.
- Van der Vaart, A. W. (2000). Semiparametric Statistics. Lectures on Probability Theory, Ecole d'Ete de Probabilites de St. Flour-XX, 1999. P. Bernard, Ed. Springer, Berlin. To appear.
- Van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer-Verlag, New York.