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Abstract. Concentration inequalities are used to derive some new inequalities
for ratio-type suprema of empirical processes. These general inequalities are
used to prove several new limit theorems for ratio-type suprema and to recover
a number of the results from [1] and [2]. As a statistical application, an oracle
inequality for nonparametric regression is obtained via ratio bounds.

1. Introduction

Let F be a uniformly bounded class of real valued measurable functions on a
probability space (S,A, P ). To be specific, we assume most often that F takes
values in [0, 1] (although, in some places below, the class will be scaled differently).
Let X, Xi, i ∈ N, be i.i.d. random variables in (S,A) with distribution P. We
denote by Pn the empirical measure based on the sample (X1, . . . , Xn), Pn =
n−1

∑n
i=1 δXi . Suppose that σP (f) is defined in such a way that

σ2
P (f) ≥ VarP (f) := Pf2 − (Pf)2, f ∈ F .

In particular, σP (f) can be the standard deviation itself, or in can be equal to
√

Pf
(recall that f takes values in [0, 1]). In this note we present a simple technique to
study the asymptotic behavior of the supremum of the standardized empirical
process,

sup
f∈F,σP (f)>δn

√
n|Pnf − Pf |

σP (f)
,

as well as some of its variations such as

sup
f∈F,Pf>δn

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣ and sup
f∈F,σP (f)>δn

√
n|Pnf − Pf |
ω(σP (f))

for suitable ‘moduli’ ω and properly chosen ‘cutoffs’ δn depending on the complex-
ity of the class F . These questions for Vapnik-Červonenkis (VC) classes of sets
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were studied by Alexander in [2], and his proofs were technically rather sophisti-
cated. Our results apply to very general classes of functions and, particularly in
the form they take when we specialize them to VC classes of functions, they may
be considered as analogues of some of Alexander’s results for VC classes of sets.
The need for this kind of results, in the generality given here, is illustrated by an
example. Indeed, as an application of our general theorems we obtain an ‘oracle
inequality’ in a simple but quite general non-parametric regression setting (cf.,
[16], [19]). So, the type of inequalities proved in this article may turn out to be
useful for bounding errors of prediction in Statistics and in Machine Learning.

The main advance on empirical process theory since 1987, when Alexander
proved his results, has been Talagrand’s discovery of concentration inequalities
([30],[31]). This tool allows us to handle ratios very easily by proving several sim-
ple exponential bounds expressed in terms of expectations of localized sup norms
of empirical processes. These bounds are obtained by stratifying the class F ac-
cording to variance size, applying Talagrand’s inequality to each stratum and then
collecting terms. This approach, as carried out here, originated in the more spe-
cialized setting of statistical learning theory and was developed by several authors
(see, e.g., Koltchinskii and Panchenko [20], Koltchinskii [21], Panchenko [26, 27]
Bousquet, Koltchinskii and Panchenko [10], Bartlett, Bousquet and Mendelson [5]
and, especially, the Ph. D. dissertations of Panchenko [25] and Bousquet [7]). A
very close approach has been developed in some other statistical applications even
earlier (see [23] and references therein), and in one form or other is also present in
[2]. The exponential bounds for ratios together with some new bounds on expec-
tations of suprema of empirical processes over VC classes of functions ([30], [12],
[11], [24]) allow one to obtain Alexander type theorems without any effort. The
present approach may open a possibility to understand much better, and for much
more general classes than VC, this important class of limit theorems for empirical
processes, and in particular, to widen the scope of their applicability.

There is an extensive literature on ratio limit theorems for classical empirical
processes (see e.g. Wellner [35]). For general empirical processes indexed by sets
or functions some important references are [1], [2], [3], [4], [15], [19], [28], [32], [34].

In order to avoid measurability problems, in what follows, we will assume
that the supremum over the class F or over any of the subclasses we consider is
in fact a countable supremum. In this case we say that the class F is measurable.

With some abuse of notation we will write log m for 1 ∨ log m and log log m
for 1 ∨ log log m.

2. Ratio limit theorems: normalization with σP (f)

We introduce some notations used in what follows. We set

F(r) := {f ∈ F : σP (f) ≤ r}
and, for r < s,

F(r, s] := F(s) \ F(r).
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We denote

ξn(r, s] := sup
f∈F(r,s]

|Pnf − Pf |
σP (f)

.

Let now (given r, s, r < s) q > 1 and suppose that s := rql, for some l ∈ N,
so that

l = logq

s

r
.

[This will not be a loss of generality since the choice of q will be in our hands.] Let

ρj := rqj , j = 0, . . . , l

(with ρ0 = r, ρl = s). Then we define a function ψn,q from (r, s] into the real line
by setting

ψn,q(u) := E‖Pn − P‖F(ρj−1,ρj ], u ∈ (ρj−1, ρj ], j = 1, . . . , l,

and we also set

βn,q(r, s] := sup
u∈(r,s]

ψn,q(u)
u

.

Given two sequences {rn}, {sn} of positive numbers such that rn < sn we
set

ξn := ξn(rn, sn],
and if qn ↓ 1 (so that sn = rnqln

n for an integer ln) we define

βn := βn,qn
(rn, sn].

Our first goal is to prove the following general theorems. The only assumption
on F is that it is a measurable class of functions taking values on [0, 1].

Theorem 1. Suppose that√
log logqn

sn

rn

n

∨ 1
nrn

= o(βn).

Then
ξn

βn
→ 1 in Pr as n → ∞.

The following a.s. version holds under slightly stronger assumptions. For sim-
plicity, we consider only the case of sn ≡ 1.

Theorem 2. Suppose that√
log logqn

1
rn

+ log log n

n

∨ log log n

nrn
= o(βn).

In addition, suppose that

rn ↘ and
βn√

n
↘ .

Then
lim sup

n→∞

ξn

βn
= 1 a.s.
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Somewhat stronger assumptions lead to a.s. convergence to 1:

Theorem 3. Suppose that√
log logqn

sn

rn
+ log n

n

∨ log n

nrn
= o(βn).

Then

lim
n→∞

ξn

βn
= 1 a.s.

Remarks. 1. It is easy to see that the conditions of Theorem 1 are satisfied if√
log log n

n
= o(βn)

and
rn

√
n log log n → ∞.

2. Only formal modifications in the proof given below for Theorem 1 also
show that if √

log logqn

sn

rn

n
= O(βn)

and the sequence {nrnβn} is bounded away from 0, then

ξn

βn
= Op(1).

3. Likewise, it can also be shown that if

lim sup
1
βn

√
log logqn

sn

rn

n
< 1/2

and
1

nrn
= o(βn),

then the sequence
{

ξn

βn

}
is both stochastically bounded and stochastically bounded

away from 0.
4. If in Theorem 2 we replace qn ↓ 1 by q > 1, and take βn ≥ βn,q(rn, 1], then

the conditions √
log logqn

1
rn

+ log log n

n

∨ log log n

nrn
= O(βn),

rn ↘ and
βn√

n
↘

imply

lim sup
n→∞

ξn

βn
= R a.s.
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for some R < ∞. (This follows from obvious modifications in the proof of Theorem
2 given below together with the Kolmogorov 0-1 law as nrnβn → ∞.)

