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1 Introduction.

Giné and Zinn (1990) established several beautiful limit theorems for Efron’s
nonparametric bootstrap of the general empirical process. One of the key
tools used by Giné and Zinn (1990) was the multiplier inequality used ear-
lier in Giné and Zinn (1983) with Gaussian multipliers to “Gaussianize” the
empirical process and to relate the Gaussianized process to the symmetrized
empirical process, and hence to the empirical process itself via symmetriza-
tion and de-symmetrization inequalities.

Efron’s nonparametric bootstrap, which involves resampling from the
empirical measure Pn, can be viewed as one instance of an exchangeably
weighted bootstrap with the weights being the components of a random vec-
tor which has a Multinomial distribution with n cells, n trials, and vector of
“success” probabilities (1/n, . . . , 1/n). The first limit theory for exchange-
ably weighted bootstraps was established by Mason and Newton (1992);
they treated exchangeable bootstrapping of the mean and of the classical
empirical process. Praestgaard and Wellner (1993) extended the direct half
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of several of the theorems of Giné and Zinn (1990) by use of a new type of
multiplier inequality involving symmetrization with ranks rather than with
Rademacher random variables. Similarly, the direct half of the bootstrap
Glivenko - Cantelli theorems of Giné and Zinn (1990) was established in
Van der Vaart and Wellner (1996); see Lemma 3.6.16, page 357. In both
Praestgaard and Wellner (1993) and Van der Vaart and Wellner (1996), the
analogue of the converse half of the theorems of Giné and Zinn (1990) could
not be proved for the general exchangeable bootstrap because of the lack
of an appropriate analogue of the lower bound in the i.i.d. version of the
multiplier inequality.

In this paper we make some progress toward filling these gaps. We first
establish an appropriate lower bound in the case of exchangeably weighted
sums of i.i.d. random elements (Section 2). We then show how this lower
bound yields the converse half of bootstrap Glivenko - Cantelli theorems
(Section 3). In the case of bootstrap Donsker theorems (Section 4), we
are able to establish some of the integrability needed for the converse half,
but still lack an appropriate analogue of the Hoffmann-Jørgensen theorem
needed to obtain the crucial uniform integrability needed to apply the L1

inequalities established in Section 2.
For other approaches to proving bootstrap limit theorems in other cases

of interest, see Csörgő and Mason (1989), Einmahl and Mason (1992), and
Shorack (1996), (1997).

2 Multiplier Inequalities: a new lower bound.

First we give a statement of the multiplier inequalities for the case of i.i.d.
multipliers.

Let Z1, . . . , Zn be independent and identically distributed (i.i.d.) pro-
cesses indexed by a set F with mean 0 (i.e. EZi(f) = 0 for all f ∈ F),
and let ξ1, . . . , ξn, . . . be i.i.d. real-valued random variables which are inde-
pendent of Z1, . . . , Zn, . . .; in the case of empirical processes, Zi = δXi − P
for i.i.d. random elements Xi ∈ X where the basic probability space is
(X ,A, P ). For processes Zi we write ||Zi||F for supf∈F |Zi(f)|. As in Van
der Vaart and Wellner (1996), we will assume throughout that X1, X2, . . .
are defined as the coordinate projections on the “first” component of the
product probability space (X∞ × Z,A∞ × C, P∞ × Q), and let ξ1, ξ2, . . .
depend on the last coordinate only.

Lemma 2.1 (Multiplier inequality for i.i.d. multipliers). Let Z1, . . . , Zn be
i.i.d stochastic processes with E∗||Zi||F < ∞ independent of the Rademacher
variables ε1, . . . , εn. Then for every i.i.d. sample ξ1, . . . , ξn of mean-zero
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random variables independent of Z1, . . . , Zn, and any 1 ≤ n0 ≤ n,
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Here ‖ξ1‖2,1 ≡
∫∞
0

√
P (|ξ1| > t)dt is assumed to be finite. For a proof

of Lemma 2.1, see Giné and Zinn (1983) or Van der Vaart and Wellner
(1996). The important thing to be observed here is that both the upper and
lower bounds for the expected norm of the multiplier process

∑n
i=1 ξiZi are

provided in terms of the symmetrized process
∑n

i=1 εiZi.
Now we turn to the case of exchangeable multipliers. We will assume

that the vector ξ
n
≡ (ξn1, . . . , ξnn) is exchangeable and ‖ξn1‖2,1 < ∞ for

each n. The upper bound half of the following inequality is a consequence
of the multiplier inequality proved by Praestgaard and Wellner (1993).

