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Abstract

Recently, probabilistic methods and statistical learning theory have been shown to provide approxi-

mate solutions to \diÆcult" control problems. Unfortunately, the number of samples required in order

to guarantee stringent performance levels may be prohibitively large. This paper introduces bootstrap

learning methods and the concept of stopping times to drastically reduce the bound on the number of

samples required to achieve a performance level. We then apply these results to obtain more eÆcient

algorithms which probabilistically guarantee stability and robustness levels when designing controllers for

uncertain systems.
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I. Introduction

It has recently become clear that many control problems are too diÆcult to admit analytic

solutions [12], [15], [17], [56]. New results have also emerged to show that the computational

complexity of some \solved" control problems is prohibitive [16], [24], [61]. Many of these (lin-

ear and nonlinear) control problems can be reduced to decidability problems or to optimization

questions [10], both of which can then be reduced to the question of �nding a real vector sat-

isfying a set of (polynomial) inequalities. Even though such questions may be too diÆcult to

answer analytically, or may not be answered exactly given a reasonable amount of computational

resources, researchers have shown that we can \approximately" answer these questions \most of

the time", and have \high con�dence" in the correctness of the answers. In order to �x ideas,

we establish the following categorization:

� Which control questions can be answered? Which problems are solvable? This is the realm of

Decision Theory, and will give a yes/no answer.

� Which control problems are solvable but diÆcult? Which problems are solvable but at a

prohibitive cost? This is the realm of Computational Complexity Theory, and will tell us which

decidable problems are not \practically" solvable.

� What do we do about \approximately" solving (with guaranteed con�dence) those problems

which are costly to solve exactly? This is the realm of Stochastic Algorithms and Statistical

Learning Theory.
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Our paper is mainly concerned with the last item above. Many authors have recently advanced

the notion of probabilistic methods in control analysis and design. These methods build on

the standard Monte Carlo approach (with justi�cations based on Cherno� Bounds, Hoe�ding

Inequality, and other elementary probabilistic tools [21], [34], [66]) with ideas advanced during

the 1960s and 1970s [63] on the theory of empirical processes and statistical learning. In control

theory, some of the original (Monte Carlo) ideas have already been used by Lee and Poolla [45],

Ray and Stengel [52], Tempo et al. [6], [59], [60], Barmish et al. [7], [8], [9], [10], Chen and

Zhou [18], [19], [20] and by Khargonakar and Tikku [40], to solve robust analysis problems while

Vidyasagar used learning theory to solve robust design problems [66], [68].

Unfortunately, and as acknowledged by the various authors, probabilistic methods, while more

eÆcient than gridding techniques (which su�er from the curse of dimensionality), still require

a large number of samples in order to guarantee accurate designs. As an example, Vidyasagar

in [68] calculates that more than 2 million samples are needed in order to probabilistically

guarantee a certain performance level in a robust control design problem. On the other hand,

it was conjectured and veri�ed experimentally that much smaller bounds on the number of

samples may be suÆcient (tens of thousands instead of millions) to guarantee a certain level of

performance [68]. In fact, Vidyasagar in [68] uses 200 samples instead of the millions implied by

his bounds, while acknowledging that the theoretical guarantees of accuracy and con�dence no

longer hold. The question then becomes: what (if any) guarantees are obtained by the smaller

number of samples, or more appropriately, is there a smaller bound on the number of samples

which can still guarantee the desired level of accuracy and con�dence?

This paper answers the last question aÆrmatively, and does so by invoking di�erent versions of

bootstrap sequential learning algorithms. For these algorithms, the necessary number of samples

(known as the sample complexity of learning) is a random variable whose value is not known

in advance and is to be determined in the process of learning. This value is bounded below

by the sample size at which the algorithm starts to work, and bounded above by conservative

upper bounds of the sample complexity, which are of the same order as the bounds well known

in statistical learning theory, used, for instance, by Vidyasagar [66]. This will also lead to the

notion of eÆcient learning times which is then used to present our results in a computationally

attractive manner.
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As will become clearer in the paper, while the decision problem and the optimization problem

are related, the bounds are most eÆcient when one is interested in �nding absolute minima, or

in solving decision problems, as opposed to �nding the near-minima proposed by Vidyasagar

[67]. This fact led to some confusion as it turns out that the bounds based on standard Cherno�

arguments were actually more eÆcient (but only for the relatively large values of level parameter

� used in [67]) than those rooted in Learning Theory contrary to what was indicated in [67]. We

will however illustrate the point that the learning theory bounds are actually required in order

to solve the minimization problem if one is interested in �nding absolute minima as opposed to

level-minima presented later in the paper [67], or when high-dimensional problems are addressed.

The mathematical justi�cation of the methods of learning suggested in this paper relies heavily

upon the methods of the empirical processes theory. This theory started in the seminal papers of

Vapnik and Chervonenkis [65] and Dudley [28]. The exposition of more recent results on empirical

processes can be found in [29] and [62], which also contain a number of deep applications of

empirical processes in statistics. The applications of empirical processes to statistical learning

problems are discussed in great detail in [25], [63], [64], [66]. The major technical tools used in

our paper are concentration inequalities for empirical and related processes. We are using in the

current version of the results a relatively old form of these inequalities based on the extension

of the classical Hoe�ding type bounds to the martingale di�erences. This extension is due,

apparently, to Azuma [5] and it was used very successfully by Yurinskii [69] in the problems of

Probability in Banach Spaces. Since then, it has been used in many other applications, including

functional limit theorems and empirical processes [41], [42], local theory of Banach spaces [47],

combinatorial problems on graphs [46], NP-complete problems [53], and pattern recognition

problems [25]. It is clear, however, that further investigation of the properties of sequential

learning algorithms would require more advanced and deep versions of concentration inequalities

developed in the recent years by Talagrand, see e.g. [57].

The remaining of this paper is divided as follows: section II contains a discussion of generic

robust control problems, their diÆculty, and their computational complexity. Section III presents

an overview of statistical learning methods and section IV contains the bootstrap learning method

and its applications to control problems. Section V contains a numerical example illustrating

our approach and contrasting it with earlier results, while section VI contains conclusions and

an outline for future research. Finally, Appendix A contains the proofs of the main results.
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II. Robust Control, Decision Theory, and Computational Complexity

In studying control problems we are led to the conclusion that some robust control problems

are actually undecidable. For example, the simultaneous stabilization problem of more than

two plants was shown by Blondel [12] to be rationally undecidable using a general model of

computing. More examples of such problems may be found in [13].

A. Decision Theory

Most of the control problems we study here are decidable and may be converted to a decision

problem relating to the satis�ability of quanti�ed multivariate polynomial inequalities (MPIs)

which are then reduced using Tarski's quanti�er elimination (QE) theory [58]. These problems

include the �xed-structure control design problem for linear and nonlinear systems which re-

mains one of the most practical and diÆcult problems [31], [56]. In fact, one can argue that

most practical control designs involve �xed-structure (and �xed-order) controllers such as PID,

or Lead-Lag compensators (see page 113 of [48], and page 3 of [4]). While this makes the control

design problem theoretically intractable, it actually reduces some undecidable problems to de-

cidable ones, and �ts nicely within the randomized algorithms framework. As an example, the

following problems are all decidable using Tarski's decision theory: robust stabilization problems

[3], dead-beat control of discrete-time systems [50], Lyapunov stability of polynomial systems

[37], and others [2]. The general control problem for an uncertain single input single output

(SISO), linear time invariant (LTI) system stated as a decision problem is as follows,

Problem 1: Given a real rational function G(s;X), where X = [x1 x2 � � � xk] is a k-

dimensional real vector, does there exist an l-dimensional real vector Y = [y1 y2 � � � yl],

yi) [yi � yi � yi]; 1 � i � l, in the real rational C(s; Y ) such that for all (xi) [xi � xi �

xi]; 1 � i � k, the closed-loop system T (s;X; Y ) satis�es some performance objectives placed

on a scalar performance index 	(X;Y )?