5. For a general {sn}, the extra conditions needed in Theorem 2 are sn ↘,
nsn ↗ and, most importantly,

lim
ε→0

βn,qn(rn, sn(1 + ε)]
βn

= 1.

These assumptions (as well as the additional monotonicity assumptions in The-
orem 2) come from a version of Lemma 7.2 in [2] that we use in the current
proof. These assumptions might just be of a technical nature, and thus, perhaps
superfluous.

The proofs are based on the following lemma.

Lemma 1. For t > 0, define

∆q,+
(r,s](t) :=

√
2q2

t + 2 log logq
s
r

n
+ 4

t + cq

nr
βn,q(r, s] +

t + cq

3nr

and

∆q,−
(r,s](t) :=

√
2q2

t + 2 log logq
s
r

n
+ 4

t + cq

nr
βn,q(r, s] +

8
3

t + cq

nr
,

where cq := 2q sup1≤j≤l q
−j log j. Then

P

{
sup

f∈F(r,s]

|Pnf − Pf |
σP (f)

≥ βn,q(r, s] + ∆q,+
(r,s](t)

}
≤ 2e−t

and

P

{
sup

f∈F(r,s]

|Pnf − Pf |
σP (f)

≤ 1
q

[
βn,q(r, s] − ∆q,−

(r,s](t)
]}

≤ 2e−t.

Proof. For q > 1 and 0 < u ≤ 1 define

Fq(u) := F(u/q, u]

and consider the following events

E+
q,u(t) :=

{
‖Pn − P‖Fq(u) ≤ E‖Pn − P‖Fq(u) +

√
2

t

n
(u2 + 2ψn,q(u)) +

t

3n

}
and

E−
q,u(t) :=

{
‖Pn − P‖Fq(u) ≥ E‖Pn − P‖Fq(u) −

√
2

t

n
(u2 + 2ψn,q(u)) − 8t

3n

}
.

By Talagrand’s concentration inequalities for empirical processes (see [17], Theo-
rem 1.1 and [9], Theorem 7.4), we have

P(E+
q,u(t)) ≥ 1 − e−t and P(E−

q,u(t)) ≥ 1 − e−t

Let Fj := F(ρj−1,ρj ] = Fq(ρj) and

E+
j := E+

q,ρj
(t + 2 log j), E−

j := E−
q,ρj

(t + 2 log j).



6 Giné, Koltchinskii, and Wellner

Then

P

( ∞⋂
j=1

E+
j

)
≥ 1 −

∞∑
j=1

e−t−2 log j ≥ 1 − e−t
∞∑

j=1

j−2 ≥ 1 − 2e−t

and similarly

P

( ∞⋂
j=1

E−
j

)
≥ 1 − 2e−t.

On the event
⋂

E+
j , we have

∀j ∀f ∈ Fj ,
|Pnf − Pf |

σP (f)

≤ ψn,q(σP (f))
σP (f)

+

√
2
t + 2 log j

n

(
q2 + 2

ψn,q(σP (f))
σ2

P (f)

)
+

t + 2 log j

3nσP (f)
.

Note that, for f ∈ Fj ,

t + 2 log j

nσP (f)
≤ t + 2 log j

nρj−1
≤ t

nr
+ 2 sup

j

2 log j

qj−1

1
nr

=
t + cq

nr
.

Since also
j ≤ l = logq

s

r
,

we get

ψn,q(σP (f))
σP (f)

+

√
2
t + 2 log j

n

(
q2 + 2

ψn,q(σP (f))
σ2

P (f)

)
+

t + 2 log j

3nσP (f)

≤ βn,q(r, s] +

√
2q2

t + 2 log logq
s
r

n
+ 4

t + cq

nr
βn,q(r, s] +

t + cq

3nr

= βn,q(r, s] + ∆q,+
(r,s](t).

Thus, on the event
⋂

E+
j ,

∀ f ∈ F(r, s],
|Pnf − Pf |

σP (f)
≤ βn,q(r, s] + ∆q,+

(r,s](t),

and the first bound follows.
Similarly, on the event

⋂
j E−

j , we have

sup
f∈F(r,s]

|Pnf − Pf |
σP (f)

= sup
j

sup
f∈Fj

|Pnf − Pf |
σP (f)

≥ sup
j

‖Pn − P‖Fj

ρj

≥ sup
j

ψn,q(ρj)
ρj

−
√

2
t + 2 log j

n

(
1 + 2

ψn,q(ρj)
ρ2

j

)
− 8

3
t + 2 log j

nρj

≥ 1
q

sup
j

sup
ρ∈(ρj−1,ρj ]

[
ψn,q(ρ)

ρ
−

√
2
t + 2 log j

n

(
1 + 2

ψn,q(ρ)
ρ2

)
− 8

3
t + 2 log j

nρ

]
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and, exactly as in the case of the upper bound, this can be shown to be

≥ 1
q

[
βn,q(r, s] − ∆q,−

(r,s](t)
]
,

which yields the second inequality. �

Proof of Theorem 1. The condition of the theorem means that

log logqn

sn

rn
= o(nβ2

n)

and
nβnrn → ∞ as n → ∞.

It follows from Lemma 1 that with probability at least 1 − 4e−t,

q−1
n

(
1 − 1

βn
∆qn,−

(rn,sn](t)
)

≤ ξn

βn
≤ 1 +

1
βn

∆qn,+
(rn,sn](t).

Then, the conditions of the theorem immediately imply that for all t > 0
1
βn

∆qn,+
(rn,sn](t) → 0 as n → ∞,

and the same is true for ∆qn,−
(rn,sn](t), which is enough to complete the proof. �

Proof of Theorem 2. Passing from a probability upper bound to an a.s. upper
bound, given Lemma 1, is standard, and the details within the present framework
are worked out in [2], Lemmas 7.1 and 7.2. Alexander’s Lemma 7.2 is stated for
classes of sets, but its proof applies as well for classes of functions taking values in
[0, 1]. His lemma, adapted to our case, is as follows:

If βn/n1/2 ↘, rn ↘, then the condition

P

{
ξn

βn
> 1 + ε

}
= O

(
(log n)−1−θ

)
(A)

for some ε, θ > 0 implies

P

{
ξn

βn
> 1 + 2ε i.o.

}
= 0. (B)

To establish (A), we take in Lemma 1 t = 2 log log n, q = qn, s = 1, r = rn.
The first bound of Lemma 1 then gives

P

{
ξn

βn
≥ 1 +

1
βn

∆qn,+
(rn,1](2 log log n)

}
≤ 2 exp{−2 log log n} = 2(log n)−2.

It follows from the conditions of the theorem that

log logqn

1
rn

+ log log n = o(nβ2
n)

and
nβnrn

log log n
→ ∞ as n → ∞.
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This yields, by a straightforward computation, that

1
βn

∆qn,+
(rn,1](2 log log n) → 0 as n → ∞,

which establishes (A). Alexander’s lemma now gives (B) for any ε > 0, so that

lim sup
n→∞

ξn

βn
≤ 1.

Hence, it remains to prove that the lim sup is ≥ 1. The second bound of Lemma 1
(with the same t, q, r, s as before) gives

P

{
ξn

βn
≤ q−1

n

(
1 − 1

βn
∆qn,−

(rn,1](2 log log n)
)}

≤ 2(log n)−2.