Lemma 2.2 (Multiplier inequality for exchangeable multipliers). Let Z1, . . . , Zn

be i.i.d. stochastic processes with E∗||Zi||F < ∞ independent of the Rademacher
variables ε1, . . . , εn and of the random permutation R = (R1, . . . , Rn) of the
first n integers. Then for every exchangeable random vector ξ

n
= (ξn1, . . . , ξnn)

independent of Z1, . . . , Zn, and any 1 ≤ n0 ≤ n,

1
2
‖ξn1‖1E

∗
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∥∥∥
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.(2)

Proof. The inequality on the right follows from Praestgaard and Wellner
(1993), Lemma 4.1, page 2063. It remains only to prove the inequality on
the left. To do this, let Z ′

1, . . . , Z
′
n be an independent copy of Z1, . . . , Zn

(canonically formed on an appropriate product probability space). Then by
the triangle inequality

2E∗
∥∥∥ n∑

i=1

ξniZi

∥∥∥
F

≥ E∗
∥∥∥ n∑

i=1

ξni(Zi − Z ′
i)
∥∥∥
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= E∗
∥∥∥ n∑

i=1

ξniεi(Zi − Z ′
i)
∥∥∥
F

= E∗
∥∥∥ n∑

i=1

|ξni|sign(ξni)εi(Zi − Z ′
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∥∥∥
F

= E∗
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i)
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(3)

where the last equality holds because the vector (sign(ξn1)ε1, . . . , sign(ξnn)εn)
has the same distribution as (ε1, . . . , εn) and, moreover, is independent of
(ξn1, . . . , ξnn). Hence by convexity of the norm ‖ ·‖F and Jensen’s inequality
the right side of (3) is bounded below by

E|ξn1|E∗
∥∥∥ n∑

i=1

εi(Zi − Z ′
i)
∥∥∥
F
≥ E|ξn1|E∗

∥∥∥ n∑
i=1

εiZi

∥∥∥
F

by convexity again and since the Z ′
i’s have mean 0; this is quite similar to

the proofs of Lemma 2.3.1, page 108, and Lemma 2.9.1, page 177, Van der
Vaart and Wellner (1996) where the measurability details of the proof are
given in detail.

3 Bootstrap Glivenko-Cantelli Theorems.

Now suppose that X1, X2, . . . are i.i.d. P on (X ,A), and let Pn be the
empirical measure of the first n of the Xi’s;

Pn =
1
n

n∑
i=1

δXi .

The classical Efron nonparametric bootstrap empirical measure P̂n is just

P̂n =
1
n

n∑
i=1

δ bXi

where X̂1, . . . , X̂n is a sample drawn (with replacement) from Pn. Giné and
Zinn (1990) established the following bootstrap Glivenko-Cantelli theorem.
Their notation NLDM(P ) stands for “nearly linearly deviation measureable
for P”; we refer to Giné and Zinn (1984), page 935 for the detailed definition.

Theorem 3.1 (Glivenko-Cantelli theorem for Efron’s Bootstrap). Suppose
that F is NLDM(P ). Then the following are equivalent:
(a) P (F ) < ∞ and ‖Pn − P‖F → 0 in probability.
(b) P∞− a.s. ‖P̂n − Pn‖F → 0 in probability.
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Proof. See Giné and Zinn (1990), page 860.

Here is a slight reformulation of the bootstrap Glivenko-Cantelli theorem
of Giné and Zinn (1990) which avoids the hypothesis that F is NLDM(P ).
Let BL1(R) be the collection of all functions h : R → [0, 1] such that |h(x1)−
h(x2)| ≤ |x1 − x2| for all x1, x2 ∈ R.