This is the performance veri�cation problem [10], and it includes the guaranteed-cost design

problem. Note that if either X or Y are known, then the problem simpli�es to a robust analysis

problem. Typical examples are the linear quadratic regulator (LQR), and specialized guaranteed-
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Fig. 1. Feedback Structure for Problem 1

cost problems. In the case where the problem and the performance objective are convex, Linear

Matrix Inequalities (LMIs) may be used and the decision control problem is easy. The general

decision control problem is however very hard because it leads to a nonlinear, partial di�erential

Hamilton-Jacobi-Bellman (HJB) equation (for non-quadratic performance objectives) which in

general is diÆcult to solve. Researchers in Control Theory have used QE in solving Problem 1

since the 1970's, but the tedious operations made the technique very limited [3]. Later, Collins

[22] introduced a theoretically more eÆcient QE algorithm that uses a cylindrical algebraic de-

composition (CAD) approach. However, this algorithm was not capable of e�ectively handling

nontrivial problems. Then, Collins and Hong [23], and Hong [35], [36] introduced a signi�cantly

more eÆcient partial CAD QE algorithm, implemented in the software package QEPCAD. Re-

cently, people have used the QEPCAD software to solve academic, but nontrivial problems [1],

[2], [26], [37], [50].

Many robust practical control design problems, for both linear and nonlinear systems, can be

reduced to the study of Boolean formulae of the type

8(X 2 X )[p1(X;Y ) > 0 ^ p2(X;Y ) > 0 � � � ^ pt(X;Y ) > 0] (1)

where 8 denotes the logic \for all" operator, and ^ denotes the logic \and" operator. The

functions pi(X;Y ) are assumed in this paper to be multivariate polynomial functions, in the

components of the vectors X and Y . Note however that our results apply to more general classes

of systems (such as nonlinear polynomials) and Boolean formulae. The unquanti�ed variable Y

in the formula (1) typically represents controller design parameters, while the quanti�ed variable

X represent uncertain plant parameters, state variables (for nonlinear problems) or frequency

variables (for linear problems).
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B. The Bad News: Computational Complexity of Decidable Problems

If there exists an algorithm which answers a decision problem, the problem is said to be

decidable. Until recently, it was felt that decidable problems are practically solved and thus not

very interesting. The introduction of computational complexity theory has since changed this

misconception. Computational complexity theory is often used to establish the tractability or

intractability of computational problems, and is concerned with the determination of the intrinsic

computational diÆculty of these problems and not to any particular algorithm used to solve them

[32].

One important concept in this theory is that of a polynomial-time algorithm. In practice,

such an algorithm can be feasibly implemented on a real computer. This is in contrast to an

exponential-time algorithm, which is only feasible if the problem being solved is extremely small.

Unfortunately, it turns out that QE is at best exponential! [11]

The complexity class P consists of all decision problems that can be decided in polynomial-

time, using a Turing machine model of computation. The simplicity of the Turing machine model

appears to make it of little practical value; however, the Church-Turing Thesis holds that the

class of problems solvable on a Turing machine in polynomial time is robust across all other

reasonable models of computation (including the computers we use).

The complexity class NP consists of all decision problems that can be decided algorithmically

in nondeterministic polynomial-time. An algorithm is nondeterministic if it is able to choose or

guess a sequence of choices that will lead to a solution, without having to systematically explore

all possibilities. This model of computation is not realizable, but it is of theoretical importance

since it is strongly believed that P 6= NP. In other words, these two complexity classes form

an important boundary between the tractable (or easy) and intractable (or diÆcult) problems.

A problem is said to be NP-hard if it is as hard as any problem in NP . Thus, if P 6= NP ,

the NP-hard problems can only admit deterministic solutions that take an unreasonable (i.e.

exponential) amount of time, and they require (unattainable) nondeterminism in order to achieve

reasonable (i.e. polynomial) running times.

The central idea used to demonstrate NP-hardness evolves around the NP-complete problems.

A problem is said to beNP-complete if every decision problem inNP is polynomial-time reducible

to it. This means that the NP-complete problems are as hard as any decision problem in NP .
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Given two decision problems P1 and P2, P1 is said to be polynomial-time reducible to P2 (written

as P1 �p P2), if there exists a polynomial time algorithm R which transforms every input x for P1

into an equivalent input R(x) for P2. By equivalent we mean that the answer produced by P2 on

input R(x) is always the same as the answer P1 produces on input x. Thus, any algorithm which

solves P2 in polynomial time can be used to solve P1 on input x in polynomial time by simply

computing R(x), and then running P2. In order to show that a particular (control) decision

problem P2 is NP-complete, one starts with a problem P1 in NP-complete, and attempts to

show that P1 �p P2. This shows that P2 is NP-hard. To complete the proof that P2 is NP-

complete, it must be demonstrated that a candidate solution can be veri�ed in polynomial time.

In control theory, researchers have followed this \reduction" method to study the computational

diÆculty of some decidable problems and many decidable control problems have been shown to

be NP-complete (or NP-hard) [16], [24], [49], [51], [61]. A recent overview of the computational

complexity of many control problems may be found in [16].

The problem of simultaneous stabilization of N given linear systems with a LTI dynamic com-

pensator is as previously mentioned rationally undecidable for N > 2 [12]. However, restricting

the stabilizing compensator to be static (or dynamic but of a given order) makes the problem

decidable (although ineÆciently) using the Tarski approach as discussed before. So the question

becomes: how do we deal with decidable but ineÆcient control problems? And moreover, can

we deal with undecidable control problems? We actually have two possibilities in attempting to

answer both questions:

1. Limit the class of systems (such as to linear, minimum-phase, passive systems, etc.). This is

typically the approach taken by control designers.

2. Soften the goal for the class of systems we are interested in. This is a more recent idea in

control pioneered in [18], [52], [55], [66], [70]. An example of goal softening is the randomized

algorithms approach discussed next.

A re-formulation of LTI control problems may then be as follows [67],

Problem 2: Given a closed-loop system T (s;X; Y ) with a performance measure 	(X;Y ), where

X;Y are random real-valued vectors, �nd a vector Y0, if one exists, of controller parameters

which has a high probability of minimizing the expected value with respect to X of an appropriate

function f(X;Y ) of 	(X;Y ).
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The related decision problem is to ascertain the existence of a vector Y0 such that a certain

level  is achieved by E f(X;Y ). Note that our problem has been changed from a deterministic

decision problem to a probabilistic optimization problem. Also note that the randomness of X

and Y is used to open the door for Monte-Carlo and statistical learning methods. Finally, we

have converted a worst-case scenario (guaranteed-cost) into an average-case problem.

In the context of stabilization, let 	(X;Y ) = 0 if T (s;X; Y ) is stable and 	(X;Y ) = 1

otherwise. By minimizing E f(X;Y ) we are actually maximizing the volume (or number in case

of �nite number of plants) which may be stabilized with C(s; Y0). In fact, let

fY (X) = f(X;Y ) =

8><
>:

1 	(X;Y ) = 1

0 	(X;Y ) = 0

and F = ffY (�) : Y 2 Yg. The purpose of control is to choose Y0, and thus the corresponding

controller C(s; Y0) to stabilize the maximum number of plants. Note that if the structure and

the order of C(s; Y ) are �xed, then the problem reduces to �nding the set of parameters Y .

This objective may be achieved by minimizing the expected value E [fY (X)]. An interpretation

of the minimization of the expectation E [fY (X)] is that we can then ascertain with con�dence

1� E [fY0(X)] that the controller C(s; Y0) stabilizes a random plant G(s;X).