Take n = nk = ek. Since again, for all large enough n,

1
βn

∆qn,−
(rn,1](2 log log n) < ε

we get

P

{
ξnk

βnk

≤ 1 − ε

}
= O(k−2),

which by Borel–Cantelli Lemma implies that for all ε > 0

P

{
ξnk

βnk

≤ 1 − ε i.o.

}
= 0,

and the result follows. �

Proof of Theorem 3. It is a straightforward application of Lemma 1 along with
Borel–Cantelli Lemma. One should take t := 2 log n this time. �

3. Continuity moduli of empirical processes

Our goal in this section is to study the asymptotic behavior of

sup
f∈F(rn,sn]

n1/2|Pnf − Pf |
ω(σP (f))

with a properly chosen “continuity modulus” ω. This will provide a piece of infor-
mation about the local continuity modulus of the empirical process n1/2(Pn − P )
at f = 0. The global continuity modulus can be studied quite similarly. (See [2]
for definitions and motivation.) Also, we concentrate on “in probability” results
(their almost sure versions can be also obtained with a little extra work).

We use the notations of the previous section and define

ωn(u) := n1/2ψn,qn(u), u ∈ (rn, sn].
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Theorem 4. Let ω be a nonnegative nondecreasing bounded function on [0, 1], sat-
isfying the conditions ω(u)

u ↘ and

sup
u∈(0,1]

u

ω(u)

√
log log

1
u

< ∞.

Suppose that
ωn(u) ≤ ω(u), u ∈ [rn, sn].

If

sup
n

log logqn

sn

rn

ω(rn)
√

n
< ∞,

then

sup
f∈F(rn,sn]

n1/2|Pnf − Pf |
ω(σP (f))

is stochastically bounded and uniformly (in n) bounded in L1:

sup
n

E

{
sup

f∈F(rn,sn]

n1/2|Pnf − Pf |
ω(σP (f))

}
< ∞ .(3.1)

In Theorem 4, qn ↓ 1 can be replaced by q > 1 or by 1 < qn < C < ∞.

Theorem 5. Let ω be a nonnegative nondecreasing bounded function on [0, 1], sat-
isfying the conditions ω(u)

u ↘ and

u

ω(u)

√
log log

1
u
→ 0 as u → 0.

Suppose that

sup
u∈(rn,sn]

∣∣∣∣ωn(u)
ω(u)

− 1
∣∣∣∣ → 0 as n → ∞.

If also
ω(rn)

√
n

log logqn

sn

rn

→ ∞,

then

sup
f∈F(rn,sn]

n1/2|Pnf − Pf |
ω(σP (f))

→ 1 as n → ∞ in Pr.

Proof of Theorem 4. We follow the proof of Lemma 1 with r = rn, s = sn, q =
qn, l = ln. The definition of the events E+

j , E−
j is slightly different:

E+
j := E+

q,ρj
(t + 2 log(l − j + 1)), E−

j := E−
q,ρj

(t + 2 log(l − j + 1)),

but we still have

P

( l⋂
j=1

E+
j

)
≥ 1 − 2e−t, P

( l⋂
j=1

E−
j

)
≥ 1 − 2e−t.
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On the event
⋂l

j=1 E+
j , we have

∀j ∀ f ∈ Fj , n1/2|Pnf − Pf | ≤ ωn(σP (f))

+

√
2 (t + 2 log(l − j + 1))

(
σ2

P (f) +
2ωn(σP (f))√

n

)
+

t + 2 log(l − j + 1)
3
√

n
,

which under the assumptions about ω implies that

∀j ∀ f ∈ Fj ,
n1/2|Pnf − Pf |

ω(σP (f))

≤ 1 +

√
2(t + 2 log(ln − j + 1))

(
ρ2

j

ω2(ρj)
+

2√
nω(ρj−1)

)
+

t + 2 log(l − j + 1)
3
√

nω(σP (f))
.

We have

max
1≤j≤l

ρj

ω(ρj)

√
log(l − j + 1) ≤ max

1≤j≤l

ρj

ω(ρj)

√
log logq

s

ρj−1

≤ C sup
u∈(0,1]

u

ω(u)

√
log log

1
u

=: K < +∞

(for some constants C, K). Also, for all j = 1, . . . , l

log(l − j + 1)
1√

nω(ρj−1)
≤ log logqn

sn

rn

1√
nω(rn)

,

which is bounded by the conditions. This allows us to easily conclude that on the
event

⋂l
j=1 E+

j ,

∀j ∀ f ∈ Fj
n1/2|Pnf − Pf |

ω(σP (f))
≤ K1t + K2

with some constants K1, K2. Thus

P

{
sup

f∈F(rn,sn]

n1/2|Pnf − Pf |
ω(σP (f))

≥ K1t + K2

}
≤ 2e−t,

implying the stochastic boundedness of the sequence in question. This bound also
implies the boundedness in L1 by simply integrating the tail bound. �

The proof of Theorem 5 requires to work out just several more details (in-
cluding the lower bounds on the supremum) and it will not be given here.
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4. Ratios Pnf
Pf

: uniform LLN

We now turn to the study of

sup
Pf>r2

n

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣.
Assuming that nr2

n → ∞, we concentrate on determining necessary and sufficient
conditions for the above suprema to converge to 0 in probability. Other types of
ratio limit theorems can be studied as well using the methods of the previous
sections.

In this section we set σP (f) :=
√

Pf and use all the notations of Section 2
(such as F(r, s], for instance). In particular, we need the functions ψn,q to define
the quantity

En,q(r, s] := sup
u∈(r,s]

ψn,q(u)
u2

.

Let the sequences rn, sn, qn be as in Section 2 and let

En := En,qn
(rn, sn].

Theorem 6. Suppose that nr2
n → ∞ as n → ∞. Choose qn ↓ 1 so that

log
1

qn − 1
= o(nr2

n) as n → ∞.

Then the condition En → 0 as n → ∞ is necessary and sufficient for

sup
f∈F(rn,sn]

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣ → 0 in Pr.

The proof is based on the following lemma.

Lemma 2. For t > 0,

P

{
sup

f∈F(r,s]

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣ ≥ En,q(r, s] +

√
2

t

nr2
(q2 + 2En,q(r, s]) +

t

3nr2

}

≤ q2

q2 − 1
q

t
e−t/q

and

P

{
sup

f∈F(r,s]

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣ ≤ q−1

(
En,q(r, s] −

√
2

t

nr2
(1 + 2En,q(r, s]) −

8t

3nr2

)}

≤ q2

q2 − 1
q

t
e−t/q.

Proof. It is similar to that of Lemma 1 and we use the notations introduced in
that proof. The sets E+

j , E−
j are now defined as follows:

E+
j := E+

q,ρj
(tq2(j−1)), E−

j := E−
q,ρj

(tq2(j−1)).
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With this definition, we have

P

( ∞⋃
j=1

(E+
j )c

)
≤

∞∑
j=0

e−tq2j

=
q2

q2 − 1

∞∑
j=0

q−2j exp{−tq2j}(q2j − q2(j−1))

≤ q2

q2 − 1

∫ ∞

1/q

x−1 exp{−tx}dx ≤ q2

q2 − 1

∫ ∞

t/q

y−1e−ydy ≤ q2

q2 − 1
q

t
e−t/q,

and similarly

P

( ∞⋃
j=1

(E−
j )c

)
≤ q2

q2 − 1
q

t
e−t/q.