Theorem 3.2 (Modified Glivenko-Cantelli theorem for Efron’s Bootstrap).
The following are equivalent:
(a) P ∗‖f − Pf‖F < ∞ and ‖Pn − P‖∗F → 0 in probability.
(b) (P∞)∗− a.s. ‖P̂n − Pn‖F → 0 in probability and Êh(‖P̂n − Pn‖F )∗ −
Êh(‖P̂n − Pn‖F )∗ →a.s. 0 for every h ∈ BL1(R).

Proof. This follows as a corollary of Theorem 3.3 below.

Now we turn to exchangeably weighted bootstraps. Suppose that Wn =
(Wn1, . . . ,Wnn) satisfies the following conditions:

A1. Wn = (Wn1, . . . ,Wnn) is exchangeable for each n.

A2. Wni ≥ 0 for i = 1, . . . , n and
∑n

i=1 Wni = n.

A3. max1≤i≤n(Wni/n) →p 0.

A4. limn→∞E|Wn1 − 1| = b > 0, lim supn→∞E|Wn1 − 1|2 < ∞.

For such a vector of exchangeable weights Wn, consider the exchangeably
weighted bootstrap empirical measure P̂W

n given by

P̂W
n =

1
n

n∑
i=1

WniδXi .

It is easily seen that the classical nonparametric bootstrap empirical mea-
sure is the special case of P̂W

n obtained by taking Wn = Mn where Mn =
(Mn1, . . . ,Mnn) ∼ Multn(n, (1/n, . . . , 1/n)).

Theorem 3.3 (Glivenko-Cantelli theorem for the Exchangeable Bootstrap).
Suppose that {Wn} satisfies A1 - A4. Then the following are equivalent:
(a) P ∗‖f − Pf‖F < ∞ and ‖Pn − P‖∗F → 0 in probability.
(b) P∞− a.s. ‖P̂W

n − Pn‖∗F → 0 in probability and Êh(‖P̂W
n − Pn‖F )∗ −

Êh(‖P̂W
n − Pn‖F )∗ →a.s. 0 for every h ∈ BL1(R).

Moreover, if either (a) or (b) holds it follows that

EW ‖P̂W
n − Pn‖F →a.s.∗ 0 .(4)
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Proof. That (a) implies (b) was proved in Van der Vaart and Wellner
(1996), Lemma 3.6.16, page 357. It remains only to prove (b) implies (a).

Suppose that we show that (b) implies P ∗‖f − Pf‖F < ∞ and that (4)
holds. It follows that

E∗‖P̂W
n − Pn‖F → 0 .(5)

Now note that by A2 we can write

P̂W
n − Pn =

1
n

n∑
i=1

(Wni − 1)(δXi − P ) ≡ 1
n

n∑
i=1

ξniZi

with ξni ≡ Wni − 1 and Zi ≡ δXi − P . Hence it follows from the Multiplier
Lemma 2.2 and a standard symmetrization inequality (see e.g. Van der
Vaart and Wellner (1996), Lemma 2.3.1, page 108) that

E∗‖P̂W
n − Pn‖F ≥ 1

2
E|Wn1 − 1|E∗‖ 1

n

n∑
i=1

εiZi‖F

≥ 1
4
E|Wn1 − 1|E∗‖ 1

n

n∑
i=1

Zi‖F

=
1
4
E|Wn1 − 1|E∗‖Pn − P‖F .

In view of the non-degeneracy condition A4, this together with (5) yields

E∗‖Pn − P‖F → 0 ,

which implies the convergence in probability part of (a) by Markov’s inequal-
ity.

Now we show that (b) implies that P ∗‖f − Pf‖F < ∞ and that (4)
holds. Suppose that (b) holds. Let X ′

1, X
′
2, . . . be an independent copy of

X1, X2, . . ., and let ε1, . . . , εn be independent Rademacher random variables
which are independent of the {Xi} , {X ′

i}, and {Wni, i = 1, . . . , n, n ≥ 1}.
Set Zi ≡ δXi − P , Z ′

i ≡ δX′
i
− P , and ξni ≡ Wni − 1. Then we have

∥∥∥ 1
n

n∑
i=1

ξniZi

∥∥∥
F

+ ‖ 1
n

n∑
i=1

ξniZ
′
i

∥∥∥
F

≥
∥∥∥ 1
n

n∑
i=1

ξni(Zi − Z ′
i)
∥∥∥
F

=d

∥∥∥ 1
n

n∑
i=1

ξniεi(Zi − Z ′
i)
∥∥∥
F

=
∥∥∥ 1
n

n∑
i=1

|ξni|sign(ξni)εi(Zi − Z ′
i)
∥∥∥
F

=d

∥∥∥ 1
n

n∑
i=1

|ξni|εi(Zi − Z ′
i)
∥∥∥
F

.
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Since the left side of this display converges to 0 in probability a.s. with
respect to P∞

