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Abstract

We prove new probabilistic upper bounds on generalization error of complex clas-

si�ers that are combinations of simple classi�ers. Such combinations could be imple-

mented by neural networks or by voting methods of combining the classi�ers, such as

boosting and bagging. The bounds are in terms of the empirical distribution of the mar-

gin of the combined classi�er. They are based on the methods of the theory of Gaussian

and empirical processes (comparison inequalities, symmetrization method, concentra-

tion inequalities) and they improve previous results of Bartlett (1998) on bounding the

generalization error of neural networks in terms of `1-norms of the weights of neurons

and of Schapire, Freund, Bartlett and Lee (1998) on bounding the generalization error

of boosting. We also obtain rates of convergence in Levy distance of empirical margin

distribution to the true margin distribution uniformly over the classes of classi�ers and

prove the optimality of these rates.
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1 Introduction

Let (X; Y ) be a random couple, where X is an instance in a space S and Y 2 f�1; 1g is

a label. Let G be a set of functions from S into R: For g 2 G; sign(g(X)) will be used as a

predictor (a classi�er) of the unknown label Y: If the distribution of (X; Y ) is unknown, then

the choice of the predictor is based on the training data (X1; Y1); : : : ; (Xn; Yn) that consists

of n i.i.d. copies of (X; Y ): The goal of learning is to �nd a predictor ĝ 2 G (based on the

training data) whose generalization (classi�cation) error PfY ĝ(X) � 0g is small enough. In

this paper, our main concern is to �nd reasonably good probabilistic upper bounds on the

generalization error. The standard approach to this problem was developed in seminal papers

of Vapnik and Chervonenkis in the 70s and 80s (see Vapnik (1998) and Devroye, Gy�or� and

Lugosi (1996)) and it is based on bounding the di�erence between the generalization error

PfY g(X) � 0g and the training error

n�1
nX
j=1

IfYjg(Xj)�0g

uniformly over the whole class G of classi�ers g. These bounds are expressed in terms of

data dependent entropy characteristics of the class of sets ff(x; y) : yg(x) � 0g : g 2 Gg
or, frequently, in terms of the so called VC-dimension of the class. It happened, however,

that in many important examples (for instance, in neural network learning) VC-dimension
of the class can be very large, or even in�nite, and that makes impossible the direct ap-
plication of Vapnik{Chervonenkis type of bounds. Recently, several authors (see Bartlett

(1998), Schapire, Freund, Bartlett and Lee (1998)) suggested another class of upper bounds
on generalization error that are expressed in terms of the empirical distribution of the margin

of the predictor (the classi�er). The margin is de�ned as the product Y ĝ(X): The bounds
in question are especially useful in the case of the classi�ers that are the combinations of
simpler classi�ers (that belong, say, to a class H). One of the examples of such classi�ers is

provided by neural networks. Other examples are given by the classi�ers obtained by boost-
ing, bagging and other voting methods of combining the classi�ers. The upper bounds have

the following form (up to some extra terms)

inf
�>0

h
n�1

nX
j=1

IfYj ĝ(Xj)��g + C(G)�(�)C(H)p
n

i
;

where C(G) is a constant depending on the class G (in other words, on the method of

combining the simple classi�ers), � is a decreasing function such that �(�) ! 1 as � ! 0

(for instance, there could be �(�) = 1

�
), C(H) is a constant depending on the class H (in

particular, on the VC-dimension, or some type of entropy characteristics of the class).

We develop a new approach that allows us to improve some of the previously known

bounds. In the case of the Bartlett's bounds for neural networks in terms of the `1-norms of

the weights of the neurons, the improvement is substantial. In Bartlett's bounds the constant

C(G) is of the order (AL)l(l+1)=2; where A is an upper bound on the `1-norms of the weights

of neurons, L is the Lipschitz constant of sigmoids, and l is the number of layers of the

network. Also, in his bound �(�) = 1

�l
: We obtained in a similar context C(G) of the order
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(AL)l with �(�) = 1

�
: The methods of the proofs are also di�erent. Bartlett uses the so called

fat-shattering dimensions of function classes and the extension of Vapnik{Chervonenkis type

inequalities to such dimensions. Our method is based on the general results of the theory

of Gaussian and empirical processes (such as comparison inequalities, e.g. Slepian's Lemma,

symmetrization and random multipliers inequalities, concentration inequalities). Based on

our bounds, we developed a method of complexity penalization of the training error of neural

network learning with penalties de�ned as functionals of the weights of neurons and prove

oracle inequalities showing some form of optimality of this method.

We also obtained general rates of convergence of the empirical margin distributions

to the theoretical one in the Levy distance. Namely, we proved that the empirical margin

distribution converges to the true margin distribution with probability 1 uniformly over the

class G of classi�ers if and only if the class G is Glivenko-Cantelli. Moreover, if G is a Donsker
class, then the rate of convergence in Levy distance is O(n�1=4). We gave some examples,

showing the optimality of these rates.

2 Probabilistic bounds for general function classes

Let (S;A; P ) be a probability space and let F be a class of measurable functions from (S;A)
into R: Let fXkg be a sequence of i.i.d. random variables taking values in (S;A) with common
distribution P: We assume that this sequence is de�ned on a probability space (
;�; P): Let

Pn be the empirical measure based on the sample (X1; : : : ; Xn);

Pn := n�1
nX
i=1

�Xi ;

where �x denotes the probability distribution concentrated at the point x: We will denote
Pf :=

R
S fdP; Pnf :=

R
S fdPn; etc.

In what follows, `1(F) denotes the Banach space of uniformly bounded real valued

functions on F with the norm

kY kF := sup
f2F

jY (f)j:

Our goal in this section is to construct data dependent upper bounds on the probability

Pff � 0g and on the di�erence jPnff � 0g � Pff � 0gj that hold for all f 2 F with high
probability. These inequalities will be used in the next section to upper bound the general-

ization error of combined classi�ers. The bounds will depend on a measure of "complexity"

of the class F which will be introduced next. De�ne

Gn(F) := 2
p
�Ekn�1

nX
i=1

gi�XikF ;

where fgig is a sequence of i.i.d. standard normal random variables, independent of fXig: [Ac-
tually, it is common to assume that fgig is de�ned on a separate probability space (
g;�g; Pg)
and that the basic probability space is now (
�
g;���g; P�Pg)]. We will call n 7! Gn(F)
the Gaussian complexity function of the class F . One can �nd in the literature (see, e.g., van
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der Vaart and Wellner (1996)) various upper bounds on such quantities as Gn(F) in terms

of entropies, VC-dimensions, etc.