On the event
⋂∞

j=1 E+
j , we have

∀j ∀f ∈ Fj ,
|Pnf − Pf |

Pf

≤ ψn,q(
√

Pf)
Pf

+

√
2
tq2(j−1)

nPf

(
q2 + 2

ψn,q(
√

Pf)
Pf

)
+

tq2(j−1)

3nPf
.

Since for f ∈ Fj ,

q2(j−1)r2 < Pf ≤ q2jr2,

we get

∀j ∀f ∈ Fj ,
|Pnf − Pf |

Pf

≤ En,q(r, s] +

√
2

t

nr2

(
q2 + 2En,q(r, s]

)
+

t

3nr2
,

which proves the first bound. The second one can be proved similarly. �

Proof of Theorem 6. Choose tn → ∞ so that tn = o(nr2
n) and log(qn−1)−1 = o(tn).

Then
q2
n

q2
n − 1

1
tn

e−tn → 0

and we have

q−1
n

(
En −

√
2

tn
nr2

n

(1 + 2En) − 8tn
3nr2

n

)
≤ sup

f∈F(rn,sn]

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣
≤ En +

√
2

tn
nr2

n

(q2
n + 2En) +

tn
3nr2

n

with probability 1 − o(1). This immediately implies the result. �

Here are two useful corollaries of Lemma 2 which we will use in section 7.
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Corollary 1. Suppose that F is a measurable class of functions with values in [0, 1]
satisfying a.s.

log N(F , L2(Pn), τ) ≤ Aτ−α

for all τ > 0 and some finite A and α ∈ (0, 2). Then for n ∈ N, 0 < ε ≤ 1, q > 1,
1 ≥ δ ≥ δn = (nε)−2/(α+2), and a constant C = C(A, α, q) depending only on A,
α and q,

P

{
sup

f∈F : Pf>δ

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣ ≥ C
√

ε

}
≤ q2

q2 − 1
2q

nεδ
e−nεδ/(2q) =

D

nεδ
e−nεδ/(2q) .

Proof. Choosing r2 = δ and t = nεδ/2 in the first inequality of Lemma 2 gives

P

{
sup

f∈F :Pf>δ

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣ ≥ En,q(
√

δ, 1] +
√

ε(q2 + 2En,q(
√

δ, 1]) + ε/6
}

≤ q2

q2 − 1
2q

nεδ
e−nεδ/(2q) .

To bound En,q(
√

δ, 1] we argue as follows: By a standard symmetrization inequal-
ity, Dudley’s entropy bound for Rademacher processes and our random entropy
hypothesis

E‖Pn − P‖F(r) ≤ K√
n

E

{∫ √
supf∈F(r) Pn(f2)

0

√
log N(F(r), L2(Pn), τ) dτ

}

≤ K√
n

∫ √
E(supf∈F(r) Pn(f2))

0

√
Aτ−α dτ

≤ K√
n

∫ √
E(supf∈F(r) Pn(f))

0

√
Aτ−α dτ

≤ K√
n

∫ √
E(supf∈F(r) |(Pn−P )(f)|)+r2

0

√
Aτ−αdτ

≤ 2
2 − α

K
√

A√
n

(
E‖Pn − P‖F(r) + r2

)1/2−α/4

≤ B√
n

{
(E‖Pn − P‖F(r))1/2−α/4 ∨ (r2)1/2−α/4

}
with B = 23/2−α/4K

√
A/(2−α), where the second inequality follows from concav-

ity of the integral
∫ x

0
h(t)dt when h is non-increasing. Thus if E‖Pn−P‖F(r) ≤ r2,

then
E‖Pn − P‖F(r) ≤

B√
n

r1−α/2 ,

while if E‖Pn − P‖F(r) > r2, then

E‖Pn − P‖F(r) ≤
(

B√
n

)4/(2+α)

= B̃n−2/(α+2) .
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Combining these bounds yields

E‖Pn − P‖F(r) ≤
B√
n

r1−α/2 ∨ B̃n−2/(α+2) .

By taking r = ρj =
√

δnq2j it follows that

E‖Pn − P‖F(ρj) ≤ B√
n

ρ
1−α/2
j ∨ B̃n−2/(α+2)

=
{

B
√

ε(nε)−2/(α+2)qj(2−α)
}∨ {

B̃ε2/(α+2)(nε)−2/(α+2)
}

≤ M
√

εδnqj(2−α)

with M = B ∨ B̃. Hence it follows that

En,q(
√

δ, 1] = sup√
δ<u≤1

u−2ψn,q(u) ≤ max
j≥1

ρ−2
j−1E‖Pn − P‖F(ρj)

≤ max
j≥1

{
M

√
εq4q−j(2+α)

}
= M

√
εq2−α ≤ Mq2−α .

Combining this bound with the first display of the proof yields the claimed in-
equality with

C ≡ C(A, α, q) = Mq2−α +
√

q2 + 2Mq2−α + 1/6 .

�

Similarly we can prove the following, using Lemma 2 and either direct com-
putation or the bound in Corollary 3 below (or in Proposition 2.1 of [12]).

Corollary 2. Suppose that F is a measurable class of functions with values in [0, 1]
satisfying a.s.

N(F , L2(Pn), τ) ≤
(

A

τ

)v

, 0 < τ ≤ 1,

for some v ≥ 1 and A ≥ 2e
√

v (in particular, this holds if F is a VC class). Let
q > 1 and let n, ε, δ and δn satisfy

1
n
≤ ε ≤ 1, and 1 ≥ δ ≥ δn :=

v log A
√

nε√
v

nε
.

Then, there exists a universal constant C such that

P

{
sup

f∈F : Pf>δ

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣ ≥ Cq4
√

ε

}
≤ q2

q2 − 1
2q

nεδ
e−nεδ/(2q) =

D

nεδ
e−nεδ/(2q) .

The constant C can be taken to be five times the constant in Corollary 3
below.
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5. An inequality for expected values of empirical processes indexed
by VC classes of functions

In the previous sections, either the results themselves or the conditions for their
application are in terms of ψn,q(u), that is, of E‖Pn − P‖F(r,s], and therefore
require, for their application, of good estimates of the expectation of suprema
of empirical processes indexed by general classes of functions. These are often
available if the L2 covering numbers of the classes are under control, as in the case
of Vapnik-Červonenkis classes or the classes considered in Corollary 1. Next we give
estimates for VC classes that improve on some of the estimates in the literature in
that, instead of being in terms of σ and ‖F‖∞, where F is a measurable envelope
of the class, they are in terms of σ and ‖F‖L2(P ) (when the functions in the class
take values between -1 and 1). These estimates will be used in Section 6, and we
think they can be useful elsewhere as well.