Z,Z′ , so does the right side. That is, for every δ > 0,

Pξ,ε

(∥∥∥ 1
n

n∑
i=1

|ξni|εi(Zi − Z ′
i)
∥∥∥
F

> δ

)
→ 0 almost surely .

By independence of ξ, ε, and Z,Z ′, this yields

EξPε

(∥∥∥ 1
n

n∑
i=1

|ξni|εi(Zi − Z ′
i)
∥∥∥
F

> δ

)
→ 0 almost surely ,

and this implies that

Pε

(∥∥∥ 1
n

n∑
i=1

|ξni|εi(Zi − Z ′
i)
∥∥∥
F

> δ

)
→ 0

in probability with respect to ξ and almost surely with respect to Z,Z ′. But
now the summands Yi ≡ |ξni|εi(Zi − Z ′

i), i = 1, . . . , n, are, for fixed |ξni|
and Zi − Z ′

i, independent and symmetric. Hence by Lévy’s inequality (e.g.
Proposition A.1.2, Van der Vaart and Wellner (1996), page 431) it follows
that

Pε

(
max
1≤i≤n

∥∥∥ 1
n
|ξni|εi(Zi − Z ′

i)
∥∥∥
F

> δ

)
→ 0

in probability with respect to ξ and almost surely with respect to Z,Z ′. But
the norm is equal to

1
n
|ξni|

∥∥∥(Zi − Z ′
i)
∥∥∥
F

and since this does not depend on εi, it follows that

1
n

max
1≤i≤n

|ξni|
∥∥∥(Zi − Z ′

i)
∥∥∥
F
→p 0(6)

in probability with respect to ξ and almost surely with respect to Z,Z ′.
That is,

Pξ(
1
n

max
1≤i≤n

|ξni|
∥∥∥(Zi − Z ′

i)
∥∥∥
F

> ε) → 0(7)

almost surely with respect to Z,Z ′.
Now let R be a random permutation of the first n integers. Let bni ≡

(1/n)‖(Zi−Z ′
i)‖F , and suppose that I ∈ {1, . . . , n} satisfies max1≤i≤n bni =

bnI . Then by exchangeability of the Wni’s we have

max
1≤i≤n

|ξni|bni =d max
1≤i≤n

|ξn,R(i)|bni .
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Hence, conditioning on the Wni’s, it follows that the probability in (7) equals

EW P ( max
1≤i≤n

|ξnR(i)|bn,i > ε|W ) ≥ EW P (|ξnR(I)|bnI > ε|W )

= EW

 1
n

n∑
j=1

1[|ξnj |bnI>ε]


≥ EW

 1
n

n∑
j=1

1[|ξnj |>
√

ε]1[bnI>
√

ε]


= EW

 1
n

n∑
j=1

1[|ξnj |>
√

ε]1[bnI>
√

ε]


= EW

 1
n

n∑
j=1

1[|ξnj |>
√

ε]

 1[bnI>
√

ε]

= P (|ξn1| >
√

ε)1[bnI>
√

ε] .(8)

Now for any non-negative random variable Y and a > 0 we have

E(Y ) = E(Y 1[Y≤a]) + E(Y 1[Y >a]) ≤ a +
√

E(Y 2)
√

P (Y > a)

and, choosing a = cE(Y ) with c < 1, this yields

P (Y > cE(Y )) ≥ (1− c)2(EY )2

E(Y 2)
;(9)

this is the Paley-Zygmund argument. Using this with Y = |ξn1| and cEY =√
ε in combination with (7) and (8) yields

Pξ(
1
n

max
1≤i≤n

|ξni|‖(Zi − Z ′
i)‖F > ε)