Let

�n(F ; t) := Gn(F) + t+ 4
p
2p

n
:

Let ' be a function from R into [0; 1] such that '(u) = 1 for u � 0; '(u) = 0 for u � 1

and ' satis�es the Lipschitz condition: j'(t)� '(s)j � jt� sj:
First we will prove the following fact.

Theorem 1 For all t > 0;

P

n
9f 2 F : Pff � 0g > inf

�2(0;1]

h
Pn'(

f

�
) +

1

�
�n(F ; t)

io
� expf�2t2g:

Proof. For each � 2 (0; 1] and for all f 2 F we have

Pff � 0g � P'(
f

�
) � Pn'(

f

�
) +

1

�
kPn � PkG; (1)

where

G :=
n
t' � f

t
: f 2 F ; t 2 (0; 1]

o
:

By the exponential inequalities for martingale di�erence sequences (see Devroye, Gy�or� and
Lugosi (1996)), we have

P

n
kPn � PkG � EkPn � PkG + "

o
� expf�2"2ng:

Thus, with probablity at least 1� expf�2"2ng

Pff � 0g � Pn'(
f

�
) +

1

�
EkPn � PkG + "

�
: (2)

Next using the Symmetrization Inequality and Gaussian Multiplier Inequality (see van der

Vaart and Wellner (1996)), we get

EkPn � PkG � 2Ekn�1
nX
i=1

"i�XikG �
p
2�Ekn�1

nX
i=1

gi�XikG: (3)

We also have for all t; s 2 R n f0g the following bound

jt'(u
t
)� s'(

v

s
)j � ju� vj+ 2jt� sj: (4)

Indeed, for all t; s > 0

jt'(u
t
)� s'(

v

s
)j � jt'(u

t
)� t'(

v

t
)j+ jt'(v

t
)� s'(

v

s
)j �

� tju
t
� v

t
j+ jt'(v

t
)� s'(

v

s
)j �
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� ju� vj+ jt'(v
t
)� s'(

v

t
)j+ js'(v

t
)� s'(

v

s
)j �

� ju� vj+ jt� sj+ sj'(v
t
)� '(

v

s
)j:

Assume that t � s: If v � t; or v � 0; we have

jt'(u
t
)� s'(

v

s
)j � ju� vj+ jt� sj:

Otherwise, we get

sj'(v
t
)� '(

v

s
)j � sv

ts
jt� sj � jt� sj;

and the bound (4) follows. Similarly, it can be proved for all t; s < 0: In the case ts < 0; we

get

jt'(u
t
)� s'(

v

s
)j � jtj+ jsj = jt� sj;

so (4) also holds.

Let dPn;2 denote the metric of the space L2(S; dPn) :

dPn;2(f; g) := (Pnjf � gj2)1=2:

Now we use (4) to get for all t; s > 0

d2Pn;2(t' �
f

t
; s' � h

s
) = n�1

nX
i=1

jt'(f(Xi)

t
)� s'(

h(Xi)

s
)j2 �

� n�1
nX
i=1

[jf(Xi)� h(Xi)j+ 2jt� sj]2 � n�1
nX
i=1

[2jf(Xi)� h(Xi)j2 + 8jt� sj2]2 �

� 2d2Pn;2(f; h) + 8jt� sj2: (5)

De�ne Gaussian processes

Z1(f; t) := n�1=2
nX
i=1

git(' � f
t
)(Xi)

and

Z2(f; t) :=
p
2n�1=2

nX
i=1

gif(Xi) + 2
p
2tg;

where g is a standard normal random variable on (
g;�g; Pg) independent of fgig: Then, for
all t; s > 0; we can rewrite (5) as

E gjZ1(f; t)� Z1(h; s)j2 � E gjZ2(f; t)� Z2(h; s)j2

and we also have similarly

E gjZ1(�f;�t)� Z1(�h;�s)j2 � E gjZ2(�f;�t)� Z2(�h;�s)j2:
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Here E g denotes the expectation on the probability space (
g;�g; Pg) (on which the sequence

fgig and the random variable g were de�ned). A version of Slepian's Lemma (see Ledoux

and Talagrand (1991)) implies that

E g supfZ1(f; t) : f 2 F ; t 2 (0; 1] or � f 2 F ;�t 2 (0; 1]g �

� E g supfZ2(f; t) : f 2 F ; t 2 (0; 1] or � f 2 F ;�t 2 (0; 1]g:
We have

E gkn�1
nX
i=1

gi�XikG =

= E g sup
h2G

[n�1
nX
i=1

gih(Xi)]
_

sup
h2G

[n�1
nX
i=1

gi(�h)(Xi)] = E g sup
h2 �G

[n�1
nX
i=1

gih(Xi)] =

= E g supfZ1(f; t) : f 2 F ; t 2 (0; 1] or � f 2 F ;�t 2 (0; 1]g;
where �G := ft'(f

t
);�t'(�f�t ) : f 2 F ; t 2 (0; 1]g; and similarly it can be proved that

p
2E gkn�1

nX
i=1

gi�XikF = E g supfZ2(f; t) : f 2 F ; t 2 (0; 1] or � f 2 F ;�t 2 (0; 1]g:

This immediately gives us

E gkn�1
nX
i=1

gi�XikG �
p
2E gkn�1

nX
i=1

gi�XikF +
2
p
2E jgjp
n

: (6)

Combining the bounds (2), (3), (6), we prove that with probablity at least 1� expf�2"2ng

Pff � 0g � Pn'(
f

�
) + 2

p
�
1

�
Ekn�1

nX
i=1

gi�XikF +
4
p
2

�
n�1=2 +

"

�
:

Setting " := tn�1=2 completes the proof.

Quite similarly, assuming now that ' is a function from R into [0; 1] such that '(u) = 1
for u � �1; '(u) = 0 for u � 0 and ' still satis�es the Lipschitz condition j'(t)� '(s)j �
jt� sj; one can prove the following statement.