One limitation of this approach is that in practice, we do not have the necessary information

to calculate E [fY ] since all we have are sample plants and compensators. Moreover, how do we

minimize E [fY ] when all we have are the values of f at sample points? In [67], the empirical

mean of fY (X) is used instead of E [fY ] for a given Y 2 Y;

1

n

nX
j=1

fY (Xj); (2)

which then leaves us with two questions:

1. Will 1
n

Pn
j=1 fY (Xj) be a good approximation of E [fY ] uniformly in Y as n increases?

2. Will the minimum of 1
n

Pn
j=1 fY (Xj), obtained empirically as

min
1�i�m

2
4 1
n

nX
j=1

fYi(Xj)

3
5

be close to the actual minimum of 1
n

Pn
j=1 fY (Xj) as m increases?

It turns out that the �rst question has been studied thoroughly in the theory of empirical process

and statistical learning theory. Minimization of a function de�ned by equation (2) in particular
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is a case of empirical risk minimization as discussed in the next section. Note that there are

actually two separate questions to answer: a question of empirical averaging, and a question

of empirical minimization. The empirical average question depends on the number n of plants,

while the minimization question depends on both the number of plants n and the number of

controllers m. Our main results in this paper o�er a signi�cant reduction in n but not inm. Our

future papers will address the minimization problem and how to reduce m further.

We will next review relevant results from Statistical Learning Theory and randomized algo-

rithms.

III. Overview of Randomized Algorithms and Statistical learning Theory

The basic notions of Probability Theory used in the paper can be found in any textbook on

Advanced Probability, see, for instance, [30]. More special results on empirical processes and

statistical learning theory can be found in [25], [29], [62], [64], [66]. We present now an overview

of standard learning theory concepts and results obtained in [67] along with their application to

control problems.

Let (S;A) be a measurable space and let fXngn�1 be a sequence of independent identically

distributed (i.i.d) observations in this space with common distribution P: We assume that this

sequence is de�ned on a probability space (
;�;P): Denote by P(S) := P(S;A) the set of all

probability measures on (S;A): Suppose P � P(S) is a class of probability distributions such

that P 2 P: In particular, if one has no prior knowledge about P; then P = P(S): In this case, we

are in the setting of distribution free learning. One of the central problems of statistical learning

theory is the risk minimization problem. It is crucial in all cases of learning (standard concept

or function learning, regression problems, pattern recognition, etc.). It also plays an important

role in randomized (Monte Carlo) algorithms for robust control problems, as has been shown by

Vidyasagar [68] and as we will see in this paper. Given a class F of A-measurable functions f

from S into [0; 1] (e.g., decision rules in a pattern recognition problem or performance indices in

control problems), the risk functional is de�ned as

RP (f) := P (f) :=

Z
S
fdP := E f(X); f 2 F :

The goal is to �nd a function fP that minimizes RP on F : Typically, the distribution P is

unknown (or, as it occurs in many control problems, the integral of f with respect to P is too

hard to compute) and the solution of the risk minimization problem is to be based on a sample
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(X1; : : : ;Xn) of independent observations from P: In this case, the goal of statistical learning

is more modest: given " > 0; Æ 2 (0; 1); �nd an estimate f̂n 2 F of fP ; based on the data

(X1; : : : ;Xn); such that

sup
P2P

PfRP (f̂n) � inf
f2F

RP (f) + "g � Æ: (3)

In other words, one can write that with probability 1�Æ, RP (f̂n) is within " of inff2F RP (f) = R�.

Denote by ~NL
F ;P("; Æ) the minimal number n � 1 such that for some estimate f̂n the bound (3)

holds, and let ~NU
F ;P("; Æ) be the minimal number N � 1 such that for some sequence of estimates

ff̂ng and for all n � N the bound (3) holds. Let us call the quantity ~NL
F ;P("; Æ) the lower

sample complexity and the quantity ~NU
F ;P("; Æ) the upper sample complexity of learning. These

quantities show how much data we need in order to guarantee certain accuracy " of learning

with certain con�dence level 1� Æ: Clearly, ~NL
F ;P("; Æ) �

~NU
F ;P("; Æ); and it is easy to show that

the inequality can be strict. The upper sample complexity is used rather frequently in statistical

learning theory and is usually referred to simply as the sample complexity. But in this paper we

will deal more with the lower sample complexity.

A method of empirical risk minimization is widely used in learning theory. Namely, the

unknown distribution P is replaced by the empirical measure Pn; de�ned as

Pn(A) :=
1

n

nX
k=1

IA(Xk); A 2 A

where IA(x) = 1 for x 2 A and IA(x) = 0 for x 62 A: The risk functional RP is replaced by the

empirical risk RPn ; de�ned by

RPn(f) := Pn(f) :=

Z
S
fdPn :=

1

n

nX
k=1

f(Xk); f 2 F :

The problem is now to minimize the empirical risk RPn on F , and we let fPn 2 F be a function

that minimizes RPn on F :

Remark 1: Of course, in general, the minimum in question does not have to exist. It could

be replaced in what follows by a random function fn such that RPn(fn) is close enough to

inff2F RPn(f): For the sake of simplicity, though, we assume throughout the paper that the

minimum of RPn on F is attained at a random function fPn ; which is properly measurable. We

also place proper measurability assumptions on the class F commonly used in the theory of

empirical processes (see, e.g., Dudley [29] or van der Vaart and Wellner [62]).
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}}}

In what follows, fPn is used as our learning algorithm, i.e. f̂n := fPn : Determining the sample

complexity of the empirical risk minimization method is de�nitely one of the central and most

challenging problems of statistical learning theory (see, e.g., [25], or Vidyasagar [67] for the

relevant discussion in the context of robust control problems). A reasonable upper bound for

the sample complexity can be obtained by �nding the minimal value of n for which the expected

value E f(X) is approximated uniformly over the class F by the empirical means with given

accuracy " and con�dence level 1� Æ: More precisely, denote

N("; Æ) := NL
F ;P("; Æ) := min

n
n � 1 : sup

P2P
PfkPn � PkF � "g � Æ

o
;

where k � kF is the sup-norm in the space `1(F) of all uniformly bounded functions on F : Let us

call the quantity N("; Æ) the (lower) sample complexity of empirical approximation on the class

F : Then, clearly, NL
F ;P("=2; Æ) �

~NL
F ;P("; Æ): To see this, it is enough to consider the following,

0 � RP (fPn)� inf
f2F

RP (f) � P (fPn)� Pn(fPn) + inf
f2F

Pn(f)� inf
f2F

P (f) � 2kPn � PkF : (4)

Unfortunately, the quantity NL
F ;P("; Æ) is itself unknown for most of the nontrivial examples of

function classes, and only rather conservative upper bounds for this quantity are available. These

bounds are expressed in terms of various entropy characteristics and combinatorial quantities,

such as VC-dimensions, which themselves are not always known precisely and are replaced by

their upper bounds [67].

Going back to our control motivation, we note that our problem involves also the �nding of the

minimum of a certain performance objective or more precisely, �nding the controller parameters

which correspond to such minimum. This is the second separate question mentioned at the end

of Section II and refers to the optimization part of the problem which we approach in the same

manner as Vidyasagar.

In [67], Vidyasagar introduced the following types of minima, in order to use statistical learning

theory to design �xed-order robust controllers, which minimize the performance index in Problem

2.

De�nition 1: Let R : Y �! IR and " > 0 be given. A number R0 2 IR is said to be an

approximate near minimum of R to accuracy " if����R0 � inf
Y 2Y

R(Y )

���� � "
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De�nition 2: Suppose R : Y �! IR, Q is a given probability measure on Y, and � > 0 be

given. A number R0 2 IR is a probable near minimum of R to level � if there exists a measurable

set S � Y with Q(S) � � such that

inf
Y 2Y

R(Y ) � R0 � inf
Y 2YnS

R(Y ):

where Y n S is the complement of the set S in Y.