≥ (1−
√

ε/E|ξn1|)2{E|ξn1|}2

E|ξn1|2
1{n−1 max

1≤i≤n
‖(Zi − Z ′

i)‖F >
√

ε} .(10)

But by hypothesis A4 the first term on the right side of (10) converges to a
positive constant. Since the left side converges to 0 almost surely by (7), it
follows that

n−1 max
1≤i≤n

∥∥∥(Zi − Z ′
i)
∥∥∥
F
→a.s. 0 .(11)

But it is well known that (11) holds if and only if

E∗ (‖(Z1 − Z ′
1)‖F

)
< ∞ ;
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by convexity of the norm together with EZ ′
1 = 0, this implies that

E∗ (‖Z1‖F ) = P ∗‖f(X1)− Pf‖F < ∞ .

This together with A4 implies that (4) holds via uniform integrability.

4 Bootstrap Donsker Theorems: Conjectures and Partial Proofs.

Suppose that Pn, P̂n, and P̂W
n are defined as in Section 3, and define the

empirical process Gn, the nonparametric bootstrap empirical process Ĝn,
and the exchangeably weighted empirical process ĜW

n , by

Gn =
√

n(Pn−P ), Ĝn =
√

n(P̂n−Pn), ĜW
n =

√
n(P̂W

n −Pn) .(12)

In this section we will consider the processes Gn, Ĝn, and ĜW
n as processes

indexed by functions f ∈ F , where F ⊂ L2(P ) = L2(X ,A, P ). The following
bootstrap Donsker theorem results from Giné and Zinn (1990) together with
the measurability improvements of Van der Vaart and Wellner (1996).

Theorem 4.1 (Almost sure Donsker theorem for Efron’s Bootstrap). The
following are equivalent:
(a) P ∗‖f − Pf‖2

F < ∞ and F is P−Donsker; i.e. Gn ⇒ GP in l∞(F).
(b) suph∈BL1

|Êh(Ĝn)− Eh(GP )| →a.s.∗ 0 and Êh(Ĝn)∗ − Êh(Ĝn)∗ →a.s. 0
for every h ∈ BL1.

Theorem 4.2 (In probability Donsker theorem for Efron’s Bootstrap). The
following are equivalent:
(a) F is P−Donsker; i.e. Gn ⇒ GP in l∞(F).
(b) suph∈BL1

|Êh(Ĝn) − Eh(GP )| →p∗ 0 and Ĝn is asymptotically measur-
able: Eh(Ĝn)∗ − Eh(Ĝn)∗ → 0 for every h ∈ BL1.

Proof. See Giné and Zinn (1990), page 857; for a version of Theorem 4.1
under additional measurability hypotheses; and see Giné and Zinn (1990),
page 862 for a version of Theorem 4.2 under additional measurability hy-
potheses. The above statements are from Van der Vaart and Wellner (1996),
page 347 (where complete proofs are also given).

The strong point of these theorems is they provide necessary and suffi-
cient conditions in order for the process Ĝn to converge weakly either almost
surely or in probability respectively.

Now we turn to exchangeably weighted bootstraps. Our goal is to es-
tablish the analogues of the converse halves of of Theorems 4.1 and 4.2 in
the case of the exchangeable bootstrap process ĜW

n . The resulting Theo-
rems 4.3 and 4.4 below strengthen Theorems 2.1 and 2.2 of Praestgaard and
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Wellner (1993) (or see Theorem 3.6.13 of Van der Vaart and Wellner (1996))
to the level of equivalence established by Giné and Zinn (1990) for Efron’s
bootstrap.

Suppose that Wn = (Wn1, . . . ,Wnn) satisfies the following conditions:

B1. Wn = (Wn1, . . . ,Wnn) is exchangeable for each n.

B2. Wni ≥ 0 for i = 1, . . . , n and
∑n

i=1 Wni = n.

B3. supn≥1 ‖Wn,1‖2,1 < ∞, and limλ→∞ lim supn→∞ supt≥λ t2P (Wn1 ≥ t) =
0.

B4. limn→∞E|Wn1 − 1| = b > 0, and n−1
∑n

i=1(Wni − 1)2 →p c2 > 0.