Let F be a uniformly bounded class of real valued measurable functions on a
probability space (S,A, P ). To be specific, assume the functions in F take values
in [−1, 1] and are centered. Assume also that the class F is adequately measurable
(as described in the introduction) and VC, in particular,

N(F , L2(Q), τ) ≤
(

A‖F‖L2(Q)

τ

)v

(5.1)

for all 0 < τ < ‖F‖L2(Q) and some finite A and v, that we assume A ≥ 2 and v ≥ 1
without loss of generality. Here, 1 ≥ F ≥ supf∈F |f | is a measurable envelope of
the class F . Let X, Xi, i ∈ N, be i.i.d. (P ) random variables (coordinates on a
product probability space), and let Pn be the empirical measure corresponding
to the variables Xi, as in previous sections. Let σ2 be any number such that
supf Ef2(X) ≤ σ2 ≤ EF 2(X). The norm signs without specification will denote
sup over the class F . Here is the bound:

Theorem 7. Under the assumptions in the above paragraph we have that for all
n ∈ N,

E

∥∥∥∥∥
n∑

i=1

f(Xi)

∥∥∥∥∥
F

≤ C

[
√

v
√

nσ

√
log

A‖F‖L2(P )

σ
∨ v log

A‖F‖L2(P )

σ

∨
√

v
√

nA‖F‖L2(P ) exp
(
−9

8
n‖F‖2

L2(P )

)]
.

Proof. The square root trick for probabilities in [14], Lemma 3.3 and its remark
-that misses a factor of 8-), give that for all t ≥ 47nσ2,

P

{∥∥∥∥∥
n∑

i=1

f2(Xi)

∥∥∥∥∥ ≥ t

}
≤ E

[
1 ∧

(
8

(
A‖F‖L2(Pn)

σ

)v

e−t/16

)]
.

By concavity of the function 1 ∧ x on [0,∞) and Hölder, we have

E

[
1 ∧

(
8

(
A‖F‖L2(Pn)

σ

)v

e−t/16

)]
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= E

[
1 ∧

(
81/v

(
A‖F‖L2(Pn)

σ

)
e−t/(16v)

)]v

≤ E

[
1 ∧

(
81/v

(
A‖F‖L2(Pn)

σ

)
e−t/(16v)

)]

≤ 1 ∧
(

81/vA‖F‖L2(P )

σ
e−t/(16v)

)
.

Integrating this tail estimate one readily obtains:

Lemma 3. Let F be a measurable VC class of P -centered functions taking values
between -1 and 1, with A ≥ 2 and v ≥ 1 in (5.1). Let F ≥ supf∈F |f | be a
measurable envelope of the class F and let supf Ef2(X) ≤ σ2 ≤ EF 2(X). Then,
for all n ∈ N,

E

∥∥∥∥∥
n∑

i=1

f2(Xi)

∥∥∥∥∥ ≤ 135
[
nσ2 ∨ v log

(
A‖F‖L2(P )

σ

)]
.

Let εi, i ∈ N, be independent Rademacher variables independent from the
variables Xj , and let Eε denote conditional expectation given the sequence {Xi}.
The subgaussian entropy bound gives that

Eε

∥∥∥∥∥
n∑

i=1

εif(Xi)/
√

n

∥∥∥∥∥
F

≤ C

∫ (‖∑n
i=1 f2(Xi)‖/n)1/2

0

√
v log

(
A‖F‖L2(Pn)

ε

)
dε

for some universal constant C. Since∫ (‖∑n
i=1 f2(Xi)‖/n)1/2

0

√
v log

(
A‖F‖L2(Pn)

ε

)
dε ≤ D

√
vA‖F‖L2(Pn),

where D =
∫ 1

0

√
log u−1du, the above integral is dominated by∫ (‖∑n

i=1 f2(Xi)‖/n)1/2

0

√
v log

(
2A‖F‖L2(P )

ε

)
dε

+ D
√

vA‖F‖L2(Pn)I[‖F‖L2(Pn)>2‖F‖L2(P )].

Regarding the second summand, Hölder’s inequality followed by Bernstein’s expo-
nential inequality give

E

(
‖F‖L2(Pn)I[‖F‖L2(Pn)>2‖F‖L2(P )]

)
≤ ‖F‖L2(P ) exp

(
−9

8
n‖F‖2

L2(P )

)
.

For the first summand, we note that, by concavity of the integral of a decreasing
function (as in Corollary 1), we have

E

∫ (‖∑n
i=1 f2(Xi)‖/n)1/2

0

√
v log

(
2A‖F‖L2(P )

ε

)
dε





Ratio of Empiricals 17

≤
∫ (E‖∑n

i=1 f2(Xi)‖/n)1/2

0

√
v log

(
2A‖F‖L2(P )

ε

)
dε.

Now, by regular variation, this integral is dominated by a constant times

√
v

1√
n

(
E

∥∥∥∥∥
n∑

i=1

f2(Xi)

∥∥∥∥∥
)1/2 (

log
2A‖F‖L2(P )

(E ‖
∑n

i=1 f2(Xi)‖ /n)1/2

)1/2

,

which, by the lemma, is in turn dominated by a constant times

1√
n

[
√

nσ
√

v

√
log

A‖F‖L2(P )

σ
∨ v log

A‖F‖L2(P )

σ

]
.

Collecting the above bounds and applying a desymmetrization inequality we
obtain the desired bound. �

Corollary 3. If in the previous theorem we also have nσ2 ≥ A, then there exists a
universal constant C such that, for all n ∈ N,

E

∥∥∥∥∥
n∑

i=1

f(Xi)

∥∥∥∥∥
F

≤ C

[
√

v
√

nσ

√
log

A‖F‖L2(P )

σ
∨ v log

A‖F‖L2(P )

σ

]
.

Proof. It follows from the previous theorem and the inequality√
log x ≥ x exp

(
−9

8
x2

)
, x ≥ 2,

where we take x = A‖F‖L2(P )/σ ≥ A ≥ 2. �

The proof of Theorem 7 substantially modifies the proof of a similar bound
(simpler, but with U = ‖F‖∞ instead of ‖F‖L2(P )) in [12]. In that proof, an
abstract version of the square root trick (due to Ledoux and Talagrand [22]) was
used, whereas here, as in [11], we use the Giné and Zinn [13] version of Le Cam’s
square root trick.

Remark. Bounds on expectations of empirical processes that take into ac-
count the norm of the envelope of the class can be obtained also under different
assumptions on the entropy (in particular, for instance, in the setting of Corollary
1 of the previous section). We are not presenting these bounds here.

6. Ratio limit theorems for VC classes of functions

In this section we combine the main results from Sections 2-4 with the moment
bound in section 5 in order to obtain analogues for VC classes of functions of some
of the results in [2] for classes of sets. In what follows the class F is assumed to be
a measurable VC class of functions (as defined in Section 5) taking values between
0 and 1, and otherwise, we resume the notation set up in Sections 1-4.

Let us fix q > 1. For 0 < r < 1 we define

F(r) := {f ∈ F : σP (f) ≤ r} , Fq(r) := F(r) \ F(r/q),
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and let Fq,r ≤ 1 (Fr ≥ 1) be a measurable envelope of the class Fq(r) (resp. F(r)).
These localized envelopes will play an important role in ratio limit theorems. The
analogue for functions of the ‘capacity function’ in [2] is precisely

g(r) :=
q‖Fr‖L2(P )

r
∨ 1,

however it is more convenient to localize a little more and define gq(r) as any
function on (0, 1] such that

q‖Fq,r‖L2(P )

r
≤ gq(r) ≤

q

r
.

The following result is a version of Theorem 3.1, case (ii), in [2] for functions.