De�nition 3: Suppose R : Y �! IR, Q is a given probability measure on Y, and � > 0; " > 0

be given. A number R0 2 IR is a probably approximate near minimum of R to accuracy " and

level � if there exists a measurable set S � Y with Q(S) � � such that

inf
Y 2Y

R(Y )� " � R0 � inf
Y 2YnS

R(Y ) + ":

Note in particular that the last 2 types of minima while useful in practice may not give an

accurate picture of the performance of the closed-loop control system. It is the relaxation to the

level � that makes Algorithm 1 below at �rst glance much more eÆcient than later ones. Finally,

let us de�ne a version of probably approximate near minima in the case of a stochastic process

R (say, R := RPn ; see the de�nition above) as follows.

De�nition 4: Suppose that R : Y ! IR is a stochastic process, that Q is a given probability

measure on Y, and that � 2 (0; 1), Æ 2 (0; 1) and " > 0 are given. A number R0 is a probably

approximate near minimum of R with con�dence 1� Æ, level � and accuracy ", if

P

(
inf
Y 2Y

R(Y )� " � R0 � inf
Y 2YnS

R(Y ) + "

)
� 1� Æ

with some measurable set S � Y such that Q(S) � �.

An interpretation of de�nitions 2, 3, 4 is that we are not searching for the minimum over all of the

set Y but only over its subset Y nS, where S has a small measure (at most �). Unless the actual
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in�mum R� is attained in the exceptional set S; R0 is within " from the actual in�mum with

con�dence 1 � Æ. It is exactly this goal softening that gets around the computational diÆculty

of these problems [70]. Although using Monte Carlo type minimization, it is unlikely to obtain

a better estimate of R� than R0 (since the chances of getting into the set S are small), nothing

can be said in practice about the size of the di�erence R0 � R�. The following two stochastic

algorithms were then presented in [67] to solve the problem of designing robust controllers.

Algorithm 1: Given:

� Spaces X and Y,

� Probability measures P on X and Q on Y,

� A measurable function f : X � Y �! [0; 1], and

� An accuracy parameter " 2 (0; 1), a level parameter � 2 (0; 1), and a con�dence parameter

Æ 2 (0; 1).

Let

RP (�) = E P [f(X; �)]

and let

m �
log(2=Æ)

log[1=(1 � �)]

n �
1

2"2
log

4m

Æ
:

Generate i.i.d. samples Y1; Y2; � � � ; Ym 2 Y from the distribution Q and X1;X2; � � � ;Xn 2 X

from the distribution P . Then let,

RPn(�) =
1

n

nX
j=1

f(Xj ; �);

R0 = min
1�i�m

RPn(Yi):

Then with con�dence at least 1� Æ, R0 is a probably approximate near minimum of RP (Y ) to

level � and accuracy ".

Note that algorithm is very general and apply to any measurable function f . Also, note that

the probability measures P and Q may be given (such as the case of Normal distribution for
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the system's parameters) or just chosen (as uniform) since the results will are independent of a

particular probability distribution. Finally, note that the bound on n depends on m and thus

implicitly on the level �. Vidyasagar in [67] then proposes a more \eÆcient" algorithm as follows.

Algorithm 2: Given:

� Sets X and Y,

� Probability measures P on X and Q on Y,

� A measurable function f : X � Y �! [0; 1], and

� An accuracy parameter " 2 (0; 1), a level parameter � 2 (0; 1), and a con�dence parameter

Æ 2 (0; 1).

Let RP (�) = E P [f(X; �)] and denote F := ffY : Y 2 Yg;

RPn(�) =
1

n

nX
j=1

f(Xj; �)

q(n; ";F) = Pfsup
Y 2Y

jRPn(Y )�RP (Y )j > "g:

Then, choose n and m such that

m �
log(2=Æ)

log[1=(1 � �)]

q(n; ";F) � Æ=2

and generate i.i.d. samples Y1; Y2; � � � ; Ym 2 Y from the distributionQ and X1;X2; � � � ;Xn 2 X

from the distribution P . Then let,

R0 = min
1�i�m

RPn(Yi)

Then with con�dence at least 1� Æ, R0 is a probably approximate near minimum of RP (Y ) to

level � and accuracy ".

To guarantee the existence of n such that q(n; ";F) � Æ=2, in Algorithm 2 one can assume

that F is a Glivenko-Cantelli class for P (see [29], [62] for the de�nition). The UCEM property

considered in [66] means that for all " > 0 q(n; ";F) ! 0 as n ! 1; it is equivalent to the

Glivenko-Cantelli property of the class F . Note that in Algorithm 2, the bound on the quantity

q(n; ";F) is no longer dependent onm. This along with other considerations have led Vidyasagar
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[67] to present Algorithm 2 as more eÆcient than Algorithm 1. It turns out that the reverse is

actually true. Namely, for the values of � that are not particularly small and that were used in

[68], Algorithm 1 which only relies on standard Cherno� bounds [21] is much more computation-

ally eÆcient than Algorithm 2 which, as described in [66], requires the introduction of modern

tools of statistical learning theory. We note however, that in the multidimensional situation, the

simple Monte Carlo scheme of minimization used in Algorithm 2 can be very misleading and

the empirical minimum can be much larger than the true minimum with probability practically

equal to 1. Imagine, for instance, that the function to be minimized is de�ned on the unit ball

Bl := fx : jxj � 1g in R
l; say, with l = 100; and is given by the following expression:

R(Y ) :=
q
y21 + y22 + : : : + y2l ; Y = (y1; : : : ; yl):

Suppose also that the distribution Q on Bl is uniform. Let r 2 (0; 1) and let (Y1; : : : ; Ym) be an

i.i.d. sample from Q: Then the probability that all the points in the sample are outside the ball

rBl is equal to (1� rl)m: This implies that

Pf min
1�i�m

R(Yi) � rg � (1� rl)m:

For instance, if one takes r = 1=4 and m = 2100=1010 > 1020; one would get that

Pf min
1�i�m

R(Yi) � 1=4g � 1� 10�10:

So, even with such enormously large sample sizes the Monte Carlo search for minimum would not

come even close to the true minimum of R; which is equal to 0! With more reasonable sample

sizes, the empirical minimum will be very close to 1 (which, in fact, is the maximum of R on Bl)

with probability close to 1: It looks like almost any other method of minimization would do better

in such an example than Monte Carlo does. In order to make the method work, one has to choose

� extremely small, and in this case, of course, the computational eÆciency of the Algorithm 1

disappears. This problem is of course known in problems of high-dimensional geometry [33] and

will manifest itself as the \fragility" of high-dimensional controllers [39]. In particular, if one

is required to use a high-dimensional controller, as usually happens when attempting to meet

stringent H1 objectives, then it is conceivable that a very small � is required in order to �nd

an appropriate coeÆcient vector Y . Therefore, in such cases, the number of sample controllers

m will increase as one is searching for a probably approximate near minimum outside the set of

small measure �, and resulting in performance measures which can grow unacceptably large.
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In such situations, more eÆcient methods of minimization should be used and their justi�ca-

tion would heavily rely on statistical learning theory (which allows us to determine the sample

complexity of risk minimization regardless of the particular minimization algorithm). The Monte

Carlo minimization scheme suggested in [66], [67], and used in Algorithms 1, and 2, can de�-

nitely be used in preliminary studies of new learning algorithms, and it could in many cases

provide satisfactory results in control design. In fact, we use this approach in the next section

in combination with our new sequential learning algorithms.

SuÆcient conditions for satisfying Glivenko-Cantelli (UCEM) property, which are convenient

for the purposes of control theory, can be formulated in terms of the �niteness of VC-dimensions

or P -dimensions of the class F ; [66], [67].

De�nition 5: Let C be a family of subsets of X . A �nite set F = fx1; � � � xng � X is shattered

by C, if for every subset B of the 2n subsets of F , there exists a set A 2 C such that F \A = B.