In view of Lemma 4.7 of Praestgaard and Wellner (1993), B3 and B4
together imply that {Wn1} is uniformly square-integrable and hence so is
n−1

∑n
i=1(Wni − 1)2. Therefore B3 and B4 together imply that

E(Wn1 − 1)2 → c2.

Theorem 4.3 (Conjectured Almost sure Donsker theorem for the Exchange-
able Bootstrap). Suppose that {Wn} satisfies B1 - B4. Then the following
are equivalent:
(a) P ∗‖f − Pf‖2

F < ∞ and F is P−Donsker; i.e. Gn ⇒ GP in l∞(F).
(b) suph∈BL1

|Êh(ĜW
n )−Eh(cGP )| →a.s.∗ 0 and Êh(ĜW

n )∗−Êh(ĜW
n )∗ →a.s.

0 for every h ∈ BL1.

Theorem 4.4 (Conjectured In probability Donsker theorem for the Exchange-
able Bootstrap). Suppose that {Wn} satisfies B1 - B4. Then the following
are equivalent:
(a) F is P−Donsker; i.e. Gn ⇒ GP in l∞(F).
(b) suph∈BL1

|Êh(ĜW
n )− Eh(cGP )| →P ∗ 0 and ĜW

n is asymptotically mea-
surable.

Partial

Proof. That (a) implies (b) in both Theorems 4.3 and 4.4 was proved in
Van der Vaart and Wellner (1996), Theorem 3.6.13, page 355, under addi-
tional measurability hypotheses. It remains only to prove that (b) implies
(a) in both cases.

In the converse direction, we are currently able only to show that (b)
of Theorem 4.3 implies the integrability condition of (a) of Theorem 4.3.
Suppose that (b) holds. Then, with (Z ′

1, Z
′
2, . . .) an independent copy of

(Z1, Z2, . . .), and ε1, ε2, . . . a sequence of i.i.d Rademacher random variables
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independent of the W ’s, Zi’s, and Z ′
i’s,

ĜW
n − ĜW ′

n =
1√
n

n∑
i=1

(Wni − 1)(Zi − Z ′
i)

=d
1√
n

n∑
i=1

|Wni − 1|sign(Wni)εi(Zi − Z ′
i)

=d
1√
n

n∑
i=1

|Wni − 1|εi(Zi − Z ′
i) .

In view of (b) it follows that this difference converges weakly for almost all
sequences Z1, Z2, . . ., Z ′

1, Z
′
2, . . ., to the tight Gaussian process c(GP − G′

P )
with values in Cu(F), the space of uniformly continuous functions from F
to R. Thus the supremum c‖GP −G′

P ‖F has moments of all orders, and for
every ε > 0 there exists an x sufficiently large so that

P (c‖GP −G′
P ‖F ≥ x) ≤ ε

x2
.

Hence, by the Portmanteau theorem, for n ≥ Nω,ω′ ,

P ∗
W,ε(‖

n∑
i=1

|Wni−1|εi(Zi(ω)−Z ′
i(ω

′))‖F > x
√

n) ≤ 2P (c‖GP−G′
P ‖F ≥ x) ≤ 2ε

x2
.

But by Lévy’s inequality used conditionally on the W ’s, the left side is

EW Pε

(
‖

n∑
i=1

|Wni − 1|εi(Zi − Z ′
i)‖F > x

√
n

)

≥ 1
2
EW Pε

(
max
1≤i≤n

|Wni − 1||εi|‖Zi − Z ′
i‖F > x

√
n

)
=

1
2
EW Pε

(
max
1≤i≤n

|Wni − 1|‖Zi − Z ′
i‖F > x

√
n

)
.

Thus, letting bni ≡ n−1/2‖(Zi − Z ′
i)‖F and ξni ≡ Wni − 1, we have

PW (max1≤i≤n|ξni|bni > x) ≤ 4ε

x2
.(13)

Now let I ∈ {1, . . . , n} satisfy max1≤i≤n bni = bnI . Then by exchangeability
of the Wni’s it follows that

max
1≤i≤n

|ξni|bni =d max
1≤i≤n

|ξn,R(i)|bni
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where R is a random permutation which is independent of the W ’s and the
Zi’s, and Z ′

i’s. Thus the left side of (13) is equal to

EW PR

(
max
1≤i≤n

|ξn,R(i)|bni > x

)
≥ EW PR

(
|ξn,R(I)|bnI > x

)
= EW

 1
n

n∑
j=1

1[|ξnj |bnI>x]