Theorem 2 For all t > 0;

P

n
9f 2 F : Pff � 0g < sup

�2(0;1)

h
Pn'(

f

�
)� 1

�
�n(F ; t)

io
� expf�2t2g:

The bounds of theorems 1 and 2 easily imply that for all t > 0

P

n
9f 2 F : Pff � 0g > Pnff � 0g+ inf

�2(0;1]

h
Pnf0 < f � �g+ 1

�
�n(F ; t)

io
� expf�2t2g
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and

P

n
9f 2 F : Pff � 0g < Pnff � 0g � inf

�2(0;1]

h
Pnf�� < f � 0g+ 1

�
�n(F ; t)

io
� expf�2t2g:

Similarly, it can be shown that

P

n
9f 2 F : Pnff � 0g > Pff � 0g+ inf

�2(0;1]

h
Pf0 < f � �g+ 1

�
�n(F ; t)

io
� expf�2t2g

and

P

n
9f 2 F : Pnff � 0g < Pff � 0g � inf

�2(0;1]

h
Pf�� < f � 0g+ 1

�
�n(F ; t)

io
� expf�2t2g:

Combining the last bounds, we get the following result:

Theorem 3 For all t > 0;

P

n
9f 2 F : jPnff � 0g � Pff � 0gj > inf

�2(0;1]

h
Pnfjf j � �g+ 1

�
�n(F ; t)

io
� 2 expf�2t2g

and

P

n
9f 2 F : jPnff � 0g � Pff � 0gj > inf

�2(0;1]

h
Pfjf j � �g+ 1

�
�n(F ; t)

io
� 2 expf�2t2g:

Denote

Hf(�) := �Pfjf j � �g; Hn;f(�) := �Pnfjf j � �g:
Plugging in the second bound of Theorem 3 � := H�1

f (�n(F ; t))V 1 easily gives us the

following upper bound that holds for any t > 0 with probability at least 1� 2e�2t
2

:

8f 2 F jPnff � 0g � Pff � 0gj � �n(F ; t)
H�1
f (�n(F ; t))

_
�n(F ; t):

Similarly, the �rst bound of Theorem 3 gives that for any t > 0 with probability at least
1� 2e�2t

2

:

8f 2 F jPnff � 0g � Pff � 0gj � �n(F ; t)
H�1
n;f(�n(F ; t))

_
�n(F ; t):

The next example shows that, in general, the term 1

�
�n(F ; t) of the bound of Theorem

1 (and other similar results, in particular, Theorem 3) can not be improved.

Let us consider a sequence fXng of independent identically distributed random variables

in l1 de�ned by

Xn =
�
"nk(2 log(k + 1))�

1
2

�
k�1

;

where "nk are i.i.d. Rademacher random variables. We consider a class of functions that

consists of canonical projections on each coordinate

F = ffk : fk(x) = xkg:
Let �(x) be an increasing function such that �(0) = 0: Then the following proposition

holds.
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Proposition 1

P

 
9f 2 F : Pff � 0g � inf

�2(0;1]
[Pnff � �g+ 1

�(�)
�n(F ; t)]

!
! 1

when n!1 uniformly for all t � 2�1n1=2�((4n)�1=2)�c; where c > 0 is some �xed constant.

Proof. It's well known that F is a bounded CLT class for the distribution P of the

sequence fXng (see Ledoux and Talagrand (1991)). Notice that P (fk � 0) = 1=2 for all k

and Ekn�1P gi�XikF � cn�1=2 for some constant c > 0: Let us denote by t0 = t+4
p
2+2

p
�c:

The in�mum inside the probability is less then or equal to the value of the expression at any

�xed point. Therefore, for each k we will choose � to be equal to a �k > (2 log(k + 1))�1=2:

It's easy to see that for this value of �;

Pnffk � �kg = 1

n

nX
i=1

I("ik = �1):

Combining these estimates we get that the probability de�ned in the statement of the propo-

sition is greater than or equal to

P

 
9k : 1

2
� 1

n

X
i�n

I("ik = �1) + t0

�(�k)
p
n

!

= 1�Y
k

P

 
1

2
<

1

n

X
i�n

I("ik = �1) + t0

�(�k)
p
n

!

In the product above factors are possibly not equal to 1 only for k in the set of indices

K =
n
k : 
k =

t0

�(�k)
p
n
� 1

2

o
:

Clearly,

P

 
1=2 < n�1

X
i�n

I("i1 = �1) + �

!
�
 
1�

 
n

k0

!
2�n

!
;

where k0 = [n=2� �n]� 1: For simplicity of calculations we will set k0 = n=2� �n: Utilizing
the following estimates in Stirling's formula for the factorial (see Feller)

(2�)
1
2nn+

1
2 e�n+1=(12n+1) < n! < (2�)

1
2nn+

1
2 e�n+1=12n (7)

it is straightforward to check that for some constant c > 0 
n

k0

!
2�n � cn�

1
2

�
(1� 2�)1�2�(1 + 2�)1+2�

��n
2 � cn�

1
2 exp(�4n�2): (8)

The last inequality is due to the fact that

exp(x2) � (1� x)1�x(1 + x)1+x � exp(2x2)
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for x < 2�1=2: It follows from (??) that

P

 
1

2
<

1

n

X
i�n

I("ik = �1) + 
k

!
� 1� cn�1=2 exp(�4n
2k):

Since 
k � 1=2 for k 2 K; we can continue and come to the following lower bound

1� Y
k2K

(1� cn�1=2 exp(�4n
2k)) � 1� exp(�X
k2K

cn�1=2 exp(�4n
2k))

� 1� exp(�card(K)cn�1=2e�n)! 1;

uniformly in t0; if we check that card(K)cn�1=2e�n !1: Indeed, if

t0 � 2�1n1=2�((4n)�1=2)

then for n large enough

t0 � 2�1n1=2�((4n)�1=2) � 2�1n1=2�((2 log([cnen] + 1))�1=2):

It means that [cnen] 2 K; and, therefore,

card(K)cn�1=2e�n � n1=2 � 1

cn1=2en
!1:

Proposition is proven.

Remarks. If �(x) = x1�� for some positive � then the convergence in the proposition

holds for t � cn�=2: Also, if �(�)

�
! 1 as � ! 0; then the convergence in the proposition

holds uniformly in t 2 [0; T ] for any T > 0: It means that the bound of Theorem 1 does not

hold with 1

�
�n(F ; t) replaced by 1

�(�)
�n(F ; t). Similarly, one can show that

P

 
9f 2 F : jPnff � 0g � Pff � 0gj � inf

�2(0;1]
[Pnfjf j � �g+ 1

�(�)
�n(F ; t)]

!
! 1

when n!1 uniformly for all t � 2�1n1=2�((4n)�1=2)� c:

3 Convergence rates of empirical margin distributions

We are again in the setting of Section 2 with the class F of measurable functions from S

into [�1; 1]: For f 2 F ; let
Ff (y) := Pff � yg; Fn;f(y) := Pnff � yg; y 2 R:

Let L denote the Levy distance between the distribution functions in R :

L(F;G) := inff� > 0 : F (t) � G(t+ �) + � and G(t) � F (t+ �) + �; for all t 2 Rg:

9



Theorem 4 For all t > 0;

P

n
sup
f2F

L(Fn;f ; Ff) � (
p
6�Ekn�1

nX
i=1

gi�XikF +
t + 6

p
3p

n
)
1=2
o
� expf�2t2g:

Proof. Similarly to (1), we get the following bounds:

Ff(y) = Pff � yg � P'(
f � y

�
) � Pn'(

f � y

�
) +

1

�
kPn � Pk ~G � Fn;f(y + �)+

+
1

�
kPn � Pk ~G

and

Fn;f(y) = Pnff � yg � Pn'(
f � y

�
) � P'(

f � y

�
) +

1

�
kPn � Pk ~G � Ff (y + �)+

+
1

�
kPn � Pk ~G;

where
~G :=

n
t' � (f � y

t
) : f 2 F ; t 2 (0; 1); y 2 [�1; 1]

o
:

It follows that

sup
f2F

L(Fn;f ; Ff) � �
_ 1

�
kPn � Pk ~G:

Minimizing the righthand side over �; we get

sup
f2F

L(Fn;f ; Ff) � (kPn � Pk ~G)
1=2
: (9)

Similarly to (4),

jt'(u� y

t
)� s'(

v � z

s
)j � ju� vj+ 2jt� sj+ jy � zj;

which implies

d2Pn;2(t' � (
f � y

t
); s' � (g � z

s
)) � 3d2Pn;2(f; g) + 12jt� sj2 + 3jy � zj2:

De�ning

Z1(f; t; y) := n�1=2
nX
i=1

git(' � (f � y

t
))(Xi)

and

Z2(f; t; y) :=
p
3n�1=2

nX
i=1

gif(Xi) + 2
p
3tg +

p
3y~g;

we have

E gjZ1(f; t; y)� Z1(g; s; z)j2 � E gjZ2(f; t; y)� Z2(g; s; z)j2:
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The same way as in the proof of Theorem 1, Slepian's Lemma implies that

E supfZ1(f; t; y) : y 2 [�1; 1]; f 2 F ; t 2 (0; 1] or � f 2 F ;�t 2 (0; 1]g �

� E supfZ2(f; t; y)j : y 2 [�1; 1]; f 2 F ; t 2 (0; 1] or � f 2 F ;�t 2 (0; 1]g:
Again, arguing as in the proof of Theorem 1, we get

E gkn�1
nX
i=1

gi�Xik ~G �
p
3E gkn�1

nX
i=1

gi�XikF +
3
p
3E jgjp
n

: (10)

Next, by the exponential inequalities for martingale di�erence sequences, we have

P

n
kPn � Pk ~G � EkPn � Pk ~G + "

o
� expf�2"2ng (11)

and, similarly to (3),

EkPn � Pk ~G �
p
2�Ekn�1

nX
i=1

gi�Xik ~G: (12)

Combining the bounds (9){(112) and setting " := tn�1=2, we get that with probablity at
least 1� expf�2t2g

sup
f2F

L(Fn;f ; Ff) � (
p
6�Ekn�1

nX
i=1

gi�XikF +
t+ 6

p
3p

n
)1=2;

which completes the proof.

Theorem 5 The following two statements are equivalent:

(i) F 2 GC(P )

and

(ii) sup
f2F

L(Fn;f ; Ff)! 0 a:s: as n!1:

Moreover, if for some � 2 [1=2; 1)

EkPn � PkF = O(n��);

then

sup
f2F

L(Fn;f ; Ff) = OP (n
��=2) as n!1: (13)

In particular, if F 2 CLT (P ); then

sup
f2F

L(Fn;f ; Ff) = OP (n
�1=4) as n!1:

11



Proof. To prove that (i) implies (ii) we use Gaussian Multiplier Inequality (see van der

Vaart and Wellner (1996)):

Ekn�1
nX
i=1

gi�XikF � 2(n0 � 1)E max
1�i�n

jgij
n
+

+kgk2;1n�1=2 max
n0�k�n

Ekk�1=2
kX

i=n0

"i�XikF :

For n0 = 1; we get

Ekn�1
nX
i=1

gi�XikF � kgk2;1n�1=2 max
1�k�n

Ekk�1=2
kX
i=1

"i�XikF �

� kgk2;1n�1=2 max
1�k�m

Ekk�1=2
kX
i=1

"i�XikF + kgk2;1 sup
k�m

Ekk�1
kX
i=1

"i�XikF :

Since F 2 GC(P ); we have
EkPn � PkF ! 0 as n!1;

which, by symmetrization inequality, implies

Ekn�1
nX
i=1

"i�XikF ! 0 as n!1:

Therefore,

sup
k�m

Ekk�1
kX
i=1

"i�XikF ! 0 as m!1:

On the other hand, for a �xed m;

n�1=2 max
1�k�m

Ekk�1=2
kX
i=1

"i�XikF � (m=n)1=2 ! 0 as n!1:

Therefore,

Ekn�1
nX
i=1

gi�XikF ! 0 as n!1:

Plugging in the bound of Theorem 4 t = logn and using Borel-Cantelli Lemma proves (ii).

To prove that (ii) implies (i), we use the following bound

j
Z 1

�1
td(F �G)(t)j � 2L(F;G);

which holds for any two distribution functions on [�1; 1]: The bound implies that

kPn � PkF = sup
f2F

jPnf � Pf j = sup
f2F

j
Z 1

�1
td(Fn;f � Ff)(t)j � 2 sup

f2F
L(Fn;f ;Ff);

12



which implies the statement.

If

EkPn � PkF = O(n��);

then the Gaussian Multiplier Inequality and the symmetrization inequality imply that

Ekn�1
nX
i=1

gi�XikF = O(n��):

Thus, the bound of Theorem 9 implies that with some constant C > 0

Pfsup
f2F

L(Fn;f ; Ff) � (
C

n�
+
t + 6

p
3

n1=2
)
1=2g � expf�2t2g:

It follows that
lim
u!1

lim sup
n!1

Pfn�=2 sup
f2F

L(Fn;f ; Ff ) � ug = 0:

In the next proposition, we are again considering the class F used already in Proposition
1 and the sequence of observations fXng de�ned by

Xn =
�
"nk(2 log(k + 1))�

1
2
��
�
k�1

;

where � � 0 and "nk are i.i.d. Rademacher random variables.

Proposition 2 Consider the sequence � = �(n) such that

sup
f2F

L(Fn;f ; Ff) = OP (�):

Then

� � cn
� 1+2�

4(1+�)

(when � = 0 we have � � cn�1=4). On the other hand, we have

sup
f2F

L(Fn;f ; Ff) = OP (n
� 1+2�

4(1+�) ):

Proof. We can assume without loss of generality that with probability more than 1=2
for all k � 1; y 2 [�1; 1] and n large enough we have

P (fk � y) � Pn(fk � y + �) + �: (14)

If we take y = 0 and consider only such k that satisfy the inequality (2 log(k+1))�+1=2 < ��1

then (??) becomes equivalent to

1=2 � n�1
X
i�n

I("ik = �1) + �:

13



Inequality (2 log(k + 1))�+1=2 < ��1 holds for k �  1(�) = 1=2 exp(��
2

1+2� =2): Therefore, for

large n

1=2 � P

 \
k� 1(�)

(
1=2 � n�1

X
i�n

I("ik = �1) + �

)!