The Vapnik-Chervonenkis dimension of C denoted VC-dim(C) is the largest integer n such that

there exists a set F of cardinality n shattered by C.

Given a class F of functions mapping X into f0; 1g; one can consider the class of sets C :=

ffx : f(x) = 1g : f 2 Fg and de�ne the VC-dimension of F as VC-dim(C): It will be also denoted

VC-dim(F): The role of P -dimension (see e.g. [66]) is similar in the case of more general classes

of functions. In particular, one can consider the class Fk;l;r;t arising from our MPIs and de�ned

as follows. Given polynomials p1(X;Y ); : : : ; pt(X;Y ) on R
k � R

l of degree � r (with respect to

Y ), consider all the Boolean formulae obtained from expressions \pj(X;Y ) > 0", j = 1; : : : ; t

using the standard logical operations _;^;:: Let �k;l;r;t be the set of all such formulae. Each

formula � 2 �k;l;r;t de�nes the function f := f� that takes value 1 if the formula is true and

value 0 otherwise. We set Fk;l;r;t := ff� : � 2 �k;l;r;tg: This class can be used to describe the

control decidability questions.

We then have the following theorems that go back to the original work of Vapnik and Cher-

vonenkis [64], [65] and that were used in [67].

Theorem 1: Let F be a family of measurable functions from X into f0; 1g and suppose that
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VC-dim(F) � d <1. Then, F has the UCEM property and moreover,

q(n; ";F) � 4

�
2en

d

�d
exp(�n"2=8); 8n; "

This then leads to the following bound on the sample complexity of empirical approximation on

the class F :

Theorem 2: Let F be a family of measurable functions from X into f0; 1g and suppose that

VC-dim(F) � d < 1. Let P be an arbitrary probability measure on X , and let "; Æ 2 (0; 1) be

arbitrary constants. Then, q(n; ";F) � Æ if

n � max

�
16

"2
log

4

Æ
;
32d

"2
log

32e

"2

�

The next theorem gives an upper bound for the VC-dimension of the class Fk;l;r;t and is due

essentially to Karpinski and Macintyre [38]. We cite it from [66].

Theorem 3: The following upper bound holds:

V C � dim(Fk;l;r;t) � 2llog(4ert):

Following Vidyasagar [67], [68], our initial purpose is to explore the utility of statistical learning

theory in the eÆcient design of robust controllers for linear uncertain systems. Throughout the

discussion we will refer generically to a real rational plant G(s;X) and a real rational controller

C(s; Y ) de�ned as:

G(s;X) =
nG(s;X)

dG(s;X)
; X 2 X ;

C(s; Y ) =
nC(s; Y )

dC(s; Y )
; Y 2 Y

where X � IRk;Y � IRl, and nG; dG; nC ; dC are polynomial in their arguments and where �s
4
=

degree of G(s;X) in s, �s
4
= degree of C(s; Y ) in s, and �Y

4
= Maximum degree of Y in nC(s; Y )

or dC(s; Y ):
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The methods to be used require us to sample from a set of possible plants and controllers.

Since the actual distributions are unknown, we postulate uniform measures for both X and Y

(assuming that these sets are bounded).

An estimate of the number of samples is �rst obtained using the results cited in Algorithms

1 and 2. However, before we can estimate sample size, we must specify values for the following

parameters:

�
4
= the level parameter

Æ
4
= is related to the �nal con�dence level (1� Æ)

"
4
= the bound on the �nal accuracy

Sample sizes n and m may then be estimated:

m �
log(2=Æ)

log[1=(1 � �)]

n �
1

2"2
log

4m

Æ
for Algorithm 1

n � max

�
16

"2
log

4

Æ
;
32d

"2
log

32e

"2

�
for Algorithm 2

Note here that d is either the VC or the P -dimension of the problem [66].

Example 1: The following plant and controller will be used in the �rst example, to illustrate

the fact that Algorithm 1 is indeed more eÆcient than Algorithm 2:

G(s;X) =
X1

1� s=X2
; 0:8 � X1;X2 � 1:25

K(s; Y ) = Y1

We attempt to choose a controller that stabilizes the plant given above. We begin by sampling

X1 and X2 uniformly between 0.8 and 1.25, and sampling Y1 between -100 and 100. Thus, k = 2,

l = 1, �s = 1, �s = 0, �Y = 1. We further choose � = 0:05, " = 0:1, and Æ = 0:05. The required

number of samples then becomes according to Algorithm 2:

m = 72 samples of Y1

n = 199; 862 samples of X1;X2
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For comparison, we calculate the estimate from Algorithm 1: n � 1
2"2

log 4m
Æ . From this we obtain:

n = 433:

Note that this result is much smaller than the prior estimate obtained based on Algorithm 2.

444

Example 2: Consider the linearized model of a CH-47 tandem-rotor helicopter in horizontal

motion about a nominal airspeed of 40 knots, as discussed in [27]. The model parameters are

given by

_x = Ax+Bu

y = Cx

where

A =

2
66666664

�0:02 0:005 2:4 �32

�0:14 0:44 �1:3 �30

0 0:018 �1:6 1:2

0 0 1 0

3
77777775

B =

2
66666664

0:14 �0:12

0:36 �8:6

0:35 0:009

0 0

3
77777775
; C =

2
64 0 1 0 0

0 0 0 57:3

3
75

The incremental outputs are

� y1 is the vertical velocity (knots/hr)

� y2 is the pitch altitude (radians)

and the inputs are

� u1 is the collective rotor thrust

� u2 is the di�erential collective rotor thrust

Let the output feedback be u = Ky and let all the coeÆcients of A;B;C (except for the zero

and unity terms) be perturbed randomly over ranges of about half of their magnitudes. The

controller gain matrix contains 4 parameters Y1; Y2; Y3; Y4. Similarly to the previous example, by
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choosing � = 0:05, " = 0:1, and Æ = 0:05, we generate 72 controllers and 433 plants, and choose

the controller gain leading to robust stability and to the minimization of the H2 performance for

the nominal system. The constant gain

K =

2
64 �12:7177 �45:0824

63:5123 25:9144

3
75

leads to the H2 performance of 0:339458, and to the closed-loop eigenvalues at �0:02; �0:88 �

28:15j; �550:18 for the nominal system. This example illustrates that the dimensions of the

system and of the controller are not critical to the number of samples, if one uses Algorithm 1,

but will inuence the number of plants n through the dimension d for Algorithm 2.

444

IV. The Good News: Sequential Learning Algorithms

In this section, we present sequential algorithms for a general problem of empirical risk mini-

mization. They are designed to overcome some of the diÆculties encountered with the standard

learning methods of Section III. This approach does not depend on the explicit calculation of

the VC-dimension, although its �niteness remains critical to the termination of the design al-

gorithm, in the distribution-free learning case. The sequential algorithms chosen are based on

Rademacher bootstrap although other bootstrap techniques, developed in statistics (for instance,

standard Efron bootstrap or various versions of weighted bootstrap), can also be adopted for our

purposes. An important feature of our approach is the randomness of the sample size for which a

given accuracy of learning is achieved with a guaranteed probability. Thus, the sample complex-

ity of our method of learning is rather a random variable. Its value is not known in advance and

is to be determined in the process of learning. The lower bound for this random variable is the

value of the sample size which the sequential learning algorithm starts working with. The upper

bounds for the random sample complexity are of the same order of magnitude as the standard

conservative upper bounds for the sample complexity of empirical risk minimization algorithms.

Thus, in the worst case, the sequential method of learning would take as much time (up to a

numerical constant) as the standard methods do.