Theorem 8. Let F be a measurable VC class of functions taking values on [0, 1]
and let q be any number larger than 1. Define

rn := sup

{
r > 0 : r ≤

√
log gq(r) ∨ log log n

n

}
and

bn :=
√

log gq(rn) ∨ log log n.

Then, the sequence

sup
f∈F,σP (f)>rn

n1/2|Pnf − Pf |
bnσP (f)

, n ∈ N,

is stochastically bounded. If moreover the sequence bn/n is nonincreasing, then
there is R < ∞ such that

lim sup
n→∞

sup
f∈F,σP (f)>rn

n1/2|Pnf − Pf |
bnσP (f)

= R a.s.

Proof. It suffices to show that rn and βn := Kbn/
√

n for K < ∞ to be specified
later, satisfy the conditions of the second remark following Theorem 3 for stochastic
boundedness, and of the fourth for a.s. boundedness. The definitions readily imply
that

rn ≥
√

log log n

n
,

which immediately gives√
log log r−1

n ∨ log log n

n

∨ log log n

nrn
= O

(
bn/

√
n
)
.

So, it remains to verify that

Kbn/
√

n ≥ βn,q(rn, 1]
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for some K < ∞ and from some n on. If r > rn, then for some K < ∞ and for all
n > exp(eq2A2

) we have

r >

√
log gq(r) ∨ log log n

n
≥ 1√

2

√
log(Agq(r)) ∨ log log n

n
≥ 1√

2

√
log(Agq(r))

n
,

and also nσ2 ≥ nr2/q2 > A2. Thus, the corollary to Theorem 7 shows that there
is a constant K depending only on A and v such that

E ‖Pn − P‖Fq(r) ≤ Kr

√
log(gq(r))

n
≤ Krbn√

n
,

which gives
Kbn/

√
n ≥ βn,q(rn, 1].

�

The next result is an analogue for VC classes of functions of Theorem 4.4 in
[2].

Theorem 9. Let F be a measurable VC class of functions taking values on [0, 1]
and let q be any number larger than 1. Define

rn := sup

{
r > 0 : r ≤

√
log gq(r) ∨ log log r−1

n

}
and

ω(r) := r
√

log gq(r) ∨ log logq r−1.

Assume ω(r) ↗ and ω(r)/r ↘. Then, the sequence

sup
f∈F,σP (f)>rn

n1/2|Pnf − Pf |
ω(σP (f))

, n ∈ N,

is stochastically bounded.

Proof. We will check the conditions of Theorem 4 for ω̄ := Kω, for K < ∞
conveniently chosen, and for qn = q > 1. If r > rn then, by the definition of rn,

r >

√
log gq(r) ∨ log log r−1

n

and in particular, r >
√

(log log r−1)/n, which implies that nr2 > A2 from some
n on, n depending only on A. These two observations imply, by the corollary to
Theorem 7, that

‖Pn − P‖Fq(r) ≤
Kω(r)√

n
,

that is,
ωn(r) ≤ ω̄(r), r ∈ (rn, 1]
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if we take ω̄ = Kω. The definition of ω already implies that

u
√

log log u−1

ω(u)
≤ 1

for all u ∈ (0, 1). The definition of rn also implies that rn ≥
√

(log log r−1
n )/n, and

this immediately gives
log log r−1

n√
nω(rn)

≤ 1.

Now, the result follows from Theorem 4. �

We conclude with an analogue for functions of part of Theorem 5.1 in [2].

Theorem 10. Let F be a measurable VC class of functions taking values on [0, 1].
Let rn → 0 and nr2

n → ∞, and let qn ↓ 1 be such that

log
1

qn − 1
= o(nr2

n).

Assume gqn(r) is nonincreasing. Then, if

log gqn(rn)
nr2

n

→ 0,

we have

sup
f∈F,Pf>r2

n

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣ → 0 in Pr.

Proof. We check the conditions of Theorem 6 with sn = 1. We will apply the
corollary to Theorem 7 with σ = supf

√
Pf , and envelope the square root of

the natural envelope, which we can since the functions in F take values on [0, 1].
Obviously nr2

n > A2 from some n = n(A) on. Then, for these values of n, by the
corollary to Theorem 7,

En,qn(rn, 1] ≤ sup
r>rn

1
r2

E ‖Pn − P‖F(r/qn,r)

≤ K sup
r>rn

(√
log Agqn

(r)
nr2

+
log Agqn

(r)
nr2

)

for some constant K that depends only on A and v. But the monotonicity of gqn

implies that this sup is attained at r = rn, which implies that En,qn(rn, 1] → 0.
Now, Theorem 6 implies the result. �

When specialized to VC classes of sets, the last three theorems completely
recover the results of [2] mentioned in this section, up to constants. In particular
then, one gets the classical results for the empirical distribution function and
the empirical measure of intervals when P is uniform on [0, 1]d. For example, if
F1 = {I[0,a] : 0 ≤ a ≤ 1,

∏d
i=1 ai ≤ 1/2}, (here a = (a1, . . . , ad) and [0, a] =

{(x1, . . . , xd) : 0 ≤ xi ≤ ai, i = 1, . . . , d}) then we take σ2
P [0, a] = P [0, a], and we
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find that Fq,r(x) = 1{x ∈ [0, 1]d :
∏d

j=1 xj ≤ r2} so, with X = (X1, . . . , Xd) and
Xi ∼ Uniform[0, 1],

‖Fq,r‖2
L2(P ) = P (X1 · · ·Xd ≤ r2)

= P (− log X1 − · · · − log Xd > − log(r2))
= P (Gamma(d, 1) > − log(r2))

= P (Poisson(− log(r2)) < d) =
d−1∑
j=0

r2 (− log(r2))j

j!

∼ r2 (2 log(1/r))d−1

(d − 1)!
as r ↓ 0 .

So, we have gq(r) � (2 log r−1)(d−1)/2/
√

(d − 1)!, rn �
√

(log log n)/n in Theo-
rems 8 and 9, bn �

√
log log n and ω(r) � r

√
log log r−1. For Theorem 10, we can

take any rn such that nr2
n → ∞ for d = 1 (thus recovering a result of [35]), and

such that nr2
n/ log log n → ∞ for d > 1. Likewise, if F2 = {I[a,b] : 0 ≤ ai ≤ bi ≤

1,
∏d

i=1(bi − ai) ≤ 1/2}, then ‖Fq,r‖L2(P ) = 1, gq(r) � 1/r, rn �
√

(log n)/n in
Theorems 8 and 9, bn �

√
log n and ω(r) � r

√
log r−1; and for Theorem 10, we

can take any rn such that nr2
n/ log n → ∞.

The results in this section and the previous examples illustrate one of the
main points of this article, namely, that very general theorems, that apply to
classes of functions that may not even be VC and which have very simple proofs,
are sharp (at least up to constants) when specialized to VC classes of sets and
functions and, in particular, to the classical settings of distribution functions and
the empirical measure of intervals.