= P

 
1=2 � n�1

X
i�n

I("i1 = �1) + �

! 1(�)
�
 
1�

 
n

k0

!
2�n

! 1(�)
; (15)

where k0 = [n=2� �n]� 1: Using (??), we get

2
� 1
 1(�) � 1� cn�

1
2 exp(�4n�2):

Taking logarithm of both sides and taking into account that log(1� x) � �x we get (recall

that  1(�) = 1=2 exp(��
2

1+2� =2))

exp(�2�1�� 2
1+2� ) � cn�

1
2 exp(�4n�2):

Therefore,
1=(2�2=(1+2�)) � 4n�2 + c logn

and
1=2 � 4n�4(1+�)=(1+2�) + c�2=(1+2�) logn:

This �nally implies that

� � cn
� 1+2�

4(1+�) :

To prove the second statement note, �rst of all, that in the supremum supf2F L(Fn;f ; Ff)
it's enough to consider only those k that satisfy the inequality

2��1 � (2 log(k + 1))1=2+�;

because, for all other k we automatically have

P (fk � y) � Pn(fk � y + �) + �; Pn(fk � y) � P (fk � y + �) + � (16)

for all y: The above condition on k is equivalent to

k �  2(�) = exp

 
1

2

�
2

�

� 2
1+2�

!
:

Let us notice that probability P (fk � y) can take one of three values 0; 1=2 or 1: When it's

equal to 0 or 1; conditions (??) become trivial. On the other hand, if P (fk � y) = 1=2 then,

obviously, (??) hold when jn�1P I("ik = �1)� 1=2j � �:

This observations imply that

P (L(Fn;f ; Ff) � �) � P

 \
k� 2(�)

(���1
n

X
i�n

I("ik = �1)� 1

2

��� � �

)!

= P

 ���1
n

X
i�n

I("i1 = �1)� 1

2

��� � �

! 2(�)
=

 
1� P

 ���1
n

X
i�n

I("i1 = �1)� 1

2

��� � �

!! 2(�)

� (1� 2e�2n�
2

) 2(�) ! 1;
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when

 2(�)e
�2n�2 = exp

 
1

2

�
2

�

� 2
1+2� � 2n�2

!
! 0:

This holds, for instance, when � = n�(1+2�)=4(1+�):

4 Bounding the generalization error of neural networks

and other combined classi�ers

In this section, we assume that ~S := S � f�1; 1g and ~F := f ~f : f 2 Fg; where ~f(x; y) :=

yf(x): P will denote the distribution of (X; Y ); Pn the empirical distribution based on the
observations ((X1; Y1); : : : ; (Xn; Yn)): Clearly, we have

Gn( ~F) = 2
p
�E sup

f2F
jn�1

nX
i=1

giYif(Xi)j = 2
p
�E E g sup

f2F
jn�1

nX
i=1

~gif(Xi)j;

where ~gi := Yigi: Since, for given f(Xi; Yi)g; f~gig and fgig have the same distribution, we get

E g sup
f2F

jn�1
nX
i=1

~gif(Xi)j = E g sup
f2F

jn�1
nX
i=1

gif(Xi)j;

which immediately implies Gn( ~F) = Gn(F):
Theorem 1 now implies some useful bounds for boosting and other methods of combining

the classi�ers. Namely, we get in this case the following theorem that implies (and slightly

improves) the recent bound of Schapire, Freund, Bartlett and Lee (1998).

Theorem 6 Let F := conv(H); where H is a class of measurable functions from (S;A) into
[�1; 1]: For all t > 0;

P

n
9f 2 F : Pf ~f � 0g > inf

�2(0;1]

h
Pn'(

~f

�
) +

1

�
�n(H; t)

io
� expf�2t2g

and

P

n
9f 2 F : jPnf ~f � 0g � Pf ~f � 0gj > inf

�2(0;1]

h
Pnfj ~f j � �g+ 1

�
�n(H; t)

io
� 2 expf�2t2g;

P

n
9f 2 F : jPnf ~f � 0g � Pf ~f � 0gj > inf

�2(0;1]

h
Pfj ~f j � �g+ 1

�
�n(H; t)

io
� 2 expf�2t2g:

Proof. Since F := conv(H); where H is a class of measurable functions from (S;A) into
[�1; 1]; we have

Gn(F) = 2
p
�Ekn�1

nX
i=1

gi�XikF � 2
p
�Ekn�1

nX
i=1

gi�XikH = Gn(H):
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It follows that Gn( ~F) � Gn(H); and theorems 1 and 3 imply the result.

In voting methods of combining the classi�ers (such as boosting, bagging, etc.), a classi-

�er produced at each iteration is a convex combination f̂ 2 conv(H) of simple base classi�ers

from the class H: The �rst bound of Theorem 4 implies that for a given � 2 (0; 1) with prob-

ability at least 1� �

Pf~̂f � 0g � inf
�2(0;1]

[Pnf~̂f � �g+ 1

�
�n(H;

s
1

2
log

1

�
)]:

In particular, if H is a VC{class of classi�ers h : S 7! f�1; 1g (which means that the class of

sets ffx : h(x) = +1g : h 2 Hg is a Vapnik{Chervonenkis class) with VC{dimension V (H),

we have with some constant C > 0

Gn(H) � C

s
V (H)

n
:

This implies that with probability at least 1� �

Pf~̂f � 0g � inf
�2(0;1]

[Pnf~̂f � �g+ 1

�
(C

s
V (H)

n
+

q
1

2
log 1

�
+ 4

p
2p

n
)];

which slightly improves the bound obtained previously by Schapire, Freund, Bartlett and

Lee (1998).

Example. In this example we consider a popular boosting algorithm called AdaBoost.