We start with several basic de�nitions. The proofs of all statements of this section can be

found in the Appendix.
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De�nition 6: Let f�ngn�1 be a �ltration of �-algebras (i.e. for all n � 1 �n � �n+1) such that

�n � �; n � 1 and Xn is �n-measurable. Less formally, �n consists of the events that occur by

time n (in particular, the value of random variable Xn is known by time n). A random variable

�; taking positive integer values, will be called a stopping time if and only if (i�), for all n � 1;

we have f� = ng 2 �n: In other words, the decision whether � � n; or not, depends only on the

information available by time n:

Given " > 0 and Æ 2 (0; 1); let �n("; Æ) denote the initial sample size of our learning algorithms.

We assume that �n is a non-increasing function in both " and Æ. Denote by T ("; Æ) := TF ;P("; Æ)

the set of all stopping times � such that � � �n("; Æ) and

sup
P2P

PfkP� � PkF � "g � Æ:

If now � 2 T ("; Æ) and f̂ := fP� is a function that minimizes the empirical risk based on the

sample (X1; : : : ;X� ) then a bound similar to (4) immediately implies that

sup
P2P

P

n
RP (fP� ) � inf

f2F
RP (f) + 2"

o
� Æ:

The questions, though, are how to construct a stopping time from the set T ("; Æ); based only

on the available data (without using the knowledge of P ) and which of the stopping times from

this set is best used in the learning algorithms. The following de�nition will be useful in this

connection.

De�nition 7: A parametric family of stopping times f�("; Æ) : " > 0; Æ 2 (0; 1)g is called

strongly (statistically) eÆcient for the class F with respect to P i� there exist constants K1 �

1;K2 � 1 and K3 � 1 such that for all " > 0 and Æ 2 (0; 1)

�("; Æ) 2 T (K1"; Æ)

and for all � 2 T ("; Æ)

sup
P2P

Pf�(K2"; Æ) > �g � K3Æ:

Thus, using strongly eÆcient stopping time �("; Æ) allows one to solve the problem of empirical

approximation with con�dence 1 � Æ and accuracy K1": With probability at least 1 �K3Æ, the
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time required by this algorithm is less than the time needed for any sequential algorithm of

empirical approximation with accuracy "=K2 and con�dence 1� Æ:

De�nition 8: We call a family of stopping times f�("; Æ) : " > 0; Æ 2 (0; 1)g weakly (statistically)

eÆcient for the class F with respect to P i� there exist constants K1 � 1;K2 � 1 and K3 � 1

such that for all " > 0 and Æ 2 (0; 1)

�("; Æ) 2 T (K1"; Æ)

and

sup
P2P

Pf�(K2"; Æ) > N("; Æ)gg � K3Æ:

Using weakly eÆcient stopping time �("; Æ) also allows one to solve the problem of empirical

approximation with accuracy K1" and con�dence 1 � Æ: With probability at least 1 �K3Æ; the

time required by this algorithm, is less than the sample complexity of empirical approximation

with accuracy "=K2 and con�dence 1� Æ:

Note that, under the assumption N("; Æ) � �n("; Æ); we have N("; Æ) 2 T ("; Æ): Hence, any

strongly eÆcient family of stopping times is also weakly eÆcient. The converse to this statement

is not true.

Proposition 1: There exists a weakly eÆcient family of stopping times that is not strongly

eÆcient.

Proof: See Appendix -A.

We show below how to construct eÆcient stopping times for empirical risk minimization prob-

lems. The construction is based on a version of bootstrap. Let frngn�1 be a Rademacher sequence

(i.e. a sequence of i.i.d. random variables taking values +1 and �1 with probability 1=2 each).

We assume, in addition, that this sequence is independent of the observations fXngn�1: Suppose

that (with b�c denoting the oor of the argument)

�n("; Æ) �

$
4

"2
log(

2

Æ(1 � e�"
2=4)

)

%
+ 1:

Let

�("; Æ) := �F ("; Æ) := minfn � �n("; Æ) : kn�1
nX

j=1

rjÆXj
kF � "g:
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where Æx(f) := f(x): Note that for all " > 0 and for all Æ 2 (0; 1), �("; Æ); is a stopping time

and it can be computed by Monte Carlo simulation of the sequence frjgj�1: The �niteness with

probability 1 of the stopping time �("; Æ) (and other stopping times, de�ned below) can be shown

to follow from the Glivenko-Cantelli property for the class F (also referred to as UCEM property,

see section III).

Theorem 4: f�F ("; Æ) : " > 0; Æ 2 (0; 1)g is a strongly eÆcient family of stopping times for any

class F of measurable functions from S into [0; 1] with respect to the set P(S) of all probability

distributions.

The proof of Theorem 4 is based on proposition 2 below. Let

�n := kPn � PkF :

Proposition 2: For all " > 0 and Æ > 0

1.

sup
P2P(S)

Pf��(";Æ) � 5"g � Æ

and

2.

sup
P2P(S)

Pf min
�n(";Æ)�n<�(6";Æ)

�n < "g � Æ:

The proof of the proposition may be found in Appendix -A. It immediately follows from the

Proposition 2 that in Theorem 4, f�("; Æ) : " > 0; Æ 2 (0; 1)g is strongly eÆcient with K1 =

5;K2 = 6 and K3 = 2:

A. Other versions of the sequential algorithm

The initial time of the previous algorithm could be too large if " is very small. Here we

construct another version of sequential risk minimization algorithm with smaller initial time.

De�ne

�("; Æ) := �F ("; Æ) := minfn : kn�1
nX

j=1

rjÆXj
kF � "; n := nk := 2k�n("; Æ); k = 0; 1; : : :g:
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Theorem 5: Suppose that

�n("; Æ) �

�
4

"2
log(

4

Æ
)

�
+ 1:

Then, for all " > 0; Æ 2 (0; 1);

1. �("; Æ) 2 T (K1"; Æ) with K1 = 5:

2. Moreover, suppose that

N("; Æ) � �n("; Æ) �

�
4

"2
log(

4

Æ
)

�
+ 1:

Then f�F ("; Æ) : " > 0; Æ 2 (0; 1=2)g is a weakly eÆcient family of stopping times for any class

F of measurable functions from S into [0; 1] with respect to the set P(S) of all probability

distributions on S:

Proof: See Appendix -A.

The next proposition shows that if the family of stopping times de�ned above starts too late

(namely, after the time N("; Æ)), then the stopping time is close to the initial time with high

probability.

Proposition 3: Suppose that

�n("; Æ) �

�
4

"2
log(

4

Æ
)

�
+ 1

and

12=" � N("; Æ) � �n("; Æ):

Then, there exist constants K1 � 1;K2 � 1 such that

sup
P2P(S)

Pf�F (K1"; Æ) > K2�n("; Æ)g � Æ: (5)

Proof: See Appendix -A.

Based on the randomized algorithms introduced in section III, and on the sequential learning

algorithms of this section, a probably approximate near minimum of f with con�dence 1 � Æ,

level � and accuracy ", can be found with the following algorithm.
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Algorithm 3: Given:

� Sets X and Y,

� Probability measures P on X and Q on Y,

� A measurable function f : X � Y �! [0; 1], and

� An accuracy parameter " 2 (0; 1), a level parameter � 2 (0; 1), and a con�dence parameter

Æ 2 (0; 1).

Let RP (�) = E P [f(X; �)] and

RPn(�) =
1

n

nX
j=1

f(Xj ; �)

Then,

1. Choose m independent controllers with parameters having distribution Q where

m �
log(2=Æ)

log[1=(1 � �)]

2. Choose n independent plants with parameters having distribution P , where

n =

$
4K2

1

"2
log

�
8

Æ

�%
+ 1

with K1 = 5

3. Evaluate the stopping variable

 = max
1�i�m

������
1

n

nX
j=1

rjf(Xj; Yi)

������
where rj are Rademacher random variables, i.e. independent identically distributed random

variables (also independent of the plant sample) taking values +1 and �1 with probability 1=2

each. If  > "
K1
; add n more independent plants with parameters having distribution P to the

plant samples, set n := 2n and repeat step 3

4. Choose the controller which minimizes the cost function RPn . Then with con�dence at least

1� Æ, this controller minimizes RP to a level � and accuracy ".