7. An Oracle Inequality for Regression via Ratio Bounds

Here we give an application of the ratio bounds in Section 6 to a statistical problem
in the setting of nonparametric regression. The type of inequality we prove in
this section provides an ‘in probability’ type of ‘oracle inequality’ for a simple
version of this type of problem. For a nice introduction to oracle inequalities more
generally, see [16]. The flavor of our result here is somewhat akin to the results of
[18]. For an example of some L2−type oracle inequalities see e.g. [19]. Massart in
[23] develops a very general framework for oracle inequalities in many statistical
problems including regression.

Consider the following regression model:

Yi = f0(Xi) + ξi
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where the variables Xi are i.i.d. with law P , f0 is a bounded measurable function
and the variables ξi’s are i.i.d. N(0, 1) (other distributions are possible), indepen-
dent from the variables Xj . For a class of functions F define

f̂n ≡ argminf∈Fn−1
n∑

j=1

(Yj − f(Xj))2 ,

and
f ≡ argminf∈FP (f − f0)2 ,

(assuming, for simplicity, the existence of the argmins). Since the only norms
occurring in this section are L2(P ) norms, we set, from here on, ‖ · ‖ = ‖ · ‖L2(P ).

Theorem 11. Suppose that F is a measurable class of functions taking values in
[0, 1], and with L2(Pn) metric entropies bounded a.s. by Aτ−α with 0 < α < 2,
as in Corollary 1, and let C = C(2αA, α, 3/2) be as defined in this corollary.
Then there exist constants Ci = Ci(A, α), i = 1, 2, 3, depending only on A and
α, such that for all n ∈ N and ε ∈ (0, 1/3] satisfying log log3/2(nε2/C2)1/(2+α) ≤
(nε2/C2)2α/(2+α), the bound

‖f̂n − f0‖2 ≤ 1 + 2ε

1 − 2ε
‖f − f0‖2 +

C1(A, α)
ε(nε2)2/(2+α)

holds with probability at least 1 − τn, where

τn = C2 exp
{
−C3(nε2)α/(2+α)

}
.

Proof. Let C = C(2αA, α, 3/2) and D = D(3/2) = 27/5 be constants as defined in
Corollary 1 and, given 0 < ε ≤ 1/3, set δn := (nε2/C2)−2/(2+α). On the event

Ln :=
{
‖f̂n − f‖2 < δn

}
we have

‖f̂n − f0‖ ≤
√

δn + ‖f − f0‖ .

This yields, using ab ≤ (a2 + b2)/2,

‖f̂n − f0‖2 ≤ ‖f − f0‖2 + 2
√

δn‖f − f0‖ + δn

= ‖f − f0‖2 + 2

√
δn

ε

√
ε‖f − f0‖ + δn

≤ (1 + ε)‖f − f0‖2 +
(

1 +
1
ε

)
δn .(7.1)

So, if P(Ln) ≥ 1−τn, the theorem is proved. Otherwise, we must look at ‖f̂n−f0‖
on Lc

n. To this end, we first note that, letting P and Pn denote respectively the law
of (X, ξ) and the empirical measure of the variables (Xi, ξi), i = 1, . . . , n, when



Ratio of Empiricals 23

both types of variables occur (and only the law of X and the empirical measure
of the Xi when ξ or ξi are not present),

‖f̂n − f0‖2 = ‖f − f0‖2 + P
[
(f̂n − Y )2 − (f − Y )2

]
≤ ‖f − f0‖2 + (P − Pn)

[
(f̂n − Y )2 − (f − Y )2

]
,

where the identity follows from the orthogonality with respect to P between ξ and
any square integrable function of X, and the inequality holds because f̂n minimizes
the empirical squared error. The idea is to apply the ratio bound in Corollary 1 to
the last term, but we cannot apply it directly (since the class of functions involved
is not bounded because of the Gaussian noise) and some modifications are needed.
Note that

(f̂n − Y )2 − (f − Y )2 = (f̂n − f0)2 − (f − f0)2 − 2(f̂n − f)ξ,

and therefore, that

(P − Pn)
[
(f̂n − Y )2 − (f − Y )2

]
≤ (P − Pn)

[
(f̂n − f0)2 ∨ δn − (f − f0)2 ∨ δn

]
+2Pn

[
(f̂n(x) − f(x))y

]
+ 2δn.

If we apply Corollary 1 for the class

G ≡ {(f − f0)2 ∨ δn : f ∈ F}
to the first term and with q = 3/2 (note that the L2(Q) entropies of G are domi-
nated by Aτ−α = 2αAτ−α), we obtain that the two bounds

(P − Pn)
(
(f̂n − f0)2 ∨ δn

)
≤ ε‖f̂n − f0‖2 + εδn

and
(Pn − P )

(
(fn − f0)2 ∨ δn

)
≤ ε‖fn − f0‖2 + εδn

hold together with probability at least

1 − C2D

nε2δn
exp

{
−nε2δn

3C2

}
.

We thus conclude that the inequality

(1 − ε)‖f̂n − f0‖2 ≤ (1 + ε)‖f − f0‖2 +
2
n

n∑
i=1

ξi(f̂n − f)(Xi) + 2(1 + ε)δn(7.2)

holds with probability at least

1 − C2D

nε2δn
exp

{
−nε2δn

3C2

}
.

Now we need to bound the second term on Lc
n. First we consider

An :=
2
n

n∑
j=1

ξj(f̂n(Xj) − f(Xj))I
(
Pn(f̂n − f)2 ≤ δn

)
.
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We have

|An| ≤
2√
n

sup
f,g∈F,Pn(f−g)2≤δn

∣∣∣∣∣ 1√
n

n∑
i=1

ξi(f(Xi) − g(Xi))

∣∣∣∣∣ ,

and by the Gaussian entropy bound, if we let Eξ denote conditional expectation
given the variables Xi,

Eξ|An| ≤ 2K√
n

∫ √
δn

0

√
log N(F − F , L2(Pn), τ)dτ

≤ 2K√
n

∫ √
δn

0

√
log N2(F , L2(Pn), τ/2)dτ

≤ κ′(A, α)√
n

∫ √
δn

0

√
τ−α dτ

≤ κ(A, α)δ(1−α/2)/2
n√
n

,

where K is a universal constant and κ and κ′ are constants that depend only on
A and α, and we can assume κ(A, α) ≥ 1. Then, the Borell-Sudakov-Tsirel’son
inequality (cf. [22], page 57, comments following (3.2) or [33], Proposition A.2.1
and its proof) gives

Pξ

|An| ≥
κ(A, α)

√
δ
1−α/2
n√

n
+

√
8δnt

n

 ≤ e−t,

so that, taking t = κ2(A, α)δ−α/2
n , we obtain that

|An| ≤ 4κ(A, α)

√
δ
1−α/2
n

n
(7.3)

with probability at least

1 − exp
{
−κ2(A, α)δ−α/2

n

}
= 1 − exp

{
−κ2(A, α)(nε2/C2)α/(2+α)

}
.

Let now

Bn :=
2
n

n∑
j=1

ξj(f̂n(Xj) − f(Xj))I
(
Pn(f̂n − f)2 > δn

)
,

which we decompose as

Bn =
{

Pn(f̂n − f)2
}1/2 2

n

∑n
i=1 ξi(f̂n − f)(Xi){
Pn(f̂n − f)2

}1/2
I

(
Pn(f̂n − f)2 > δn

)
.
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By using the ratio bound again (Corollary 1), it follows that the intersection of
Lc

n with the event that{
Pn(f̂n − f)2

}1/2

≤ (1 + ε)1/2‖f̂n − f‖

has probability at least

P(Lc
n) − (C2D/(nε2δn)) exp

{
−nε2δn/(3C2)

}
.