At the beginning (at the �rst iteration) AdaBoost assigns uniform weights w
(1)

j = n�1 to
the labeled observations (X1; Y1); : : : ; (Xn; Yn): At each iteration the algorithm updates the

weights. Let w(k) = (w
(k)
1 ; : : : ; w(k)

n ) denote the vector of weights at k-th iteration. Let Pn;w(k)

be the weighted empirical measure on k-th iteration:

Pn;w(k) :=
nX
i=1

w
(k)
i �(Xi;Yi):

AdaBoost calls iteratively a base learning algorithm (called "weak learner") that returns at
k-th iteration a classi�er hk 2 H and computes the weighted training error of hk :

ek := Pn;w(k)fy 6= hkg:
(In fact, the weak learner attempts to �nd a classi�er with small enough weighted training

error, at least such that ek � 1=2). Then the weights are updated according to the rule

w
(k+1)

j :=
w

(k)
j expf�Yj�khk(Xj)g

Zk
;

where

Zk :=
nX
j=1

w
(k)
j expf�Yj�khk(Xj)g

16



and

�k :=
1

2
log

1� ek

ek
:

After N iterations AdaBoost outputs a classi�er

f̂(x) :=

PN
k=1 �khk(x)PN

k=1 �k
:

The above bounds, of course, apply to this classi�er since f̂ 2 conv(H): Another way to use

Theorem 4 in this example to choose a decreasing function '; satisfying all the conditions

of the Theorem 4 and such that '(u) � e�u for all u 2 R: It is easy to see that such a choice

is possible. Let us also set

� :=
1PN
1 �k

^
1:

Then it is not hard to check that

'
�yPN

1 �khk(x)

�
PN

1 �k

�
� '(y

NX
1

�khk(x)) � expf�y
NX
1

�khk(x)g:

Therefore

Pn'(
~̂
f

�
) � Pn expf�y

NX
1

�khk(x)g:

A simple (and well known in the literature on boosting) computation shows that

Pn expf�y
NX
1

�khk(x)g =
NY
k=1

2
q
ek(1� ek):

We also have
NX
k=1

�k = log
NY
k=1

s
1� ek

ek
:

It follows now from the �rst bound of Theorem 4 that with probability 1� e�2t
2

Pf ~f � 0g �
NY
k=1

2
q
ek(1� ek) + log

NY
k=1

s
1� ek

ek
�n(H; t):

We turn now to the applications of the bounds of previous section in neural network
learning. Let H be a class of measurable functions from (S;A) into R: Given a Borel function
� from R into [�1; 1] and a vector w := (w1; : : : ; wn) 2 R

n; let

N�;w : Rn 7! R; N�;w(u1; : : : ; un) := �(
nX
i=1

wjuj):

We call the function N�;w a neuron with weights w and sigmoid �: Given a neuron N; we

denote �(N) and w(N) its sigmoid and its vector of weights, respectively. For w 2 R
n;

kwk`1 :=
nX
i=1

jwij:

17



Let �j : j � 1 be functions from R into [�1; 1]; satisfying the Lipschitz conditions:

j�j(u)� �j(v)j � Ljju� vj; u; v 2 R:

De�ne H0 := H; and then recursively

Hj :=
n
N�j ;w(h1; : : : ; hn) : n � 0; hi 2 Hj�1; w 2 R

n
o[Hj�1:

We call Hj the class of feedforward neural networks with base H and j layers of neurons.

Denote

H1 :=
1[
j=0

Hj:

Let fAjg be a sequence of positive numbers. We also de�ne recursively classes of neural
networks with restrictions on the weights of neurons:

Hj(A1; : : : ; Aj) :=

:=
n
N�j ;w(h1; : : : ; hn) : n � 0; hi 2 Hj�1(A1; : : : ; Aj�1); w 2 R

n; kwk`1 � Aj
o[

[Hj�1(A1; : : : ; Aj�1):

Clearly,

Hj :=
[nHj(A1; : : : ; Aj) : A1; : : : ; Aj < +1

o
:

We start with the following result.

Theorem 7 For all t > 0 and for all l � 1

P

n
9f 2 Hl(A1; : : : ; Al) : Pf ~f � 0g > inf

�2(0;1]

h
Pn'(

~f

�
)+

+
1

�
(
lY

k=1

(2LjAj + 1)Gn(H) +
t+ 4

p
2p

n
)
io
� expf�2t2g

and

P

n
9f 2 Hl(A1; : : : ; Al) : jPnf ~f � 0g � Pf ~f � 0gj > inf

�2(0;1]

h
Pnfj ~f j � �g+

+
1

�
(
lY

k=1

(2LjAj + 1)Gn(H) +
t + 4

p
2p

n
)
io
� 2 expf�2t2g;

P

n
9f 2 Hl(A1; : : : ; Al) : jPnf ~f � 0g � Pf ~f � 0gj > inf

�2(0;1]

h
Pfj ~f j � �g

+
1

�
(
lY

k=1

(2LjAj + 1)Gn(H) +
t + 4

p
2p

n
)
io
� 2 expf�2t2g:
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Proof. We apply Theorem 1 and Theorem 3 to the class F = Hl(A1; : : : ; Al) =: H0
l;

which gives for all t > 0

P

n
9f 2 H0

l : Pf ~f � 0g > inf
�2(0;1)

h
Pn'(

~f

�
) +

1

�
(Gn(H0

l) +
t + 4

p
2p

n
)
io
� expf�2t2g:

Thus, it's enough to show that

Gn(H0
l) = 2

p
�Ekn�1

nX
i=1

gi�XikH0

l
�

lY
k=1

(2LjAj + 1)2
p
�Ekn�1

nX
i=1

gi�XikH:

To this end, note that

Ekn�1
nX
i=1

gi�XikH0

l
� Ekn�1

nX
i=1

gi�XikGl + Ekn�1
nX
i=1

gi�XikH0

l�1
; (17)

where

Gl :=
n
N�l;w(h1; : : : ; hn) : n � 0; hi 2 Hl�1(A1; : : : ; Al�1); w 2 R

n; kwk`1 � Al
o
:

Consider two Gaussian processes

Z1(f) := n�1=2
nX
i=1

gi(�l � f)(Xi)

and

Z2(f) := Lln
�1=2

nX
i=1

gif(Xi);

where

f 2
n nX
i=1

wihi : n � 0; hi 2 H0
l�1; w 2 R

n; kwk`1 � Al
o
=: G 0l :

We have

E gjZ1(f)� Z1(h)j2 = n�1
nX
i=1

j�l(f(Xi)� �l(h(Xi))j2 �

� L2
l n
�1

nX
i=1

jf(Xi)� h(Xi)j2 = E gjZ2(f)� Z2(h)j2:

By Slepian's Lemma (see Ledoux and Talagrand (1991)), we get

E gkn�1
nX
i=1

gi�XikGl = n�1=2E gkZ1kG0
l

� 2n�1=2E gkZ2kG0
l
= 2LlE gkn�1

nX
i=1

gi�XikG0l : (18)

Since G 0l = Alconv(Hl�1); we get

Ekn�1
nX
i=1

gi�XikG0l = AlEkn�1
nX
i=1

gi�XikHl�1
: (19)
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It follows from the bounds (17){(19) that

Ekn�1
nX
i=1

gi�XikHl � (2LlAl + 1)Ekn�1
nX
i=1

gi�XikHl�1
:

The result now follows by induction.