≥ EW

 1
n

n∑
j=1

1[|ξnj |> 1
2
E|ξn1|]1[bnI>2x/E|ξn1|]


= EW

 1
n

n∑
j=1

1[|ξnj |> 1
2
E|ξn1|]

 1[bnI>2x/E|ξn1|]

= P (|ξn1| > (1/2)E|ξn1|) · 1{bnI > 2x/E|ξn1|}

≥ (1/4)[E|ξn1|]2

[E|ξn1|2]
1{bnI > 2x/E|ξn1|} .(14)

where we have used the inequality (9) with Y = |ξn1| and c = 1/2 in the last
step. Now the first term on the right side of (14) has a positive limit inferior
as n → ∞ by B3-B4. Because the right side is smaller than 4ε/x2 by (13),
it follows that

lim sup
n→∞

1√
n

max
1≤i≤n

‖Zi − Z ′
i‖F ≤

4x

b
< ∞(15)

almost surely where b ≡ limn→∞E|Wn1−1| = limn→∞E|ξn1|. By a standard
argument, this implies that

E∗
(
‖(Z1 − Z ′

1)‖
2
F

)
< ∞ .

By convexity of the norm together with EZ ′
1 = 0, this implies that

E∗
(
‖Z1‖2

F

)
= P ∗‖f(X1)− Pf‖2

F < ∞ .

To complete the proof of the conjectured Theorem 4.3, it would suffice
to show that

{‖ĜW
n ‖∗F : n ≥ 1} is uniformly integrable .(16)

and

{‖ĜW
n ‖∗F = ‖ 1√

n

n∑
i=1

Wni(δXω
i
− Pω

n)‖F : n ≥ 1}(17)

is P∞ − a.s. uniformly integrable .
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If (16) and (17) could be proved, then the proof of the conjectured Theorems
4.3 and 4.4 are easily finished by use of the left inequality in Lemma 2.2. By
general weak convergence theory, if (b) of Theorem 4.3 holds, then, for any
δn → 0 and every ε > 0,

PW

(
‖ĜW

n ‖Fδn
> ε
)
→a.s.∗ 0 as n →∞ ;

see e.g. Van der Vaart and Wellner (1996), Theorem 1.5.7, page 37. This
together with (17) implies that

E∗
W ‖ĜW

n ‖Fδn
→a.s.∗ 0 as n →∞ ,

and then, in turn,

E∗‖ĜW
n ‖Fδn

→ 0 as n →∞ .(18)

Combining (18) with the left inequality in Lemma 2.2 (with ‖ · ‖F replaced
by ‖ · ‖Fδn

), ξni = Wni − 1, and Zi ≡ δXi − P , we would be able to conclude
that

1
2
E|ξn1|E∗‖ 1√

n

n∑
i=1

εiZi‖Fδn
≤ E∗‖ 1√

n

n∑
i=1

ξniZi‖Fδn
= E∗‖ĜW

n ‖Fδn
→ 0

as n →∞, and since limn→∞E|ξn1| = b > 0 by B4, this yields (by a standard
symmetrization inequality)

1
2
E∗‖Gn‖Fδn

≤ E∗‖ 1√
n

n∑
i=1

εiZi‖Fδn
→ 0 as n →∞ .

It would follow (e.g. by Van der Vaart and Wellner (1996), Corollary 2.3.12,
page 115) that F is P−Donsker, so that (a) of Theorem 4.3 would hold.

Unfortunately, we have not been able to establish (16) and (17). The
missing link seems to be a suitable replacement in the exchangeable case
for either Hoffmann-Jørgensen’s inequality (see Van der Vaart and Wellner
(1996), Proposition A.1.5, page 433), or the uniform in n weak-L2 condition
for ‖Gn‖F of Van der Vaart and Wellner (1996), Lemma 2.3.9, page 113.

Acknowledgements. We owe thanks to Evarist Giné, Jens Praestgaard,
and Aad van der Vaart for conversations about these problems and (conjec-
tured) theorems.
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