So, the intersection of Lc
n with the event that

Bn ≤ 2(1 + ε)1/2‖f̂n − f‖√
n

· sup
f,g∈F

Pn(f−g)2>δn

∑n
i=1 ξi(f − g)(Xi)/

√
n

{Pn(f − g)2}1/2

also has at least this probability. To estimate

Cn := sup
f,g∈F

Pn(f−g)2>δn

∑n
i=1 ξi(f − g)(Xi)/

√
n

{Pn(f − g)2}1/2

we proceed as in Lemmas 1 and 2, and we isolate the computation:

Lemma 4. Let ξ := (ξ1, . . . , ξn) be N(0, I) and let

An :=

{(
(f − g)(Xi)/

√
n

{Pn(f − g)2}1/2
: i = 1, . . . , n

)
: f, g ∈ F , Pn(f − g)2 > δn

}
.

Then, we have that, for the constant κ(A, α) in the bound (7.3) for An and for
any q > 1,

sup
a∈An

|〈a, ξ〉| ≤ 2κ(A, α)qδ−α/4
n

with probability at least 1 − 2 exp
{
−κ2(A, α)q2δ

−α/2
n + 2 log logq δ

−1/2
n

}
.

Proof of the Lemma. Set rn =
√

δn, let q > 1 be such that rnqln = 1, ln a positive
integer, and, for r ≥ rn, let

An(r) :=
{

a ∈ An :
√

Eξ〈a, ξ〉2 ∈ (r/q, r]
}

.

Then, by the Gaussian entropy bound we have, as above,

Eξ ‖〈a, ξ〉‖An(r) ≤ q

r
Eξ

(∣∣∣∣∣
n∑

i=1

ξi(f − g)(Xi)/
√

n

∣∣∣∣∣ I
(
Pn(f − g)2 ≤ r2

))
≤ κ(A, α)qr−α/2/2,

Hence, again by Borell-Sudakov-Tsirel’son,

Pξ

{
‖〈a, ξ〉‖An(r) > κ(A, α)qr−α/2/2 +

√
2t

}
≤ e−t.
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So, if

E+
j (t) =

{
‖〈a, ξ〉‖An(rnqj) ≤ κ(A, α)q(rnqj)−α/2/2 +

√
2(t + 2 log j)

}
,

we have

P

 ∞⋂
j=1

E+
j (t)

 ≥ 1 − 2e−t,

and, on the event
⋂∞

j=1 E+
j (t),

∀j,∀a ∈ An(rnqj), |〈a, ξ〉| ≤ C(A, α)qr−α/2
n /2 +

√
2

(
t + 2 log logq

1
rn

)
(see the proof of Lemma 1). If we now take

t = κ2(A, α)q2r−α
n − 2 log logq r−1

n ,

the lemma follows (we are making the tacit assumption that this quantity is pos-
itive; if it is not positive, the lemma is true but meaningless). �

Thus, we conclude that, at least with the large probability prescribed by the
lemma, we have (with q = 3/2)

Cn ≤ 3κ(A, α)δ−α/4
n .

Hence, the probability of the intersection of Lc
n with the event

Bn ≤ 6κ(A, α)(1 + ε)1/2

n1/2δ
α/4
n

‖f̂n − f‖(7.4)

has probability at least

P(Lc
n) − (D/(nε2/C2)α/(2+α)) exp

{
−(nε2/C2)α/(2+α)/3

}
−2 exp

{
−9

4
κ2(A, α)(nε2/C2)α/(2+α) + 2 log log3/2(nε2/C2)1/(2+α)

}
,

where we have replaced δn by its value (nε2/C2)−2/(2+α).
Collecting the bounds (7.2)-(7.4) together with their probabilities, and using

‖f̂n − f‖ ≤ ‖f̂n − f0‖ + ‖f − f0‖, we obtain that the intersection of Lc
n with the

event that

(1 − ε)‖f̂n − f0‖2

≤ (1 + ε)‖f − f0‖2 +
2(1 + ε)

(nε2/C2)2/(2+α)
+ 4κ(A, α)

ε/C

(nε2/C2)2/(2+α)

+ 6κ(A, α)
ε(1 + ε)1/2/C

(nε2/C2)1/(2+α)

(
‖f̂n − f0‖ + ‖f − f0‖

)
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has probability at least

P(Lc
n)− 2(D/(nε2/C2)α/(2+α)) exp

{
−(nε2/C2)α/(2+α)/3

}
−3 exp

{
−κ2(A, α)(nε2/C2)α/(2+α) + 2 log log3/2(nε2/C2)1/(2+α)

}
.

Since D is a constant and C depends only on A and α and can be taken to be at
least 1, it is clear that, under the assumption in the theorem about n and ε, we can
find C2(A, α) and C3(A, α) such that the above probability is at least P(Lc

n)− τn,
with τn as in the statement of the theorem. Combining with the bound (7.10),
that holds on Ln, we obtain that

(1 − ε)‖f̂n − f0‖2

≤ (1 + ε)‖f − f0‖2 +
1 + 1/ε

(nε2/C2)2/(2+α)
+ 4κ(A, α)

ε/C

(nε2/C2)2/(2+α)

+ 6κ(A, α)
ε(1 + ε)1/2/C

(nε2/C2)1/(2+α)

(
‖f̂n − f0‖ + ‖f − f0‖

)
holds with probability at least 1 − τn. Using ab ≤ (a2 + b2)/2, 0 < ε ≤ 1/3, and
collecting terms, the above inequality implies the following one:

(1 − 2ε)‖f̂n − f0‖2 ≤ (1 + 2ε)‖f − f0‖2

+
(

ελ(A, α) +
2C4/(2+α)

ε

)
1

(nε)2/(2+α)
,

where

λ(A, α) := 4κ(A, α)C(2−α)/(2+α) + 48κ2(A, α)C−2α/(2+α).

Dividing both sides by 1 − 2ε ≥ 1/3, the bound in the theorem follows e.g. for
C1(A, α) = λ(A, α)/9 + 2C4/(2+α)/3. �

The rate prescribed in Theorem 11 obviously depends on the complexity of
the class, in particular, a better rate obtains for VC type classes. Using Corollary
2 instead of Corollary 1 in the above proof, and taking

δn =
log (2/3)4A

√
nε

C
√

v

(2/3)8nε2/(vC2)

gives the following:

Theorem 12. Let F be a measurable class of functions taking values in [0, 1] sat-
isfying the entropy condition of Corollary 2 with v ≥ 1 and A ≥ 2

√
ev. Let n

and C2(3/2)8/n < ε2 ≤ 1/9 be such that δn ≤ 1/(2A2), and assume log δ−1
n >
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log log3/2 δ
−1/2
n . Then, there exist constants Ci = Ci(A, v) > 1, i = 1, 2, 3, depend-

ing only on A and v, such that

‖f̂n − f0‖2 ≤ 1 + 2ε

1 − 2ε
‖f − f0‖2 + C1

log(nε2)
nε3

,

with probability at least 1 − C2(nε2)−C3 .
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