Remark. Bartlett (1998) obtained a bound similar to the �rst inequality of Theorem

7 for a more special class H and with larger constants. In the case when Aj � A;Lj � L

(the case considered by Bartlett) the expression in the right hand side of his bound includes
(AL)l(l+1)=2

�l
; which is replaced in our bound by (AL)l

�
: These improvement can be substantial

in applications, since the above quantities play the role of complexity penalties.

Given a neural network f 2 H1; let

`(f) := minfj � 1 : f 2 Hjg:

Let fbkg be a sequence of nonnegative numbers. For a number k; 1 � k � `(f); let Nk(f)
denote the set of all neurons of layer k (with sigmoid �k) in the representation of f: Denote

Wk(f) := max
N2Nk(f)

kw(N)k`1
_
bk; k = 1; 2; : : : ; `(f);

and let

�(f) :=
`(f)Y
k=1

(4LkWk(f) + 1);

��(f) :=
`(f)X
k=1

r
�

2
log(2 + j log2Wk(f)j);

where � > 0 is a number such that �(�) < 3=2; � being the Riemann zeta-function:

�(�) :=
1X
k=1

k��:

Theorem 8 For all t > 0 and for all � > 0 such that �(�) < 3=2; the following bounds hold:

P

n
9f 2 H1 : Pf ~f � 0g > inf

�2(0;1)

h
Pn'(

~f

�
)+

+
1

�
(�(f)Gn(H) +

��(f) + t+ 4
p
2p

n
)
io
� (3� 2�(�))�1 expf�2t2g

and

P

n
9f 2 H1 : jPnf ~f � 0g � Pf ~f � 0gj > inf

�2(0;1]

h
Pnfj ~f j � �g+

+
1

�
(�(f)Gn(H) +

��(f) + t+ 4
p
2p

n
)
io
� 2(3� 2�(�))�1 expf�2t2g;
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P

n
9f 2 H1 : jPnf ~f � 0g � Pf ~f � 0gj > inf

�2(0;1]

h
Pfj ~f j � �g+

+
1

�
(�(f)Gn(H) +

��(f) + t+ 4
p
2p

n
)
io
� 2(3� 2�(�))�1 expf�2t2g:

Proof. Denote

�k :=

(
[2k�1; 2k) for k 2 Z; k 6= 0; 1

[1=2; 2) for k = 1:

The conditions `(f) = l and

Wj(f) 2 �kj ; kj 2 Zn f0g; j = 1; : : : ; l

easily imply that

�(f) �
lY

j=1

(2Lj2
kj + 1);

��(f) �
lX

j=1

r
�

2
log(jkjj+ 1):

and also that

f 2 Hl(2
k1; : : : ; 2kl):

Therefore, the following bounds hold:

P

n
9f 2 H1 : Pf ~f � 0g > inf

�2(0;1)

h
Pn'(

~f

�
) +

1

�
(�(f)Gn(H) +

��(f) + t+ 4
p
2p

n
)
io
�

�
1X
l=0

X
k12Znf0g

: : :
X

kl2Znf0g

P

n
9f 2 H1

\ff : `(f) = l; Wj(f) 2 �kj ; j = 1; : : : ; lg :

Pf ~f � 0g > inf
�2(0;1)

h
Pn'(

~f

�
) +

1

�
(�(f)Gn(H) +

��(f) + t + 4
p
2p

n
)
io
�

�
1X
l=0

X
k12Znf0g

: : :
X

kl2Znf0g

P

n
9f 2 Hl(2

k1; : : : ; 2kl) : Pf ~f � 0g > inf
�2(0;1)

h
Pn'(

~f

�
)+

+
1

�
(
lY

j=1

(2Lj2
kj + 1)Gn(H) +

Pl
j=1

q
�
2
log(jkjj+ 1) + t + 4

p
2p

n
)
io
:

Using the �rst bound of Theorem 7, we obtain

P

n
9f 2 Hl(2

k1; : : : ; 2kl) : Pf ~f � 0g > inf
�2(0;1)

h
Pn'(

~f

�
)+

+
1

�
(�(f)Gn(H) +

��(f) + t+ 4
p
2p

n
)
io
�
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�
1X
l=0

X
k12Znf0g

: : :
X

kl2Znf0g

expf�2(
lX

j=1

r
�

2
log(jkjj+ 1) + t)2g �

�
1X
l=0

X
k12Znf0g

: : :
X

kl2Znf0g

expf�
lX

j=1

� log(jkjj+ 1)� 2t2g =

=
1X
l=0

X
k12Znf0g

: : :
X

kl2Znf0g

lY
j=1

(jkjj+ 1)�� expf�2t2g =

=
1X
l=0

lY
j=1

(2
1X
k=2

k��) expf�2t2g =
1X
l=0

[2(�(�)� 1)]l expf�2t2g =

= (3� 2�(�))�1 expf�2t2g
which yields the �rst bound of the theorem. Two other bounds are proved quite similarly.

It follows, in particular, that for any classi�er f̂ 2 H1; based on the data (X1; : : : ; Xn);
we have

P

n
Pf~̂f � 0g > inf

�2(0;1]

h
Pn'(

~̂
f

�
)+

+
1

�
(�(

~̂
f)Gn(H) +

��(f̂) + t + 4
p
2p

n
)
io
� (3� 2�(�))�1 expf�2t2g; t > 0:

Next we consider a method of complexity penalization in neural network learning based

on the penalties that depend on `1-norms of the vectors of weights of the neurons.

Suppose that �f is the neural network from F � H1 that minimizes the penalized
empirical distribution of the margin:

�f := argminf2F inf
�2(0;1]

h
Pn(ff � �g) + 1

�
(�(f)Gn(H) +

��(f)p
n

)
i
=

= argminf2F

h
Pn(ff � 0g) + inf

�2(0;1]
�̂n(f ; �)

i
;

where the quantity

�̂n(f ; �) := Pn(f0 < f � �g) + 1

�
(�(f)Gn(H) +

��(f)p
n

)

plays the role of complexity penalty. We de�ne a distribution dependent version of this data
dependent penalty as

�n(f ; �) := P (f0 < f � 2�g) + 2

�
(�(f)Gn(H) +

��(f)p
n

):

The next result is a "oracle inequality" that shows that the estimate �f obtained by the

above method posses some optimality property (see Barron, Birg�e and Massart (1999) for a
general approach to penalization and oracle inequalities in nonparametric statistics).
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Theorem 9 For all t > 0 and for all � > 0 with �(�) < 3=2; the following bounds hold:

P

n
Pf~�f � 0g > inf

f2F
[Pnff � 0g+ inf

�2(0;1]
(�̂n(f ; �) +

1

�

t + 4
p
2p

n
)]
o
� (3� 2�(�))�1 expf�2t2g

and

P

n
Pf~�f � 0g � inf

g2F
Pf~g � 0g > inf

f2F

h
Pf ~f � 0g � inf

g2F
Pf~g � 0g+

+ inf
�2(0;1]