Note that Algorithm 3 corresponds to Theorem 5 and other variations on this algorithm are

possible.
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V. Applications To Control Design

Example 3: In this example we consider the control problem presented by Vidyasagar in [68]

and solved via randomized algorithms. This will allow us to illustrate our method and to compare

it to the one proposed in [68].

The example concerns the design of an inner-loop controller for the longitudinal axis of an

aircraft. The problem is to minimize the weighted sensitivity function over a certain set of

uncertain plants, given some constraints on the nominal plant. For further details, the reader is

referred to [68].

HW (s) G(s;X)

C(s; Y )

- -e -

6

-
+

�

Fig. 2. The closed-loop system

The closed-loop system is shown in Figure 2. The plant G(s;X) is in the form

_x = Ax+Bu

y = Cx

where

A =

2
64 Z� 1� Zq

M� Mq

3
75 ; B =

2
64 ZÆe

MÆe

3
75 ; C =

2
64 1 0

0 1

3
75

The parameters of the matrices have Gaussian distribution with means and standard deviations

as in Table I. In the following, we let X = [Z� Zq M� Mq ZÆe MÆe]
T .

The transfer function HW (s) models the di�erent hardware components, such as the sensors,

the actuators, the structural �lters, etc. It is given by

HW (s) =
0:000697s2 � 0:0397s + 1

0:000867s2 + 0:0591s + 1

We will denote by G0(s) the nominal plant and by Ĝ(s;X), (respectively Ĝ0(s)) the series

connection G(s;X)HW (s) (respectively G0(s)HW (s)).
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TABLE I

Parameters for the aircraft model

Parameter Mean Standard Deviation

Z� �0:9381 0:0736

Zq 0:0424 0:0035

M� 1:6630 0:1385

Mq �0:8120 0:0676

ZÆe �0:3765 0:0314

MÆe �10:8791 3:4695

We choose the controller to have the following structure

C(s; Y ) =

�
�Ka �Kq

(1+s�1)
(1+s�2)

�

where the four parameters Ka;Kq; �1 and �2 have uniform distributions in the ranges

Ka 2 [0; 2]; Kq 2 [0; 1]; �1 2 [0:01; 0:1]; �2 2 [0:01; 0:1]:

We thus let Y = [Ka Kq �1 �2]
T . Our objective is to �nd the controller which solves the

following problem

min

W �
I + ĜC

��1
1

subject to
 0:75CĜ0

1+1:25CĜ0


1
� 1

where the weighting function W (s) is given by

W (s) =

2
64 2:8�6:28�31:4

(s+6:28)(s+31:4)
0

0 2:8�6:28�3:14
(s+6:28)(s+31:4)

3
75

In order to adopt a randomized algorithm solution, in [68], this problem has been reformulated

in the following way. Let us de�ne a cost function

	(Y ) = maxf 1(Y );  2(Y )g

where

 1(Y ) =

8><
>:

1 if
 0:75CĜ0

1+1:25CĜ0


1
> 1

0 otherwise
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Fig. 3. The stopping variable

and

 2(Y ) = EP (�(X;Y ))

with

�(X;Y ) =

8><
>:

1 if (Ĝ(X); C(Y )) is unstable

kW(I+Ĝ(X)C(Y ))
�1
k1

1+kW(I+Ĝ(X)C(Y ))
�1
k1

otherwise

In our example, and for Æ = 0:01, � = 0:1 and " = 0:1, m evaluated to 51 controllers and n

evaluated to 66; 848 plants and the procedure outlined in Algorithm 3 stopped after one iteration,

i.e. k = 1. In Figure 3, the stopping variable is shown versus n. The parameters of the suboptimal
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controller are

Ka = 1:7826; Kq = 0:7621; �1 = 0:0511; �2 = 0:0117;

and the corresponding value of the cost function is 	(Yopt) = 0:7149, which compares favorably

with the results of [68], where 2,619,047 plants were needed for the same ", �, and Æ.

444

Remark 2: As shown by Figure 3, the stopping condition is met far before the minimum

numbers of plant samples n. This hints that with the same number of samples n, problems with

much higher P -dimension could be addressed. The P -dimension of this problem was evaluated

in [68] and is equal to d = 118. Therefore other types of controllers could be used instead of the

�rst-order one we used. For instance the order of the controller could be increased until certain

performance, in term of the desired value for 	opt, is achieved [43].

}}}

VI. Conclusions

In this paper we have drastically reduced the number of samples needed in order to obtain

performance guarantees in robust control synthesis problems. This reduction is achieved by intro-

ducing sequential bootstrapping algorithms and exploiting the fact that the sample complexity

is itself a random variable. This has allowed us to present Algorithm 3 as an eÆcient design

methodology for �xed-order robust control design problems [43]. Recall for example that the

Static Output Feedback (SOF) was shown in [14] to be NP-hard when the gains of the feedback

matrix were bounded, but that Algorithm 3, is well suited to address exactly the SOF problem

under those conditions.

It should be noted that the methodology presented in this paper can be used in many other

application areas: one only needs to have an eÆcient analysis tool in order to convert it to an

eÆcient design methodology. This is due to the fact that the design problem is converted to

a sequence of analysis or veri�cation problems after sampling more plants and controllers than

the minimum number required by Algorithm 3. It should also be noted that the computational

complexity or the undecidability of the problems studied are not eliminated but only avoided by

relaxing the design requirements from absolute (hard) to probabilistic (soft) ones.
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The randomized algorithms approach may be applied to design �xed-structure controllers for

nonlinear systems (see for example the PfaÆan systems discussed in [66]), and to building soft-

ware systems for practical control design problems. Our future research is concentrating at the

theoretical level in obtaining better optimization algorithms and at the application level in de-

signing software modules for linear and nonlinear control design. We are also investigating the

applicability of the statistical learning approach in combination with the \unfalsi�ed controller"

design discussed in [54].

Acknowledgements: C.T. Abdallah acknowledges fruitful discussions with G.L. Heileman, and

P. Goldberg.
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Appendix

A. Proofs of Propositions and Theorems

Proof of Proposition 1. Let S := R
1 and let P be the class of all symmetric continuous

distributions on R
1: Consider a class F := ffg consisting of only one function f(x) = sign(x)

(the range of the functions in this example is, of course, [�1; 1]; not [0; 1]). Then Yi = f(Xi) are

i.i.d. with distribution PfYi = 1g = 1=2 and PfYi = �1g = 1=2 (for any P 2 P). Let the initial

sample size �n("; Æ) be equal to 1: Then

N("; Æ) = minfn � 1 : Pfj
nX
i=1

Yij � n"g � Æg:

fN("; Æ)g is clearly a weakly eÆcient family of stopping times. We will prove that it is not a

strongly eÆcient family. Let

� = minfn � 1 :
nX
i=1

Yi = 0g:

First of all, the stopping time � belongs to TF ;P("; Æ) for all "; Æ > 0. It is well known from

Classical Probability that � < +1 with probability 1 (since the random walk Sn :=
Pn

j=1 Yj is

recurrent). Hence,

Pf� > ng ! 0 as n!1:

On the other hand, for " 2 (0; 1);

Pfj
nX
i=1

Yij � n"g � PfYj = 1; j = 1; : : : ; ng = 2�n:

If we use the last bound with n := N("; Æ); we get

Æ � Pfj
nX
i=1

Yij � n"g � PfYj = 1; j = 1; : : : ; ng = 2�n;

which implies N("; Æ) � log2(Æ
�1): Hence,

Pf� > N("; Æ)g ! 0 as Æ ! 0:

Suppose now that fN("; Æ)g is strongly eÆcient. Then, for some K2 � 1;K3 � 1

1�K3Æ � Pf� � N(K2"; Æ)g;

which contradicts the previous limit relationship.
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The proof of Proposition 2 follows from the concentration inequalities for empirical and

Rademacher processes (see Lemmas 1, 2) and from a symmetrization inequality (see Lemma

3).