(�̂(f ; �) +
2

�

t+ 4
p
2p

n
)
io
� 2(3� 2�(�))�1 expf�2t2g:

Proof. The �rst bound follows from Theorem 8 and the de�nition of the estimate ~f: To

prove the second bound, we repeat the proof of Theorem 1 to show that for any class F 0

P

n
9f 2 F 0 9� 2 (0; 1] : Pnf ~f � �g >

h
P'(

~f � �

�
) +

1

�
(Gn(F 0) +

t+ 4
p
2p

n
)
io
�

� expf�2t2g:
The class G in this proof is now de�ned as

G :=
n
t'(

~f � t

t
) : f 2 F 0; t 2 (0; 1]

o
:

The argument that led to Theorems 7 and 8 shows that

P

n
9f 2 F 9� 2 (0; 1] : Pnf ~f � �g >

h
Pf ~f � 2�g+

+
1

�
(�(f)Gn(H) +

��(f)p
n

+
t+ 4

p
2p

n
)
io
� (3� 2�(�))�1 expf�2t2g:

If now

inf
f2F

inf
�2(0;1]

h
Pn(f ~f � �g) + 1

�
(�(f)Gn(H) +

��(f) + t+ 4
p
2p

n
)
i
>

> inf
f2F

inf
�2(0;1]

h
Pf ~f � 2�g+ 2

�
(�(f)Gn(H) +

��(f) + t+ 4
p
2p

n
)
i
;

then

9f 2 F9� 2 (0; 1] : Pnf ~f � �g >
h
Pf ~f � 2�g+ 1

�
(�(f)Gn(H) +

��(f) + t + 4
p
2p

n
)
i
:

Combining this with the �rst bound gives

P

n
Pf~�f � 0g > inf

f2F
inf

�2(0;1)

h
Pf ~f � 2�g+

+
2

�
(�(f)Gn(H) +

��(f) + t+ 4
p
2p

n
)
io
� 2(3� 2�(�))�1 expf�2t2g;
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which implies the result.

Finally, it is worth mentioning that the theorems of Section 1 can be applied also to

bounding the generalization error in multiclass problems. Namely, we assume that the labels

take values in a �nite set Y with card(Y) =: L: Consider a class ~F of functions from
~S := S � Y into R: A function f 2 ~F predicts a label y 2 Y for an example x 2 S i�

f(x; y) > max
y0 6=y

f(x; y0):

The margin of an example (x; y) is de�ned as

mf (x; y) := f(x; y)�max
y0 6=y

f(x; y0);

so f misclassi�es the example (x; y) i� mf (x; y) � 0: Let

F := ff(�; y) : y 2 Y; f 2 ~Fg:
The next result follows from Theorem 1.

Theorem 10 For all t > 0;

P

n
9f 2 ~F : Pfmf � 0g > inf

�2(0;1]

h
Pnfmf � �g+ 1

�
(L2Gn(F) + t + 4

p
2p

n
)
io
� expf�2t2g:

To prove the theorem, we use the following easy lemma.

For a class of functions H we will denote by

H(l) = fmax(h1; : : : ; hl) : h1; : : : ; hl 2 Hg:
Lemma 1 The following bound holds:

Ek
nX
i=1

gi�XikH(l) � lEk
nX
i=1

gi�XikH:

Proof. Let us consider classes of functions F1; F2 and

F = fmax(f1; f2) : f1 2 F1; f2 2 F2g:
Since

max(f1; f2) =
1

2
(jf1 + f2j+ jf1 � f2j)

we have

Ek
nX
i=1

gi�XikF �
1

2
E sup
F1;F2

j
nX
i=1

gijf1(Xi) + f2(Xi)jj+

1

2
E sup
F1;F2

j
nX
i=1

gijf1(Xi)� f2(Xi)jj � 1

2
E sup
F1;F2

j
nX
i=1

gi(f1(Xi) + f2(Xi))j

+
1

2
E sup
F1;F2

j
nX
i=1

gi(f1(Xi)� f2(Xi))j � Ek
nX
i=1

gi�XikF1 + Ek
nX
i=1

gi�XikF2 :
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The statement of lemma follows by induction over l:

Proof of Theorem 10. We have the following bounds:

E sup
f2 ~F

���n�1 nX
j=1

gjmf(Xj; Yj)
��� = E sup

f2 ~F

���n�1 nX
j=1

gj
X
y2Y

mf (Xj; y)IfYj=yg
��� �

� X
y2Y

E sup
f2 ~F

���n�1 nX
j=1

gjmf(Xj; y)IfYj=yg
��� �

� 1

2

X
y2Y

E sup
f2 ~F

���n�1 nX
j=1

gjmf (Xj; y)(2IfYj=yg � 1)
���+ 1

2

X
y2Y

E sup
f2 ~F

���n�1 nX
j=1

gjmf (Xj; y)
���:

Denote �j(y) := 2IfYj=yg � 1: Given f(Xj; Yj) : 1 � j � ng; the random variables fgj�j(y) :
1 � j � ng are i.i.d. normal. Hence, we have

E sup
f2 ~F

���n�1 nX
j=1

gjmf(Xj; y)(2IYj=y � 1)
��� = E sup

f2 ~F

���n�1 nX
j=1

gj�j(y)mf(Xj; y)
��� =

= E E g sup
f2 ~F

���n�1 nX
j=1

gj�j(y)mf(Xj; y)
��� = E E g sup

f2 ~F

���n�1 nX
j=1

gjmf(Xj; y)
��� =

= E sup
f2 ~F

���n�1 nX
j=1

gjmf (Xj; y)
���

Therefore, we have

E sup
f2 ~F

���n�1 nX
j=1

gjmf (Xj; Yj)
��� � X

y2Y

E sup
f2 ~F

���n�1 nX
j=1

gjmf(Xj; y)
���:

Next, using Lemma 1, we get for all y 2 Y

E sup
f2 ~F

���n�1 nX
j=1

gjmf (Xj; y)
��� � E sup

f2 ~F

���n�1 nX
j=1

gjf(Xj; y)
���+ E sup

f2 ~F

���n�1 nX
j=1

gjmax
y0 6=y

f(Xj; y
0)
��� �

� E sup
f2F

���n�1 nX
j=1

gjf(Xj)
���+ E sup

f2F(L�1)

���n�1 nX
j=1

gjf(Xj)
��� �

� LE sup
f2F

���n�1 nX
j=1

gjf(Xj)
���;

and the result follows from the above bounds and from Theorem 1.
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