Lemma 1: For all " > 0;

PfkPn � PkF � E kPn � PkF + "g � expf�"2n=2g

and

PfE kPn � PkF � kPn � PkF + "g � expf�"2n=2g:

Lemma 2: For all " > 0;

PfE kn�1
nX

j=1

rjÆXj
kF � kn�1

nX
j=1

rjÆXj
kF + "g � expf�"2n=4g

and

Pfkn�1
nX

j=1

rjÆXj
kF � E kn�1

nX
j=1

rjÆXj
kF + "g � expf�"2n=4g:

Lemma 3: The following inequality holds:

1

2
E kn�1

nX
j=1

rj(ÆXj
� P )kF � E kPn � PkF � 2E kn�1

nX
j=1

rjÆXj
kF :

The proofs of Lemmas 1,2 follow from the well known and widely used concentration inequalities

for martingale di�erence sequences (see, e.g., Ledoux and Talagrand [44]), Lemma 1.5). See also

[25], Theorems 9.1, 9.2. The proof of Lemma 3 can be found, for instance, in [62].

Proof of Proposition 2. Let �n := �n("; Æ): Lemma 1 implies that

P

� \
n��n

n
kPn � PkF � E kPn � PkF + "

o�
� 1�

X
n��n

expf�"2n=4g � 1�
expf�"2�n=4g

1� e�"
2=4

� 1� Æ=2:

It follows from Lemma 3 that

P

� \
n��n

n
kPn � PkF � 2E kn�1

nX
j=1

rjÆXj
kF + "

o�
� 1� Æ=2:
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Similarly, Lemma 2 implies that for all " > 0

P

� \
n��n

n
E kn�1

nX
j=1

rjÆXj
kF � kn�1

nX
j=1

rjÆXj
kF + "

o�
� 1� Æ=2:

Thus,

P

� \
n��n

n
kPn � PkF � 2kn�1

nX
j=1

rjÆXj
kF + 3"

o�
� 1� Æ:

Since for n = �("; Æ) we have

kn�1
nX

j=1

rjÆXj
kF � ";

we get the �rst bound in proposition 2

Pf��(";Æ) � 5"g � Æ:

Quite similarly, it follows from Lemmas 1, 2 and 3 that for all n � �n with probability � 1� Æ

kPn � PkF � E kPn � PkF � "

�
1

2
E kn�1

nX
j=1

rj(ÆXj
� P )kF � "

�
1

2
E kn�1

nX
j=1

rjÆXj
kF �

1

2
E jn�1

nX
j=1

rjj � "

�
1

2
E kn�1

nX
j=1

rjÆXj
kF �

1

2
E
1=2jn�1

nX
j=1

rjj
2 � "

�
1

2
kn�1

nX
j=1

rjÆXj
kF �

1

2
p
n
�

3

2
": (6)

Therefore, with probability � 1� Æ; the condition �n � n < �(6"; Æ) (note also that �n � �n(6"; Æ))

implies that

kn�1
nX

j=1

rjÆXj
kF > 6"

and, in view of the previous inequalities, we get (taking into account n � �n("; Æ) and �n("; Æ)�1=2 �

" for all Æ 2 (0; 1)) that with probability � 1� Æ

�n >
3

2
"�

1

2
p
�n("; Æ)

� " for all �n("; Æ) � n < �(6"; Æ):

The second bound in proposition 2 now easily follows.

The proof of Theorem 5 requires the following lemma (which can be proven along the same

lines as, for instance, Lemma 2.3.7 in [62]).
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Lemma 4: Suppose Z1; Z2 are independent stochastic processes in `1(F): Then for all t >

0; c > 0

PfkZ1kF � t+ cg �
PfkZ1 � Z2kF � tg

inff2F PfjZ2(f)j � cg
:

Proof of Theorem 5. The proof of the �rst statement is quite similar to the �rst part of the

proof of proposition 2. We set �n := �n("; Æ): For instance, instead of the bound (4), we have here

P

� \
n2f2k�n:k=0;1;:::g

n
kPn � PkF � E kPn � PkF + "

o�
� 1�

1X
k=0

expf�"2�n2k=4g

� 1� 2 expf�"2�n=4g

� 1� Æ=2

where we have used the fact that for any � � 1 we have

1X
k=1

expf��(2k � 1)g �
1X
k=1

expf�(2k � 1)g

�
1X
k=1

e�k = (e� 1)�1

< 1

and hence
1X
k=0

expf��2kg � 2e��:

Similar minor changes are needed in other parts of the proof.

To prove the second property in the de�nition of the weakly eÆcient stopping times, let

N := N("; Æ); let nk := 2k�n(24"; Æ) and choose k such that nk � N < nk+1: Then

Pf�(24"; Æ) > Ng � Pf�(24"; Æ) > nkg:

If �(24"; Æ) > nk; then for n = nk

kn�1
nX

j=1

rjÆXj
kF > 24":

Since, by the assumptions, N � �n; we get nk � �n=2: Similarly to the proof of the bound (6), we

obtain that with probability � 1� Æ

kPn � PkF �
1

2
kn�1

nX
j=1

rjÆXj
kF �

1

2
p
n
� 6";
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which implies that

Pf�(24"; Æ) > nkg � PfkPnk � PkF � 4"g+ Æ

= PfkSnkkF � 4"nkg+ Æ

� PfkSnkkF � 2"Ng + Æ;

where

Sn(f) :=
nX

j=1

[f(Xj)� P (f)]; f 2 F :

Next we use Lemma 4,

PfkSnkkF � 2"Ng �
PfkSNkF � "Ng

inff2F Pfj(SN � Snk)(f)j � "Ng
:

and by Hoe�ding's inequality [66]

inf
f2F

Pfj(SN � Snk)(f)j � "Ng = 1� sup
f2F

Pfj(SN � Snk)(f)j > "Ng

� 1� 2 expf�"2N=2g

� 1� Æ;

and we get

PfkSnkkF � 2"Ng � (1� Æ)�1PfkPN � PkF � "g

� Æ(1 � Æ)�1:

Hence, we get

Pf�(24"; Æ) > nkg � Æ(1 � Æ)�1 + Æ

� 3Æ;

for Æ < 1=4; which implies weak eÆciency with K1 = 5;K2 = 24 and K3 = 3:

Proof of Proposition 3. By Ho�mann-Jorgensen inequality (see van der Vaart and Wellner

[62]), it follows that

E kPN � PkF � 12F�1(47=48) + 12E max
1�n�N

f(Xk)� Pf

N


F

;

where F�1 is the quantile function (the inverse of the distribution function) of kPN �PkF : Since

PfkPN � PkF � "g � Æ
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and Æ � 1=48 we get F�1(47=48) � ". Hence,

E kPN � PkF � 12"+ 24=N � 14":

De�ne nk := 2k�n(30"; Æ): Choose k such that nk�1 � �n("; Æ) < nk: Clearly, nk � 2�n("; Æ): By

the submartingale property of the sequence kPn�PkF (see van der Vaart and Wellner [62]), for

n = nk; we have E kPn � PkF � 14", and by Lemma 3

E kn�1
nX

j=1

rjÆXj
kF � 2E kPn � PkF + 2n�1=2

� 28"+ "=4

� 29":

By Lemma 2,

Pfkn�1
nX

j=1

rjÆXj
kF � 30"g � Pfkn�1

nX
j=1

rjÆXj
kF � E kn�1

nX
j=1

rjÆXj
kF + "g

�
Æ

4

which immediately implies the bound (5) with K1 = 30;K2 = 2:
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